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ABSTRACT Class imbalance in a dataset is a major problem for classifiers that results in poor prediction with
a high true positive rate (TPR) but a low true negative rate (TNR) for a majority positive training dataset.
Generally, the pre-processing technique of oversampling of minority class(es) are used to overcome this
deficiency. Our focus is on using the hybridization of Generative Adversarial Network (GAN) and Synthetic
Minority Over-Sampling Technique (SMOTE) to address class imbalanced problems. We propose a novel
two-phase oversampling approach involving knowledge transfer that has the synergy of SMOTE and GAN.
The unrealistic or overgeneralized samples of SMOTE are transformed into realistic distribution of data by
GAN where there is not enough minority class data available for GAN to process them by itself effectively.
We named it SMOTified-GAN as GAN works on pre-sampled minority data produced by SMOTE rather
than randomly generating the samples itself. The experimental results prove the sample quality of minority
class(es) has been improved in a variety of tested benchmark datasets. Its performance is improved by up to
9% from the next best algorithm tested on Fl-score measurements. Its time complexity is also reasonable
which is around O(N2d>T) for a sequential algorithm.

INDEX TERMS Generative adversarial network (GAN), synthetic minority over-sampling technique

(SMOTE), SMOTified-GAN, class imbalance problem.

I. INTRODUCTION

Class imbalance problem (CIP) refers to a type of classifica-
tion problems where some classes are either majorly or mod-
erately underrepresented in comparison to other classes [1].
The unequal distribution makes many conventional machine
learning algorithms quite less effective, especially for the
prediction of minority classes [2]. A number of solu-
tions have been proposed at the data and algorithm
levels to deal with class imbalance such as preprocess-
ing for oversampling or under-sampling, data augmenta-
tion, cost-sensitive learning/model penalization and one-class
classification [1], [3]-[5].

The imbalance dataset exhibits a major problem for
the classifiers to be bias towards the majority class. The
imbalanced class distribution results in the degradation of
performance of the classifier model due to biased classifica-
tion towards the majority class. It causes high true positive
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rate (TPR) and a low true negative rate (TNR) when majority
samples are positive [6]. Data imbalance can be commonly
seen in fraud/fault/anomaly detection [3], [7]-[11], medical
diagnosis of lethal and rare diseases [5], [12], [13], software
defect prediction [14], natural disaster etc [4].

Commonly used pre-processing technique is oversampling
as undersampling removes important information and does
not result in accurate classification [15]. Oversampling too
suffers from inclusion of illegitimate samples which is still
an active area of research [16], [17]. Synthetic oversampling
technique (SMOTE) [18] is considered a ““de facto” standard
for an oversampling method. It is simple and effective; how-
ever, it may not produce diverse sample. SMOTE uses inter-
polation to randomly generate new samples from the nearest
neighborhood of minority class data. It has been successfully
used in regression [19], and classification problems [20] for
a wide range of models [21]. A review of SMOTE and appli-
cations has been given in [22].

The data samples in the case of imbalanced dataset can
also be generated through classification models as well with
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data augmentation approach. Generative Adversarial Net-
work (GAN) and its variations are commonly used to generate
new ‘“‘fake” samples [23]-[26]. GAN was originally designed
to generate the realistic-looking images for large datasets,
however, it can also generate minority class samples thereby
balancing the class distribution and avoiding over-fitting
effectively [27]. Imbalanced data classification is ubiquitous
in application domains. Data augmentation technique based
on variations of GAN have been successfully applied on
many applications such as skin lesion classification [13]
for better diagnosis or pipeline leakage in petrochemical
system [28].

Bayesian inference provides a principled framework to
estimate unknown quantity represented by the posterior dis-
tribution (parameters of a model) which is updated via
Bayes’ theorem as more information gets available [29]-[31].
Markov Chain Monte Carlo (MCMC) sampling is typically
used to implement Bayesian inference [32]. It features a
likelihood function that takes into account the prior distribu-
tion to either accept/reject samples obtained from a proposal
distribution to construct the posterior distribution of model
parameters, such as weights of a neural network [31]-[34].
A major limitation for MCMC sampling technique is high
computational complexity for sampling from the posterior
distribution [35], [36]. There recently there has been much
progress in MCMC sampling via the use of gradient-based
proposals and parallel computing in Bayesian deep learn-
ing [37]-[39]. However, these have been mostly limited to
model parameter (weights) uncertainty quantification rather
than quantifying uncertainties in data or addressing class
imbalanced problems. In the case of class imbalanced prob-
lems, MCMC sampling has been used for benchmark real-
world imbalanced datasets [35], [40]. MCMC method have
been applied for handing imbalanced categorical data [36].
Das et al. in [35] have used Gibbs sampling (an MCMC
method) to generate new minority class samples.

