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Abstract—Swarm intelligence, a nature-inspired concept that
includes multiplicity, stochasticity, randomness, and messiness
is emergent in most real-life problem-solving. The concept of
swarming can be integrated with herding predators in an ecolog-
ical system. This paper presents the development of stabilizing
velocity-based controllers for a Lagrangian swarm of n € N
individuals, which are supposed to capture a moving target
(intruder). The controllers are developed from a Lyapunov
function, total potentials, designed via Lyapunov-based control
scheme (LbCS) falling under the classical approach of artificial
potential fields method. The interplay of the three central pillars
of LbCS, which are safety, shortness, and smoothest course
for motion planning, results in cost and time effectiveness and
efficiency of velocity controllers. Computer simulations illustrate
the effectiveness of control laws.

Index Terms—swarm, artificial potential field, Lyapunov sta-
bility, velocity controllers

I. INTRODUCTION

A swarm is a well-organized and coherent mechanism that
depicts a group or collection of organisms [1]. Swarm-based
algorithms are a form of population-based algorithm inspired
by nature that can produce low-cost, efficient, and reliable
solutions to a variety of challenges. For instance, the possible
use of groups of robots (cellular robots) that could work like
cells of an organism to assemble more complex parts [2],
or the use of swarm of unmanned aerial vehicles (UAVs) in
monitoring air pollution caused by gases released by industries
[3]. Swarm Intelligence (SI) is a relatively recent develop-
ment of artificial intelligence (AI) which is used to model
the collective behavior of social swarms throughout nature
including ants, honey bees, and bird flocks [4]. Computational
models inspired by natural swarm systems are linked to this as
swarm intelligence models. Several swarm intelligence models
based on multiple natural swarm methods have been designed
in literature [1], [5]-[13]. The concept of a swarm suggests
multiplicity, stochasticity, randomness, and messiness, and
the concept of intelligence suggests that the problem-solving
method is successful [14].

According to Volmerg (1979), he argued that the repetitive
character of the modern job gives rise to the mental state
of monotony [15]. Hence swarm intelligence is used in such
cases to reduce human interaction for trivial jobs. Jobs that
are risky or dirty are also of concern when human interaction
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is discussed. In many such cases, robots are utilized to carry
out the course. This not only reduces human efforts but also
prevents one from risks of injuries and dangerous diseases
[16], [17]. Swarm is also utilized in the areas of transportation.
Transporting parcels in some areas could be challenging, hence
robots are nowadays heavily used to do this job. Even in
health care units, swarm intelligence is utilized. In Pandemic
like COVID-19, swarms of robots can be used for delivering
medicines.

Over the past years, the field of swarm robots has been
greatly utilized and has shown great results in any associated
area it has been used [18]. In a study conducted in the year
2001, the researchers stated some admirable advantages of
swarming in businesses. These involve flexibility, robustness,
and self-organization. Flexibility in a sense, employees can
adapt to sudden changes that may arise in the workplace.
Robustness is when one or two members of the group fail
to perform their task but the entire group can still function.
Lastly, self -organization includes minimum supervision also
known as top-down control. The members can function with
minimum instructions [19].

This paper aims to highlight biological swarming, where
it draws attention towards herding predators using swarm
intelligence. According to researchers, biological swarming is
divided into two major approaches namely, Eulerian and the
Lagrangian approaches [20]. In the context of predator and
prey, the swarm could be of great importance. For instance,
protecting livestocks. In many cases, it is very difficult to
monitor livestock and keep them protected. In addition, it is
very dangerous at times for humans to protect livestock from
predators such as lions and other life-threatening and wild
animals. Thus, this paper shall outline one alternative means
as to how predators can be kept away from our livestock or
even our domesticated animals. The paper shall also fill in the
missing links from the previous studies. It shall provide a more
sustainable approach using the artificial potential field concept
where predators can be monitored by prey and humans with
safety measures. The above will be achieved by constructing
stabilizing velocity controllers of each individual of a swarm of
n € N individuals and a intruder. The velocity controllers will
be derived from a total potential called a Lyapunov function,
which is developed using the Lyapunov-based control scheme
(LbCS).

The remainder of the paper is organized as follows: Section
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II discusses some of the related works. In Section III, the LbCS
is discussed briefly. Section IV provides the system modelling
for a two dimensional swarm model with a moving target
(intruder). The velocity control laws are derived for the swarm
individuals and the moving target from a Lyapunov function
in Section V. Section VI provides the stability analysis of the
proposed system. Simulation results are presented in Section
VII. Finally, the paper is concluded in Section VIII.

