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Lyapunov-based Controllers of an n-link Prismatic
Robot Arm

Ronal P. Chand @ T+, Sandeep A. Kumar

Abstract—This research provides a generalized stabilizing
velocity controllers for planer robot arm with a base rotational
joint and n € N translation joint for navigation. The end-effector
of the planer robot arm has to navigate from an initial to a
final configuration space in an environment, which cluttered with
obstacles. The velocity controllers are developed from a Lyapunov
function, total potentials, designed via Lyapunov-based control
scheme (LbCS) falling under the classical approach of artificial
potential fields method. The effectiveness of the controllers is
validated through computer simulations.

I. INTRODUCTION

High quality and speed needs of our globalized contem-
porary world’s manufacturing systems require a wide range
of technical and technological developments. Unfortunately,
human efforts to complete activities in hostile circumstances
have resulted in numerous threats to the lives of those engaged
and errors causing loss of capital. Moreover, humans are
bound to work at certain hours, which is incompetent at the
rate at which production is required to meet necessities to
enjoy a comfortable life. Robots are meant to undertake dull,
dirty, and dangerous activities in situations and environments
inaccessible or hazardous to humans [1], [2]. They are pro-
grammed to accomplish a wide range of speed and precision
in various scenarios and environments. Robots are used in
multiple works worldwide, including people rescue [3], [4],
navigation [5]-[10], ocean cleanup and discovery [11], [12],
retail supplementation [13], health care needs [3], [14], [15],
and agricultural assistance [16].

Robots consist of several essential components, such as
manipulators, control systems, power supply, sensors, and soft-
ware to execute a task. Aerial and ground vehicles, swimming
and flying robots, parallel robotic systems, car-like and tractor-
trailers, and mobile manipulators are among mechanical sys-
tems is mainly investigated. Robots are being researched for
use in a variety of industries, including transportation, agricul-
ture, companionship, medical treatment and surgery, search
and rescue, pursuit-evasion, and explorations, to mention a
few. Furthermore, certain robots are intended to accomplish
specific tasks since each working environment in which robots
operate necessitates developing extra capabilities to achieve
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peak performance. Segway is a well-known two-wheeled, self-
balancing personal transporter and can help reduce traffic
problems in cities and pollution [17]. For persons who have
difficulty walking, robotic wheelchairs can assist them [18].
For space exploration, remotely operated vehicles and remote
manipulator systems are developed [19].

One of the essential aspects of a robot is its arm. A
robotic arm is a mechanical component that performs functions
comparable to a human arm, is a mechanically articulated
system made up of links connected by joints, and is usually
programmable. The arm can be the sum of the mechanism or
part of a larger robot. The joints are mainly of two types:
revolute and prismatic. While a prismatic joint provides a
linear mechanism by allowing relative translation about an
axis, a revolute joint allows relative rotation between two
links, allowing for a more complex linear mechanism. The arm
has an end-effector that enables it to pick and place objects.
The component could be made by revolute joints only or a
combination with prismatic to achieve its desired objectives.
There are both anchored arms and non-anchored arms. An
anchored arm is fixed at a particular place to carry out tasks at
the fixed position, whereas an unanchored arm is a component
of mobile manipulators.

Many methods are used to solve the path and motion
planning problem in robotics. These techniques are even-
tually classified as heuristics approaches or non- heuristics
approaches. Each technique has advantages and disadvantages
due to its design strategies and tends to be more appropriate
in a situation. Artificial Potential Field (APF) is one of the
most commonly used methods of classical approach used to
develop robot mechanical systems as the success are shown
in [20], [21]. It possesses two potential field forces: repulsive
and attractive. When the robot switches from its initial to
final configuration, the APF ensures a safe path by enabling
the repulsive force towards obstacles and the attraction force
towards the target. It does, however, have a limitation due to
its local minima. APF have many techniques, one of which
is the Lyapunov function. The robotic arm has made essential
contributions to a wide variety of current applications. These
manipulators are capable of doing repetitive operations at a
higher rate of speed, such as pick-up and delivery in hospitals
[22]. [23]used the Lyapunov technique to solve the obstacle
avoidance problem for a 2-link revolute manipulator in an
obstacle-ridden workspace.