Another example of oversampling method is data depen-
dant cost matrix, where a weighted misclassification cost is
assigned to the misclassified classes [4]. It is not easy to
determine this cost [35]. The cost-sensitive loss function has
penalty based weights for misclassification errors from both
majority and minority classes. Hybrid neural network with a
cost-sensitive support vector machine (hybrid NN-CSSVM)
in [41] considers different cost related to each misclassifica-
tion. Castro et al. in [2] have improved the misclassification
error for the imbalanced data by using the cost parameter
according to the ratio of majority samples in the training set.
One-class problem [8], [42], [43] also has a ““minority” class
but generally it is considered outlier which is removed from
the training data. One-class modeling usually uses feature
mapping or feature fitting to enforce the feature learning
process [43].

In this paper, we propose a novel hybrid approach that
combines the strengths and overcomes the deficiency of two
independent models that include SMOTE and GAN. SMOTE
is known to produce some irregular or “out of distribution”
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samples. Additionally, SMOTE has not been generally used
with deep learning and GAN generally has not been used for
small datasets (minority classes) [11]. Hence, we refer to our
approach to it as SMOTified-GAN which is a two-phased
process based on knowledge transfer or transfer learning [44].
Firstly, SMOTE generates promising samples which is then
“transferred” to GAN which no longer uses random sam-
ple. Our approach may work well for both small and large
datasets. This could lead to more feasible and diverse data
which are further enhanced through GAN to prepare better
quality samples. We have obtained impressive results for
our proposed method on numerical benchmark CIP datasets
mainly from UCI library [45]. Its efficiency is also reasonable
which is the combination of SMOTE and GAN as discussed
in Section 2 and Section 3. SMOTified-GAN, however, works
on non-image data only in its current form.

The rest of the paper is organised as follows. Section 2
presents the state-of-the-art techniques to solve CIPs.
Section 3 discusses the proposed method — SMOTified-GAN.
Section 4 shows the experimental results and Section 5 dis-
cusses the outcome of the experiments. Lastly, Section 6 con-
cludes the paper by summarizing the results and proposing
some further extensions to the research.

Il. RELATED WORK ON CLASS IMBALANCE PROBLEMS
A. SYNTHETIC MINORITY OVERSAMPLING
TECHNIQUE (SMOTE)
The SMOTE is a “de facto” standard for pre-processing
imbalanced data. This is not a complete random sampling
whereas it uses interpolation among the neighboring minority
class examples. It is efficient and easy to implement. Each
minority example gets k-nearest neighbors (KNN) which are
randomly selected to have interpolation to create new sam-
ples. The pseudocode is given in Algorithm 1. The parameters
n and d are the size and dimension of the minority class
respectively; N is the size of the majority class and parameter
k for k-nearest neighbor. Lines 1-5 finds KNN for each
minority sample then does the interpolation with them to cre-
ate new samples. Lines 6-12 describes the interpolation step
where N — n samples are being created and added into minor-
ity class. Its time complexity for a single machine has the
order of O((N — n)dnlogk) ~ O(delog k) [18], [22], [46].
There are many variants of SMOTE that have been
successfully applied to various application domains such
as bioinformatics, video surveillance, fault detection or
high dimensional gene expression data sets [22], [47],
[48]. There are many variants of SMOTE such as regular
SMOTE, Borderline-SMOTE, SVM-SMOTE and KMeans-
SMOTE [49]. Kovacs in [50] has shown the implementation
of 85 variants of SMOTE in python library.

B. GENERATIVE ADVERSARIAL NETWORK (GAN)

GAN is a class of machine learning frameworks in which
there is a contest between two neural networks with a contin-
uous and simultaneous improvement of both neural networks.
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Algorithm 1: Pseudocode for SMOTE

// Input: d-dimensional minority
samples X of size n from a
training data set of size N that
requires N —n over-samples. k
defines k-nearest neighbors.

N <«<N-—n

fori=1:|X]| do
S <« KNN(x;, k) // xieX
X < interpolate(N /100, x;,S) // for N > 100

end

(7 T N R S

// subroutine for interpolate

6 interpolate (V,x;, S)

7 while || X|| < N do

8 a <—R11‘X1(1) // pick a random integer
value from 1...k

9 xj < S{a}

// Axj=xj—x;= euclidean distance
between x; and x;

// RIDXd:> a decimal random number
between 0 to 1

0 | X < XU+ Axj x RY)

11 end

2 return X

—

This technique learns to generate new data with the same
statistics as the training set by capturing the true data distri-
bution [51].