II. RELATED WORK

The idea of swarming is originally from the field of Bi-
ology. A study conducted on algorithms for swarming based
on competitive predators with dynamic virtual teams stated,
competition results in predation and thus, there was a need
for addressing this problem. A Fitness Predator Optimizer
(FPO) was designed which monitored the predator’s search
behavior, at the same time having self-awareness [21]. Another
study named An Empirical Comparison of Particle Swarm and
Predator-Prey Optimisation (PSO) also agrees with this. PSO
study shows the balancing of exploration and exploitation. A
similar concept was used in this study as the FPO. The study
defined two populations of particles. First, as the population
particles of predators. The second is the swarm particle of
prey. They observed that predators had different dynamic
behavior towards the prey. These predators are attracted to
the best individuals in the swarm and others repelled [22]. A
similar study named, Predator-Prey Brain Storm Optimization
for DC Brushless Motor BSO also shows similar findings as
to PSO. Here clusters were defined and the centers act like
the predators, which moved towards favorable positions. On
the other hand, the prey moved away or rather repelled from
the predators [23].

Literature states that researchers have been trying to un-
derstand and model swarming behavior [24]-[26]. There are
two types of approaches: nonspatial and spatial [24]. The non-
spatial approach is characterized as the swarming dynamics
at the population level in terms of frequency distributions of
groups of various sizes in nonspatial techniques [24]. Based on
innate group dynamics, environmental factors, and interactions
with other groups, it is thought that groups of varying sizes
divide or merge into other groups [24]. However, literature has
noted that the disadvantage of nonspatial techniques is that
to describe and evaluate population dynamics, they require
multiple artificial assumptions regarding fusion and fission of
groups of various sizes [24].

The spatial approach includes space (environment) in the
model and analysis, either explicitly or implicitly. This ap-
proach can be divided into two distinct frameworks; La-
grangian framework (individual-based) and Eulerian frame-
work (continuum) [1], [6], [7], [9], [11], [24], [27]. In the La-
grangian framework, the state of an individual and its relation-
ship with other individuals in the swarm are investigated [1],
[6]. Within this framework, it is widely accepted that swarming
behavior is caused by a combination of long-range attraction
and short-range repulsion between individuals [24]. In the
Eulerian framework, the swarm is regarded as a continuum,

defined by its density in one, two, or three dimensions. Partial
differential equations describe the evolution of swarm density
over time [1], [6], [7], [9], [11], [24], [27]. The advection-
diffusion-reaction equation is the fundamental equation of
Eulerian models, in which advection and diffusion are the
combined outcomes of individual behavior and environmental
factors, while the response term is related to population
dynamics [24].

III. LYAPUNOV-BASED CONTROL SCHEME

The Lyapunov-based Control Scheme (LbCS) is commonly
used in robotics research for motion planning and control
of numerous robotic systems [?], [12], [17], [28]-[31]. The
LbCS falls under the artificial potential field method of the
classical approach, and has been effectively used to construct
continuous time-invariant nonlinear velocity or acceleration
controllers as shown in [32]-[37], and [38].

An effective and controlled motion of a robot can be
achieved using the method of LbCS by appropriately designing
attractive and obstacle avoidance functions. LbCS adopts a
strategy of developing a repulsive potential field function that
fundamentally is a ratio that encodes the obstacle avoidance
function into its denominator while the numerator consists of
a tuning parameter [6], [11], [27]. This ratio is known as the
repulsive potential field function and ensures the avoidance
of obstacles. An attractive field is applied to the target and a
repulsive field to each obstacle. Furthermore, the workspace
is saturated with positive and negative fields, whereby the
technique of steepest descent and total potential gradient helps
guide the movement, speed, direction and orientation of the
robot.

A demonstration of a Lyapunov function is given below
in Fig. 1 where the contour plot and 3D visualisation in a
workspace for a robot whose initial position is at (100,100) is
presented. The robot’s trajectory from its initial location to its
target position (10, 10) is depicted by the dotted line, which
shows the robot avoiding the obstacle at (65, 60) with radius
20.

IV. SYSTEM MODELLING

Lets consider a real-life situation where n € N policemen or
security guards who are scattered in an environment to prevent
an intruder to reach its desired location. The objective of this
section is to develop a swarm-intruder system, to stop/capture
a intruder, once detected, to reach its target location using
n € N swarm individuals. The swarm individuals could
communicate with each other, that is, they are connected in a
network.