This paper aims to develop generalized stabilizing velocity
controllers for a planer robot arm consisting of a base rota-
tional joint and n € N translation joint in an environment with
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stationary obstacles. Lyapunov-based control scheme (LbCS)
will be used to create a total potential, Lyapunov function,
from which the nonlinear time invariant controllers for motion
and path planning of RP"™ robot arm is derived.

The rest of the paper is organized as follows: The Lyapunov-
based Control Scheme is briefly described in Section II, and
the robot arm system modeling is shown in Section III. Then,
in Section IV, velocity controllers are derived using LbCS,
and in Section V, simulation results are presented. Finally, in
Section VI, concluding remarks are made.

II. LYAPUNOV-BASED CONTROL SCHEME

LbCS is the construction of artificial potential fields such
an attractive field is created towards the target, and a repulsive
field is created from each obstacle. As a result, these functions
become a component of total potentials, referred to as the
Lyapunov function in this context. Using LbCS, the nonlinear
stabilizing controllers based on velocity or acceleration could
be employed. In [3], [20], [24]-[33], it has been demonstrated
that a range of problems is doable. The essential advantage of
adopting LbCS is that the continuous controllers can be simply
deduced in [1], [20], [31], which is a significant advantage
over other approaches. LbCS, on the other hand, has the
disadvantage of the possibility of algorithm singularities (local
minima) occurring.

III. SYSTEM MODELLING

The planer robot arm consists of a base rotational joint and
n € N translation joint in the z;zo-plane as shown in Fig 1.
The first link is a revolute (R) and other links are prismatic
(P) with varying length. From now onward, the abbreviation
RP™ will be considered as the planer robot arm shown in
Fig 1. With the illustration of Fig 1, it is assumed that
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Fig. 1.

Representation of a planer RP™ Manipulator.

i. the planer RP™ manipulator is anchored at the origin;

ii. the revolute link has a fixed length [;

iii. the manipulator has an angular position 6(¢) at time ¢ with
respect to zp axis;

iv. the k*" prismatic link has a maximum length r;, . where
k=1{1,2,3,..,n} and 74 (t) is the extracted length of the
Ekth prismatic link; and

v. the coordinate of the end-effector is

((t),y(t)) = (cos B(E) (1 + D (),

k=1
sin0(t)(1+ Y r(t)).
k=1

It is thus necessary to design a set of differential equations that
accurately depicts the motion of an n-link revolute manipulator
arm with a prismatic end-effector. Let @ = (x(t), y(t)) be the
position of the gripper of robot arm at time ¢ > 0. Additionally,
x(t) and y(t) are the x-component and y-component of the
end-effector’s position, respectively. The angular velocity of
the robot arm and the linear velocity of the k** prismatic link
for k = {1,2,3,...,n} are given by ¢'(t) = w(t) and r(t) =
v (t), respectively. The kinematic model suppressing ¢ of the
robot arm is as follows:

n
i;:coség Vg — WY,
k=1

n
7 = sin GZUk + wz, (D
k=1
0 =w,
’f‘k = Vg.