GAN has been successfully used for data augmentation.
The two neural networks of GAN learn the target distribu-
tion and generate new samples to achieve similar distributive
structure in its generated over-sampled data. A GAN is sim-
ply the synergy of two deep learning network that produce
“fake” data examples emulating the properties of the real
data [27], [52], [53].

GAN had not been designed for oversampling imbal-
anced classes but to create ‘“‘fake” images of real images
which should be hard to distinguish. However, its success in
data augmentation for over-sampling has led to the introdu-
ction to many variations of GAN to solve CIP [24]-[26], [51],
[54]-[56].

The first network is called Generator whose responsibility
is to takes a vector of random values and generate the data
similar to the real data used in training. The second network
is called Discriminator that takes input data from both the real
training data and the ‘““fake’” data from the generator, to clas-
sify them correctly. This process is shown in FIGURE 1.

The time-complexity of GAN can be roughly given as
O(nTLd?) where the new parameters L and T are layer-size
and total iterations for a GAN. Its convergence rate with the
Stochastic Gradient Descent would be O(% + 02) where o2
is the variance of the dataset [57]. See Section III for further
details.
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FIGURE 1. Process of “fake” sample generation with GAN.

. SMOTified-GAN FOR CLASS IMBALANCE PROBLEM
Our proposed method tries to overcome the deficiency of
both SMOTE and GAN by using a transfer learning concept
where it first extracts the knowledge about minority class
from SMOTE and then applies it to GAN. We have named it
SMOTified-GAN as it tries to diversify the original samples
produced by SMOTE through GAN. Additionally, the quality
of the sample is further enhanced by emulating them with the
realistic samples. The process of SMOTified-GAN is shown
in FIGURE 3.

Even though SMOTE is widely used as an oversampling
technique, it suffers with some deficiency. The major draw-
back of SMOTE is that it focuses on local information and
therefore it does not generate diverse set of data as shown
in FIGURE 2(a). Additionally, FIGURE 2(b) shows the 5
nearest neighbors of x1, {x2, ..., x¢} are firstly, blindly cho-
sen then interpolated (using Euclidean distance) to get the
corresponding synthetic samples {a, . .., e}. Even, there there
is a high chance of miss-classification for sample e with a
majority sample y; [58]. The generated data are generally
insufficiently realistic compared to GAN that captures the
true data distribution in order to generate data for the minority
class [25].

GAN is not ideally fit for oversampling as it has been origi-
nally designed for realistic looking images with convolutional
neural networks (CNN) rather than producing over-samples
for the minority class. Additionally, GAN may face data
scarcity problem as minority class is already in reduced form
where model training requires more of its data to be sacrificed
for validation and testing purpose. Though, cross-validation
techniques may solve this problem to some extent.

The architecture of GAN consists of two networks as
mentioned in the previous section where the objective of the
generator network is to generate data that fools the discrimi-
nator network to classifies as “‘real”’. To optimize its perfor-
mance, maximize the loss of the discriminator when data is
coming from the generator. The objective of the generator is
to generate data that the discriminator classifies as “real”.
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FIGURE 2. SMOTE processing for oversampling.

To optimize the performance of the discriminator, the loss of
the discriminator is to be minimized when given batches of
both real and generated data. The objective of the discrimina-
tor is to not be “fooled” by the generator [51], [60].

The discriminator score can be given as:

max B, [log D(x)] + E-[log(1 — D(G(2)))]
or

mgn E,[—log D(x)] — E;[log(1 — D(G(2)))]

D(x) contains the discriminator output probabilities for the
real data x and D(G(z)) contains the discriminator output
probabilities for the generated data z.

The generator score is:

ngn —E,[log D(G(z))]

The pseudocode for the GAN algorithm is given in
Algorithm 2 where SGD and weights are functions to deter-
mine gradient for a mini-batch using Stochastic Gradient
Descent algorithm (SGD) optimizer [61] or its any other vari-
ation such as ADAM [62] or RMSprop [63], and update the
weights respectively. Once the algorithm terminates ‘good’
fake samples are collected with accumulateFakeEx based on
classification accuracy.
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Algorithm 2: Pseudocode for GAN

// Input: training data set examples x
and noise samples z from
appropriate random number
generator. An optional parameter
can be the size nge of fake sample
needed.

// initialize parameters
// mi is minibatch indices for i
index and T is total iterations.