A. A two-dimensional swarm herding predator model

Consider a swarm of n € N individuals and a intruder that
are treated as rigid bodies. The n € N individuals will be used
to build a generic swarm model. The independent parameters,
particularly are the translational components, which will be
used to define the locations of the swarm individuals and the
intruder in a 2-D configuration.
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Fig. 1. An illustration of Lyapunov-based Control Scheme.

Definition 4.1: The i*" individual of the swarm positioned
at (x;,y;) and radius r; > 0. It could be described as the set

H; := {(21,2’2) S R2 : (Zl — xi)z + (ZQ — y2)2 < 7”3} (1)

Definition 4.2: The centroid of the swarm of n € N
individuals is

1~ I
xo = (vo,yc) = (n >, - Zyk> : 2)
k=1 k=1

Definition 4.3: The intruder is a disk with center x = (z,y)
and radius r, > 0. It is described by the set

71 :={(21,22) € R2: (21 — x)2 + (22 — y)? < 7"2} 3)

Let the positions of the " individual of the swarm and

the intruder at time ¢t > 0 be x; = (z;(t),yi(t)), for all
i€ {1,2,3,...,n} and x = (x(t),y(t)), respectively, with
(zi(to), yi(to)) = (@iss ¥io) and (z(to), y(to)) = (o, y0) as
the initial conditions. By suppressing ¢, let x; := (z;,y;) € R?

and the state vectors be x := (x,X1,X2,X3,...,X,) € R?"+2,

Also, let Xo = (%0, Y0, %19, Y10> L2065 Y205 > Tngs Yno) €
R2n+2

The instantaneous velocity of the i** swarm individual and
the intruder at ¢t > 0 are (v;(t), w;(t)) := (xi(t),yi(t)) and
(o(t),d(t)) := (2'(t),y'(t)), respectively. From the above
notations, a system of first-order ODEs for the ith swarm
individual and the intruder are formed as:

2 (t) = vi(t), yi(t) = wi(t),
and

2 (t)=o(t),y'(t) =6(t),
th

respectively. If the instantaneous velocity for the ¢*" swarm
individual (v;, w;) and the intruder (o, §) have a state feedback
law of the form,

vi(t) = —pi fi(x(t)), wi(t) = —pigi(x(t)),
and
o(t) = =Qp(x(1)), 6(t) = —Uq(x(t))

for scalars p;, ¢;, Q2,0 > 0 and functions f;(x(t)), g:(x(t)),
p(x(t)), and ¢(x(t)) to be constructed accordingly later.
Let gi(x) = (—uifi(x),—igi(x)) € R? and g(x) :=
(—Qp(x), —Uq(x)) € R? contain the state feedback law of
the 7" swarm individual and the intruder, respectively. If
G(x) = (8(x),81(%), 85(X).. gn(x)) € R¥"2, then the
swarm of n € N individuals and the intruder system is

x = G(x), x(to) = xo. “)
V. LYAPUNOV-BASED VELOCITY CONTROLLERS

Consider the 2-D configuration space of system (4) that has
n € N swarm individuals and a intruder.

Definition 5.1: The target for the intruder is x,. It is a disk
with center x; = (a,b) and radius r,. It is described as the
set

Ty 1= {(21,22) S RZ: (21 - a)2 + (ZQ - b)2 < rqz-} &)

A. Lyapunov function components

Assume that each individual in the swarm is identical; hence
r; =m, Vi€ {1,23,...,n} where ry is the radius of the
disk in which the individual is residing.

1) Attraction of swarm individuals towards the swarm cen-
troid: The attractive potential function that will ensure that the
ith individual is attracted to the swarm centroid is proposed
to be:

1
Ri(x;) == 3 x; — xc? (6)

for i € {1,2,3,...,n}. This attraction function is to ensure
the attraction of the :th individual to the centroid of the swarm.
2) Target attraction of the swarm centroid: The target of the
swarm n € N individuals is a moving target, which essentially
is the intruder, and the following target attraction function
ensures that the centroid of the swarm is attracted to the

intruder: 1
T(x) = 5 | —x|*. (7)
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3) Inter-agent collision avoidance: This repulsion function
ensures there is an inter-agent collision avoidance between the
ith and jth individual where j # 4 and 4,5 € {1,2,3,...,n}.
We consider the function