The initial condition at ¢y > 0 are as z = z(to), Yo = y(to),
6o == O(to), Tk, = 7k(to). Suppressing t, the state vector
could be written as x = (x,9,0,71,72,...,7,) € R*""3and
X0 = (20, Y0,00, 719, 7295 --s Tny) € R™T3. The instantaneous
velocity (w,vy) has a state feedback law with the following
structure:

w(t) = —pf(x(t)), and v(t)
where k& € {1,2,3,..,n}. Note that u,q) are some

= —prgr(x(t)),

scalars and f(x(t)), and g¢x(x(t)) are some function

to be constructed later. We can define G(x) =

(—pf(x), —p191(%), —P202(x), ..., —ng(x)) € R"*! then
x = G(x), x(tg) = Xo. 2)

Definition 3.1: The ultimate target for the RP™ robot arm
manipulator is a disk with the center x, = (a,b) and radius
of r,. It is defined as the set:

T :={(21,22) € R?: (21 — a)? + (22 — b)® < 12},

Definition 3.2: The equilibrium point for the RP™ robot
arm manipulator is described as:

) 3
Xe = (a,0,0f,71,,79;,...,Tn;) € R™T
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where 0 represents the orientation angle of the robotic arm
and 7y, is the final extension of the kth prismatic link with
ke{1,2,3,...,n}

IV. VELOCITY CONTROLLERS

Consider a workspace of RP"™ robotic arm cluttered with
q € N disk type obstacles. The end-effector of the R P™ robotic
arm has to navigate to the target location from its initial state.

A. Lyapunov Function Components

1) Target Attraction: To ensure that the end-effector of
the robotic arm converges to its equilibrium position, it is
necessary to use a radically unbounded function to the target.

1
H(z) = 5 o — x| 3)

2) Limitation and Restriction: It should be noted that the
(k + 1)*" prismatic link cannot be fully inserted into the k*"
link. The restriction on the k'" prismatic link is that ry(t) # 0
at any time ¢, that is 75, = r5(0) > 0 for k = {1,2,3,...,n}.
The limitation is that ry, . — ri(t) > ro at any time ¢. To
avoid these singularities, the following functions are defined:

Sk =ri(t) and Qp =14, — Tx(t),

where 7, is the total length of the k*" prismatic link.

3) Stationary Obstacle Avoidance:

Definition 4.1: The i*" solid stationary obstacle is a disk
with center ®p, = (04,,0y,) and radius ro, > 0. It is
described as the set

O; = {(21,29) €ER?: (21 — 04,)* + (22 — oyi)2 < TQOi}.

For the robotic arm to avoid the it" stationary obstacle, for
i€{1,2,3,...,q}, apoint on the robotic arm that is closest to
the obstacle is found, where the minimum distance technique
(MDT) is used to minimize the distance function

Di = H(Xu}/l) - wOiH 5

The robot arm could be described by the line segment respect
to time using #. To avoid obstacles with center (o,,0,,) and
radius of rgi it is significant to avoid the line given by the
equation

X, =x — \; cos GZrk(t),
k=1

Y; =y — A;sin HZrk(tL
k=1
where
Ai = min{max {0,Q}, 1}

d
o cosf(x — o0y,) +sinb(y — oy,)

ZT;C (t)
k=1

For the purpose of avoiding the i*" stationary solid obstacle
where i € {1,2,3,...,q}, we adopt the following obstacle
avoidance function

Q:

_Omi)2+(n_0yz‘)2 —7“201-]~ (4)

4) A Lyapunov Function: Let o > 0,y > 0,7 > 0 and
B; > 0 be real numbers, and for k = {1,2,3,...,n} and i =
{1,2,3, ..., ¢},the Lyapunov function suppressing ¢ for system
(1) becomes

- Tk - B
L(X)ZH()< +Y Ny >
A ;Qk kzz:lsk ;Wz

5) Velocity Controllers: Alone the trajectory of the system
2,

n n q
ix) — H i3 T Bi
(%) () (“;Qﬁ;Sﬁ;Wi
) n . " Y. .
—H(x) <Z%§Qk +ZS§SI<>
—1 %k k=1"F
g
s H :
,Zﬂwgw)wi
=1 7

which can be simplified to
L(X) = f(x)w+ ng(x)vk. 5)
k=1

L(x) OL(x)