1 GAN (x, z, nfake)

2fort=1:Tdo

// generally step size S is 1

// subscript d and g refers to
discriminator and generator
entity respectively

3 fors=1:S5do
8d <
SGD(—log D(x) — log(1 — D(G(z)), W4, m;)
Wy < weights(gq, Wq)

end

8¢ < SGD(—1log D(G(2)), Wy, m;)

8 Wy < weights(gg, W)

9 end

10 x' < accumulateFakeEx (Model;(Wy, x, 2),
Modely,(Wy, x, 2), Nfake)

11 return x’

N

N S »n

Goodfellow [64] has used sigmoid as the activation func-
tion that would result the following scores to minimize:
Discriminator:

E[— log(l + )] — E.[1 — log(1 + ¢ )]
Generator:
E.[—log(l 4+ )]

where y and y are the outputs of the Discriminator D and
Generator model G respectively before the activation function
is applied.

The formalization of SMOTified-GAN is not very different
from the original GAN. Only the random generator func-
tion of GAN is replaced with the repertoire of oversample
minority examples from SMOTE. The modified scores can
be shown as:

discriminator score:

max Ex+[log D(x*[x)] 4+ Ey[log(1 — D(G(u)))]
Generator score:

mGin —E,[log D(G(u))]

where x* is training samples of minority class(es) and u
is over-sampled data of the same class(es) generated from
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different algorithms such as SMOTE in this case. The pseu-
docode for SMOTified-GAN is given in Algorithm 3.
Its implementation is not too difficult either. The Python code
is available at https://github.com/anuraganands.

As illustrated in FIGURE 3, there are two sections of
SMOTified-GAN. The first one replaces the random num-
ber generator (refer FIGURE 1) with the repertoire of over-
samples from SMOTE. The second section continues with
the process of GAN using the new samples from SMOTE.
Algorithm 3 also shows this process in two steps. Line (1)
calls SMOTE function given in Algorithm I and then Line (2)
calls GAN function given in Algorithm 2. However, this time
the generated samples u is used instead of random noise z.

Algorithm 3: Pseudocode for SMOTified-GAN

// Input: minority examples xx from a
training data set x of size N that
requires N —n over-samples;

// User—-defined parameter k for
k-nearest neighbors.

// First execute SMOTE given in
Algorithm 1 then GAN given in
Algorithm 2

1 u < call Algorithm_1 (x*, k) // generate
over—-sampled minority examples u.
2 u < call Algorithm_2 (x*, u, N — n).

Its time complexity for sequential algorithm is combination
of SMOTE’s and GAN’s time complexity, i.e., O(N2dlog k +
nTLd?) ~ O(de + TNd?) Since n is a small part of N so
it can be assumed nL is comparable to N. This can further
simplify the complexity to O(N2d +TNd?) < O(N?d*(1/d +
T/N)) < O(N*d’T).

The major difference between our proposed method
SMOTEfied-GAN and GAN is the use of ready-made reper-
toire of samples generated from SMOTE instead of a set
of random noise to begin with. Intuitively, this helps in
improvement of the input samples that produces better over-
samples. This natural synergy of SMOTE and GAN guides
the naive GAN to have a jump-start with promising data
before going through further refinement of unrealistic data
from SMOTE.

IV. EXPERIMENTS AND RESULTS

In this section, we provide experimental results of
over-sampling methods, namely, SMOTE, GAN and
SMOTified-GAN on different datasets that have been taken
from the literature of CIP [65]-[67]. The over-sampled
minority class data have been made equal to the majority class
data which is then augmented into training data that are then
fed into the Neural Networks (NN) for classification. We have
also done the testing on original datasets without using any
data augmentation technique.
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A. DATASETS

We evaluate and compare our model on small to large datasets
that feature class imbalance as shown in TABLE 1. The
datasets were mainly obtained from the UCI machine learn-
ing repository [45] that have been used in a number of meth-
ods for CIPs [65]-[67]. Some datasets such as Credit-Card
Fraud and Shuttle are highly imbalanced with minority class
contribution as 0.17% and 0.29% respectively.

B. EXPERIMENTAL SETUP

We used naive GAN model [51] and naive SMOTE [18] in
this paper. SMOTified-GAN uses the above two models, how-
ever, it is flexible enough to work with other combinations
of different variations as well. The parameter settings such
as learning rate, total epochs and loss functions are shown
in TABLE 2. The GAN generator neural network features 3
hidden layers with 128 neurons in each layer. The GAN
discriminator network is similar to the generator network
with major difference of having only two layers first a linear
layer followed by a leaky-ReLu layer with alpha = 0.2. The
classifier architecture is given in FIGURE 5. In GAN training,
we use binary cross-entropy activation function with training
data batch-size of 128 and initial learning-rate of 0.00001
with Adam optimser.