Qi;(x;) == % Ix; _ (27"b)2] . (8)

4) Intruder target attraction: A function that will ensure
that the intruder is attracted towards its target is defined as:

2
— x|

1
B(x) = 3 e — x| 9)

5) Collision avoidance between the intruder and the ith
swarm individual: As the intruder will try to approach its
target, it will encounter swarm individuals, which will try to
capture or stop the intruder. The intruder would perform the
collision avoidance maneuvers and not by the individuals of
the swarm. A one-way avoidance scheme will be created. An
avoidance function to avoid the intruder from colliding with
the individuals is defined as follows:

1
Di(x) = [l —xil* -

B. A Lyapunov Function

(ra + rb)2] . (10)

Let there be positive real numbers o, v;, 8;j, €, 1; for 7,7 €
{1,2,3,...,n} and j # i. A Lyapunov function suitable for
system (4) is of the form

120 5| RETEED o
= ij
! 3751
0 (X0
=1

) +eB (x))
C. Velocity Controllers

Along a trajectory of the swarm system (4), we have

Lx) = T(x)

1)

L(x) =Y [fi(x)ii + gi(x)gi] + p(x)3 + q(x)g,  (12)
=1

where
_ _ OL(x)
filx) = B, (13)
. _ 0L(x)
_ OL(x)
P = 5= (15)
and
_ OL(x)
q(x) = oy (16)

Let there be scalars p; > 0, ¢; > 0, 2 > 0 and U > 0. Then
the velocity controllers of system (4) are

v = *Mz‘fi((x)),
wi Pigi\X
) an
5 = —Uq(x).

VI. STABILITY ANALYSIS

It is evident that L(x) is positive over the domain

D(L(x)) = {x € R22: Qi (x) > 0, Dy(x) > 0,

Vi ={1,2,3,....n}i#j}.

Substituting (17) into (12) gives

Lx) = - <Z (1 fi(x) + pigi(x)] + Qp(x) + UQ(X)>

i=1
< 0,

Vx € D(L(x)). At the equilibrium point, x., where x¢o = x,
the instantaneous velocities, v;, w;, o and § are zero because
fi(x) = gis(x) = p(x) = q(x) =0, that is, L(x.) = 0.

VII. SIMULATION RESULTS

Simulations were generated using Wolfram Mathematica
12.1 software. To achieve the desired results, Mathematica
commands were executed, meaning that the Mathematica com-
mands were based on the Lyapunov components, Lyapunov
function, and velocity controllers of our swarm intruder system
(4). The positions of the swarm individuals were randomly
generated. The initial and target positions of the intruder were
assigned. System (4) was numerically simulated using RK4
method (Runge-Kutta Method).

Example 7.1: The initial positions of a swarm of 10 individ-
uals with the initial position and target location of a moving
target (intruder) is shown in Fig. 2. The swarm individuals
clusters around the centroid as time evolves and then moves
towards the moving target as a well-spaced cohesive group and
eventually captures the intruder, as shown in Fig. 3. Fig. 4
shows the evolution of L(x) and its derivative with respect
to time. Distance between the centroid of the swarm and the
moving target (intruder) is shown in Fig. 5. Snap shots taken
in Region A (which is present in Fig. 3) are shown in Fig. 6.

VIII. CONCLUSION

This paper presents stabilizing nonlinear time-invariant con-
tinuous velocity-based control laws derived from LbCS of
a swarm of n € N individuals and a intruder. The control
laws enable a swarm of n € N individuals to navigate from
their initial configuration to capture a moving target (intruder).
The effectiveness of the controllers were validated through
computer simulation. Interaction of the three main pillars
of LbCS, which are safety, shortness, and smoothest path
for motion planning, bring about cost and time effectiveness
and efficiency of the velocity controllers. This paper is a
theoretical exposition into the applicability of LbCS, and
we have restricted ourselves to showing the effectiveness of
velocity-based control laws using computer-based simulation
of a scenario and numerical proof. It is feasible for the industry
sector to include such controllers for the development of
autonomous mobile robots. Development of such technologies
for security measures will definitely assist in apprehending
intruders.
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4

Final Positions. For this result, « = 0.5,v; = 0.3, 8;; = 10,7
p; = 0.001, and Q = U = 0.0001.

shown in Figure 3.
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The future work will consider combining the current algo-
rithm, however, to one of the heuristic-based approaches to
form a hybrid system, which inherits the benefits of LbCS but
can flush out local minima using the latter approach.
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