0
Note the f(x) = and gi(x) = - Let there be

Tk
constants u, g > 0 for k = {1,2,3,...,n}, then

w=—pf(x), and vy = —Prgr(x) (6)
V. STABILITY ANALYSIS

The L(x) is positive over the domain

D(L(x)) = {x e R Q) > 0,8 >0,

W; > 0,Vk ={1,2,3,...,n},
Vi = {1,2,3,...,q}}
Substituting (6) into (5) gives,

L(x) = - (uﬁ(x) + ngi(x)) <0. (7
k=1

The system (2) can be seen as having L(x.) = 0, and L(x) >
0,Vx # X., and by (7) L(x) < 0. Thus, it is worth noting
that the system (2) is stable.

VI. SIMULATION WORK

The Wolfram Mathematica 12.1 program was used to create
the computer simulations in this study. Several Mathematica
commands were run in succession in order to get the required
results. Using the brute-force approach, it is necessary to
determine the values of the convergence, system singularities,
and restriction avoidance parameters prior to executing the
algorithm. With the RK4 (Runge-Kutta Method) technique, a
numerical simulation of the system was performed.

This section will consider two scenarios. The first scenario
will be on RP? robot arm with one obstacle in its path. The
second scenario will be on RP* robot arm with two obstacles
in its path.
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A. RP? robot Arm with one Obstacle

In this scenario we choose a robot arm with 3 prismatic
links and an anchored revolute joint at (0,0). The robot arm
at t = 0 and the trajectory taken can be seen Fig 2. The length
of the revolute link is [; = 4, and the initial length of prismatic
links are as 7y = 0.7, 72 = 0.6, r3 = 0.5 with r; = 2.5.
The convergence parameters are p = 0.001, ¢, = 0.0002,
a = 0.5, 8 =0.01, v, = T, = 0.0004 where k = {1,2,3}.
Note that there is only one obstacle thus ¢ = 1.

The Lyapunov function L > 0 and decreases in each
time interval till the system reaches its equilibrium state at
its corresponding target as shown in Fig 3. The Lyapunov
function L(x) < 0 is also shown in Fig 3. In Fig 4 three
different positions of robot arm are shown where ¢ = 50,
t = 240 and ¢ = 1550. At ¢t = 1550 the robot arm successfully
reaches to its target by avoiding a obstacles in its path.

10

Target
8 O
6L
. ) o
@ImtlaIPomt

Fig. 2. The positions of robot arm at ¢ = 0.
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Fig. 3. The evolution of Lyapunov function, and its time derivative.
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Fig. 4. The position of robot arm ¢t = 50 , ¢ = 240 and ¢ = 15520.

B. RP* robot Arm with two Obstacles

z2

InitialPoint

Fig. 5. The position of robot arm ¢ = 87 , t = 537 and ¢ = 8979.

In this scenario we choose a robot arm with 3 prismatic
links and an anchored revolute joint at (0,0). The length of
the revolute link is [; = 4, and the initial length of prismatic
links are as vy = 0.7, ro = 0.6, 73 = 0.5, r4 = 0.4 with

Thma. = 2.0. The convergence parameters are y = 0.001,
wr = 0.0002, a = 0.5, B1 = P2 = 0.01, v, = Ti = 0.0004
where k = {1, ,3,4}. Note that there two obstacle in this
scenario, thus ¢ = 2. In Fig 5 three different position of robot
arm are shown where ¢t = 87, t = 537 and ¢t = 8979. At
t = 18979 the robot arm successfully reaches to its target by
avoiding obstacles in its path.
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VII. CONCLUSION

This paper presented stabilizing velocity controllers for a
generalized planer robot arm consisting of a base rotational
joint and n € N translation joint. The controllers enable the
end-effector to navigate from its initial state to its goal in
an environment cluttered with obstacles. Numerical examples
validate the controllers designed. This model can be extended
whereby the arm has to achieve subgoals in an environment
which is cluttered with various types of obstacles.
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