After basic pre-processing steps, SMOTE oversampling
is done with k = 5 neighbors. The stopping criteria for
SMOTified-GAN and naive GAN’s training are based on
validation error to avoid any over-learn. Additionally, it is
ensured that the discriminator and generator loss remain sig-
nificant and do not approach near zero.

C. PRELIMINARY INVESTIGATION

The experiment has been conducted on 11 benchmark imbal-
anced datasets that are trained on NN to test the efficacy of
various oversampling techniques. We used SMOTE, GAN
and our proposed method SMOTified-GAN for oversam-
pling. We have also done the testing with original data with-
out any data augmentation. The quality of classification and
comparative results are shown in TABLE 3. As expected
all datasets show high train and test accuracy due to high
imbalance in the datasets. So it is important to look into F1
scores to determine high precision and recall measures. The
best F1 scores have been shown with the bold font.

It is clear from the experimental results that SMOTified-
GAN has outperformed other oversampling techniques. Only
Connect4 is an outlier where all oversampling techniques
are showing poor results compared to the non-oversampling
technique. Surprisingly, SMOTE also performed poorly by
3.6% compared to the original training dataset without any
data augmentation. This result can be attributed to the fact
that the dataset is highly imbalanced where minority class
constitutes only 3.84% of the training dataset. This does
not provide enough data for generalization. So the minority
class should not be over-sampled blindly for a given dataset.
Conversely, no data augmentation with datasets such Ecoli
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FIGURE 3. Process of sample generation with SMOTified-GAN.

TABLE 1. Description for small to large datasets.

Minority class
(regenerated)

Dataset Features Classes Instances  Minority Class (%) Description

Ecoli [45] 7 2 335 5.97 This data contains protein localization sites

Ionosphere [45] 34 2 351 35.71 Classification of radar returns from the ionosphere
Pageblocks [45] 10 2 471 5.94 Classifying all the blocks of the page layout of a document
Yeast [45] 8 2 513 9.94 Predicting the Cellular Localization Sites of Proteins
Wine [45] 11 2 655 2.74 Using chemical analysis determine the origin of wines
Poker [45] 10 2 1476 1.15 Purpose is to predict poker hands

Abalone [45] 8 2 4177 20.1 Predict the age of abalone from physical measurements
Spambase [45] 57 2 4601 39.39 Classifying Email as Spam or Non-Spam

Shuttle [45] 9 2 58000 0.294 Approximately 80 percent of the data belongs to class 1
Credit-Card Fraud [68] 30 2 284807 0.172 This dataset has 492 frauds out of 284,807 transactions.
Connect4 [45] 42 2 376640 3.84 Contains connect-4 positions

TABLE 2. Parameter settings.

Parameter Neural Network Generator Discriminator

Total neurons per hidden layer: 256, 128 128, 256, 512, 1024 512, 256, 128
Optimizer : Adam Adam Adam

Loss Function : Mean Absolute Error  BCEWithLogitsLoss ~BCEWithLogitsLoss
Activation : ReLU ReLLU LeakyReLU (0.2)
Normalization : - BatchNorm1d -

Learning Rate : 0.00001 0.00001 0.00001

(6.0% minority class) and Wine (2.7% minority class) shows
very poor and unacceptable results. Here data augmentation
techniques especially with SMOTified-GAN show much bet-
ter results of Fl-score of 92.2% and 52.7% respectively.
SMOTified-GAN gives the best results — considering F1
score — for all other datasets with the diverse proportion
of minority class such as Creditcard Fraud (0.2% minor-
ity class), Spambase (39.4% minority class), Yeast (9.9%
minority class) and Wine (2.7% minority class). The rest
of the datasets, Ionosphere, Shuttle, Ecoli, Pageblocks and
Poker also favors SMOTified-GAN. FIGURE 4 on the com-
parative F1 score shows SMOTified-GAN outperforms other
algorithms on 10/11 datasets. Its performance is signifi-
cantly improved for Pageblocks by 9% and 10% for Ecoli.
SMOTified-GAN has also produced better precision and
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recall for most of the datasets. It has the best precision for
all 11 datasets and the best recall for 9/11 datasets. GAN and
SMOTE give mixed results on different datasets. GAN has
produced 10/11 times better results than SMOTE. Notably,
data augmentation less training is also better than GAN and
SMOTE with 2/11 times and 4/11 times respectively.
Datasets like Yeast, Ecoli, Wine, Poker and Pageblocks
have small number of minority class data instances relative
to the majority class which allows SMOTified-GAN to show
its potential over other algorithms as seen in the respective
results. In datasets like Ecoli and Wine the minority instances
are so low that the non-oversampling method completely
fails to predict the minority class. All models give high train
and test accuracy on all datasets which is attributed to the
dominance of majority class in these datasets hence the true
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performance index measure is the minority F1-score which
depends on both the precision and recall. Overall, the pro-
posed model of SMOTified-GAN outperforms the others in
terms of F1-score and a comparatively low standard deviation
of results.

The training loss curves of SMOTified-GAN’s generator
and discriminator models w.r.t the number of epochs during
training of selected datasets have been shown in FIGURE 7.
In general, the Discriminator’s loss curve converges fairly
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quickly whereas the Generative loss curve demonstrates
high fluctuations, however, these fluctuations generally gets
steady at around 2000 epochs. We have also drawn validation
F1-score in the same graph to determine the termination crite-
rion. The training stops once the validation F1-score reaches
its highest value to avoid any over-fitting.

D. RESULTS

Table 3 presents a summary for the experimental results with
NN using the respective oversampling methods — SMOTE,
GAN, SMOTified-GAN and also without no augmentation.
It shows training and test accuracy and measurements of
Fl-score, precision and recall. Its purpose is to demon-
strate the effectiveness of the methods for class imbalanced
datasets. We report the mean, standard deviation, and best
performance using the respective evaluation metrics using 30
experimental runs where each run has a different randomised
initial position in weight space. This is done to incorporate
model uncertainty in our results.

FIGURE 6 presents the receiver operating characteristic
curve or ROC curve on precision and recall for the tested
datasets. The results for nine datasets have been illustrated
with all the tested algorithms. It also shows the measure for
the area under the curve (AUC). This is a standard perfor-
mance measure for imbalanced data. It is clear from the graph
that our proposed SMOTified-GAN has highest AUC for
all the datasets except Abalone. For example FIGURE 6(h)
shows AUC for Shuttle dataset with SMOTified-GAN, GAN,
no data augmentation and SMOTE have the result of 0.949,
0.911, 0.891 and 0.712 respectively in descending order.
SMOTified-GAN is better than others by up to 0.038 to the
next best algorithm. GAN and SMOTE shows the mixed
results as discussed earlier with F1-scores.

V. DISCUSSION
A significant improvement in the quality of classification has
been observed with the introduction of SMOTified-GAN as
an oversampling technique. It has clearly outperformed naive
GAN and SMOTE in most of the datasets. The F1-score has
been improved by up to 9% for Ecoli dataset from the next
best oversampling technique where the precision has also
shown significant growth of around {7% to 8%} for Wine
and Yeast datasets. The recall has not been much improved.
SMOTE generally has low precision and SMOTified-GAN
has relatively better precision than the other models. Most
notable improvement from GAN and SMOTE can be seen
with { Abalone, Pageblock, Wine, and Shuttle datasets}, and
{ Credit-card Fraud and Wine datasets} respectively.
Considering the impact of the number of features, percent-
age of minority class and the size of the data on the qual-
ity of oversampling has shown mixed results. For example
datasets with higher features such as Credit-card fraud (30
features, 0.172% of minority class) have shown good results
but Connect4 (42 features, 3.84% of minority class) has
shown poorer results. However, SMOTE generally performs
poorly on Fl-score even with raw data in 3/4 times when the
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TABLE 3. Comparison of experimental results on NN with baseline methods (SMOTE, GAN, SMOTified-GAN and non-oversampled original data).

Dataset Oversampling Train Test F1 Precision  Recall
methods Mean (Best, SD) Mean (Best, SD) Mean (Best, SD)
Ecoli Non-oversampled  0.9328 (0.9328,0.0000)  0.9701 (0.9701,0.0000)  0.0000 (0.0000,0.0000) 0.00 0.00
SMOTE 0.9905 (0.9959,0.0020)  0.9577 (0.9701,0.0100)  0.5684 (0.6666,0.0890) 0.50 1.00
GAN 0.9885 (0.9919,0.0013)  0.9880 (1.0000,0.0099)  0.8266 (1.0000,0.1964) 1.00 1.00
SMOTified-GAN  0.9861 (0.9879,0.0010)  0.9960 (1.0000,0.0077)  0.9222 (1.0000,0.1433) 1.00 1.00
Tonosphere Non-oversampled  0.9878 (0.9928,0.0027)  0.9728 (0.9857,0.0126)  0.9621 (0.9803,0.0179) 0.98 0.98
SMOTE 0.9914 (0.9916,0.0007)  0.9738 (0.9857,0.0113)  0.9632 (0.9803,0.0164) 0.97 0.99
GAN 0.9901 (0.9944,0.0017)  0.9767 (1.0000,0.0086)  0.9701 (1.0000,0.0210) 1.00 1.00
SMOTified-GAN  0.9903 (0.9944,0.0023)  0.9823 (1.0000,0.0068)  0.9777 (1.0000,0.0169) 1.00 1.00
Pageblocks Non-oversampled  0.9627 (0.9627,0.0000)  0.9775 (0.9894,0.0050)  0.7803 (0.9090,0.0700) 1.00 0.82
SMOTE 0.9955 (1.0000,0.0030)  0.9761 (1.0000,0.0130)  0.8480 (1.0000,0.0780) 1.00 1.00
GAN 0.9943 (0.9972,0.0020)  0.9858 (1.0000,0.0098)  0.9038 (1.0000,0.0793) 1.00 1.00
SMOTified-GAN  0.9943 (1.0000,0.0043)  0.9989 (1.0000,0.0042)  0.9926 (1.0000,0.0291) 1.00 1.00
Yeast Non-oversampled  0.9748 (0.9780,0.0013)  0.9323 (0.9417,0.0097)  0.6987 (0.7272,0.0305) 0.80 0.67
SMOTE 0.9638 (0.9757,0.0083)  0.9139 (0.9417,0.0152)  0.7012 (0.7857,0.0446) 0.82 0.75
GAN 0.9782 (0.9811,0.0028)  0.9595 (0.9514,0.0036) 0.8173 (0.8333,0.0169) 0.83 0.83
SMOQTified-GAN  0.9663 (0.9703,0.0023) 0.9611 (0.9611,0.0044)  0.8221 (0.8695,0.0223) 0.91 0.83
Wine Non-oversampled  0.9770 (0.9770,0.0000)  0.9541 (0.9541,0.0000)  0.0000 (0.0000,0.0000) 0.00 0.00
SMOTE 0.9806 (0.9843,0.0020)  0.9081 (0.9389,0.0090)  0.3149 (0.5000,0.0651) 0.39 0.67
GAN 0.9841 (0.9873,0.0020)  0.9549 (0.9618,0.0073)  0.4489 (0.5454,0.1112) 0.46 0.67
SMOTified-GAN  0.9854 (0.9873,0.0010)  0.9558 (0.9694,0.0090)  0.5274 (0.6000,0.0780) 0.53 0.69
Poker Non-oversampled  0.9902 (0.9906,0.0008)  0.9949 (0.9966,0.0020)  0.6300 (0.8000,0.2530) 1.00 0.67
SMOTE 1.0000 (1.0000,0.0000)  1.0000 (1.0000,0.0000)  1.0000 (1.0000,0.0000) 1.00 1.00
GAN 1.0000 (1.0000,0.0000)  1.0000 (1.0000,0.0000)  1.0000 (1.0000,0.0000) 1.00 1.00
SMOTified-GAN  1.0000 (1.0000,0.0000)  1.0000 (1.0000,0.0000)  1.0000 (1.0000,0.0000) 1.00 1.00
Abalone Non-oversampled  0.9080 (0.9108,0.0019)  0.9072 (0.9114,0.0028)  0.7556 (0.7658,0.0090) 0.80 0.73
SMOTE 0.8969 (0.9022,0.0035)  0.8622 (0.8827,0.0105)  0.7259 (0.7566,0.0200) 0.78 0.72
GAN 0.9422 (0.9439,0.0013)  0.9070 (0.9125,0.0040)  0.7555 (0.7687,0.0061) 0.80 0.74
SMOTified-GAN  0.9427 (0.9441,0.0008)  0.9075 (0.9126,0.0036)  0.7612 (0.7711,0.0065) 0.80 0.75
Spambase Non-oversampled  0.9476 (0.9527,0.0020)  0.9309 (0.9380,0.0027)  0.9152 (0.9213,0.0032) 0.91 0.92
SMOTE 0.9455 (0.9526,0.0026)  0.9276 (0.9336,0.0031)  0.9129 (0.9204,0.0049) 0.92 0.92
GAN 0.9571 (0.9599,0.0019)  0.9319 (0.9380,0.0030)  0.9172 (0.9222,0.0036) 0.93 0.92
SMOTified-GAN  0.9583 (0.9602,0.0012)  0.9323 (0.9380,0.0026)  0.9174 (0.9222,0.0031) 0.94 0.91
Shuttle Non-oversampled  0.9994 (0.9998,0.0006)  0.9992 (0.9996,0.0005)  0.8256 (0.9350,0.2294) 0.92 0.96
SMOTE 0.9996 (0.9996,0.0000)  0.9990 (0.9993,0.0001)  0.8465 (0.8837,0.0220) 0.83 0.97
GAN 0.9995 (0.9999,0.0005)  0.9989 (0.9996,0.0009)  0.8497 (0.9367,0.2240) 0.93 0.95
SMOQTified-GAN  0.9996 (0.9997,0.0004)  0.9993 (0.9996,0.0006)  0.8632 (0.9368,0.2009) 0.93 0.95
Credit-Card Non-oversampled  0.9996 (0.9997,0.0001)  0.9991 (0.9993,0.0001)  0.8066 (0.8214,0.0327) 0.84 0.80
Fraud SMOTE 0.9996 (0.9997,0.0001)  0.9990 (0.9991,0.0001)  0.7099 (0.7409,0.0210) 0.80 0.69
GAN 0.9995 (0.9997,0.0001)  0.9991 (0.9994,0.0001)  0.8069 (0.8214,0.0241) 0.84 0.80
SMOTified-GAN  0.9993 (0.9994,0.0001)  0.9992 (0.9993,0.0001)  0.8118 (0.8243,0.0202) 0.85 0.80
Connect4 Non-oversampled  0.9947 (0.9966,0.0014)  0.9948 (0.9965,0.0013)  0.9361 (0.9578,0.0151) 0.92 1.00
SMOTE 0.9967 (0.9970,0.0001)  0.9912 (0.9930,0.0007)  0.9011 (0.9167,0.0068) 0.85 1.00
GAN 0.9962 (0.9982,0.0010)  0.9938 (0.9965,0.0021)  0.9251 (0.9577,0.0180) 0.92 1.00
SMOQOTified-GAN  0.9966 (0.9986,0.0009)  0.9946 (0.9965,0.0017)  0.9355 (0.9578,0.0158) 0.92 1.00

features are high as in Connect4 (42 features), Credit-card
fraud (30 features), Ionosphere (34 features) and Spambase
(57 features).

Furthermore, the best algorithm may not be clearly visible
with ROC curves in FIGURE 6, however, the AUC-ROC
measures for each graph shows that SMOTified-GAN out-
performs other algorithms. The larger area the ROC curve
occupies the better the algorithm which is shown by the
AUC measures. For example, it is somewhat clear from
the Shuttle that shows the best to worst in the order of
SMOTified-GAN (0.949), GAN (0.911), no oversampling
technique (0.891) and then SMOTE (0.712). So SMOTified-
GAN is 3.5% better than the next best algorithm. Similarly,
it is 2.1% better than the second best algorithm for
Spambase.
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VI. CONCLUSION
We presented a data augmentation approach that addressed
class imbalanced pattern classification problems by combin-
ing features from GAN and SMOTE. Our results show that
the proposed framework significantly improves the majority
of the class imbalanced problems. There were improvements
of up to 9% on the F1 score for the benchmark datasets.
Since it is an offline pre-processing technique with a rea-
sonable time complexity order of O(N2d>T), it does not
affect the efficiency of the training process. We also visu-
alized the learning process and found out that the AUC of
SMOTified-GAN is better than the 2" best algorithm up to
2.1% (for Spambase) and 3.5% (for Shuttle).

There are several possible future directions from this work
such as applying SMOTified-GAN to other neural networks
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such as CNNs and recurrent neural networks (RNNs) to
oversample imbalanced image datasets and time-series data,
respectively. Furthermore, different variations and com-
binations of SMOTE and GAN for the new model of
SMOTified-GAN can improve it even further.

It will be interesting to investigate the conjoining of GAN
with other over-sampling techniques such as MCMC. Its
sampling method on a Bayesian framework can be used to
incorporate uncertainty in the predictions and develop a prob-
abilistic data generation process via GANs. The proposed
framework can be used in a wide range of problems that
face challenges when it comes to class imbalance issues. This
framework can also be used to improve few-shot learning [69]
to address problems where the model finds it difficult to draw
decision boundaries due to a lack of data. Moreover, we can
also investigate if the method can be used to address the
bias-variance problems in order to improve the generaliza-
tion ability of the model given that the training data differs
significantly from the test dataset.

CODE AND DATA
We provide Python code and data for extending this work
further.!
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