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aSchool of Information Technology, Engineering, Mathematics and Physics, The University of the South Pacific, Suva, Fiji; bDepartment of
Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece

ABSTRACT
Open card sorting is a widely used method in HCI for the design of user-centered Information
Architectures (IAs). This article proposes a new algorithm that combines the best merge method
(BMM), category validity technique (CVT), and multidimensional scaling (MDS) to explore, analyze
and visualize open card sort data. A study involving 20 participants and 41 cards explored the IA
redesign of a university’s website. The collected data were analyzed using two popular methods
employed in the quantitative analysis of open card sort data (i.e., hierarchical clustering, K-means)
and the proposed algorithm. It was found that the latter provides increased IA insights compared
to the existing methods. Specifically, the proposed algorithm can expose hidden patterns and rela-
tionships amongst cards and identify complexities. We also found that the proposed algorithm
produces better initial clusters, which have a direct effect on the final clustering quality.

1. Introduction

Card sorting is an important method in HCI research and
practices for designing or evaluating information architec-
tures (IAs) (Rosenfeld et al., 2002; Spencer, 2009). The IA of
an interactive system describes the way its content is organ-
ized and labeled. A common assumption is that navigation
structures are most efficient when content is organized con-
gruent with the common user’s mental model of the domain
at hand. Card sorting is a widely used method to elicit such
mental models and therefore usability designers commonly
use it in the process of creating navigation structures
(Katsanos et al., 2014; Puerta Melguizo et al., 2012;
Schmettow & Sommer, 2016).

There are two main variations of card sorting: open and
closed. In an open card sort, each participant organizes the
same cards into categories that make sense to them.
Participants are also asked to label their categories. By con-
trast, in a closed card sort, the researcher provides participants
with a list of concepts and a list of categories; participants
then sort the cards into the predefined categories. The focus
of this article is on the analysis of open card sort data.

Analysis of open card sort data typically employs cluster-
ing algorithms (Nawaz, 2012; Ntouvaleti & Katsanos, 2022;
Righ et al., 2013; Spencer, 2009; Wood & Wood, 2008).
Clustering represents one of the most popular data mining
techniques due to its usefulness in the wide variations of
real-world applications (Grabmeier & Rudolph, 2002; Toda
et al., 2007; Xiong et al., 2012). In the context of card sort
data analysis, clustering organizes a set of cards into clusters

so that items within a given cluster have a high degree of
similarity and those of different clusters have a high degree
of dissimilarity (Huang, 1998; Ozdal & Aykanat, 2004;
Pampoukidou & Katsanos, 2021; �Smieja et al., 2019). The
similarities/dissimilarities amongst data cards are estimated
based on the attribute values using distance measures.

The most popular clustering techniques are hierarchical
clustering-based methods and K-means-based methods.
Hierarchical methods can be agglomerative (Guha et al.,
2000; Karypis et al., 1999) or divisive (Chavent, 1998;
Gu�enoche et al., 1991). Agglomerative methods yield a
sequence of nested partitions, starting with trivial clustering.
Each card is in a unique cluster and ends with a clustering
in which all cards are in the same cluster (Davidson & Ravi,
2009; Zhao et al., 2005). A divisive method starts with all
cards in a single cluster and performs a splitting procedure
until a stopping criterion is met, usually upon obtaining a
partition of singleton clusters (Xiong et al., 2012). The K-
means algorithm (Bickel & Scheffer, 2004; MacQueen, 1967)
is a widely-used partitional clustering algorithm. Here, data
is mapped onto a dimensional metric space, and a distance
function between data points is defined. The aim of the
algorithm is to partition the data into k clusters such that
the distance of each data point to the mean of its cluster is
minimized. Both hierarchical and K-means algorithms are
used to cluster card sort datasets (Capra, 2005; Nawaz, 2012;
Paea & Baird, 2018; Paea et al., 2021).

This article proposes a new algorithm for open card sort
data analysis. The proposed algorithm adopts the hierarch-
ical clustering technique definition (starting with trivial
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clustering) using the best merge method (BMM) based on
the strongest pairs. Then, it applies the category validity
technique (CVT) with the highest participants’ agreement in
defining similarity between cards in the similarity matrix.
The similarity matrix is a simple representation of pair com-
binations. It provides insight into the cards that participants
paired together in the same group the most often in card
sorting. The proposed algorithm provides a natural way of
defining clusters that are not restricted to spherical shapes
(or any other type of shape) and groups the data so that
cards in the same cluster are more self-affine among them-
selves than cards in other clusters. This is the motivation of
the proposed algorithm compared to existing approaches.

Fr€anti and Sieranoja (2019) mentioned that the K-means
method depends a lot on good initialization. Poor initializa-
tion can cause the iterations to get stuck into an inferior
local minimum. An efficient initialization technique reduces
the computational complexity and achieves a better local
minimum. The initialization of a method is heavily involved
in determining the clustering solution (He et al., 2004). The
proposed algorithm employs a new systematic initialization
approach, which is expected to result in better final cluster-
ing results compared to existing approaches. This is another
motivation for the proposed algorithm.

The article is structured as follows: Section 2 describes
the methods. Section 3 presents the approaches and experi-
ment results obtained from using the proposed algorithm on
a real-world open card sort dataset. Section 4 discusses the
application of existing techniques on our open card sort
dataset and the obtained results. Section 5 compares the
proposed and existing techniques, and Section 6 concludes
the article and provides suggestions for future research.

2. Open card sorting study: Methods

This section describes a card sorting study conducted to col-
lect a dataset for clustering. The participants were staff mem-
bers and students of a regional university. The card sort
study goal was to redesign the institution’s research website.

2.1. Materials and procedures

Open card sorting can be conducted in groups and/or individ-
uals. The current study used individual card sorting. However,
the proposed algorithm can also be used for group card sorts.
A typical step-by-step roadmap to effectively apply the open
card sorting method is described in Righ et al. (2013).

This study involved a total of 41 cards (refer to Figure 4 or
Appendix 2). Each card had a name on it, which represented
a feature or function of the University’s research office web-
page. These card names were drawn from the contents of the
existing website. Several discussions between the research team
and users of the website, both staff members and students,
were also undertaken to get their perceptions. This collabor-
ation has helped in creating a list of card names relevant to
the needs and expectations of current and future users.

Before the day of their participation in the study, a card
sorting demonstration video and an information sheet were

sent to participants. This was done to provide participants
with relevant information about the research objectives, how
to do card sorting, and how it would affect them during and
after the study.

Face-to-face card sorting was conducted with participants
using physical cards in the researcher’s presence. This study
took place while the COVID-19 pandemic hadn’t reached Fiji,
so no specific measures were required to protect participants’
health. Researchers were made available to support partici-
pants in terms of questions and clarifications. On the day of
card sorting, the researcher undertook the following steps:

� Prepared relevant resources (e.g., cards, camera, and con-
sent forms) for individual card sorting sessions;

� Welcomed participants, facilitated introductions, and
acknowledged participants’ time and contribution;

� Briefed participants about the project and the procedures
to protect the confidentiality of their personal informa-
tion and data;

� Invited participants to seek clarification before signing
the consent form;

� Assured participants that there were no wrong or correct
answers and that they had the opportunity to organize
the provided cards into groups and provide names for
their groups as they saw fit;

� Informed participants that if they could not find a logical
group for a specific card, they should set the card aside
and continue the sorting process;

� Refrained from direct prompting or coaching of partici-
pants but was available for dialogue with participants on
the rationale behind the groups that they created
and named;

� Allowed free brainstorming and never discouraged an
idea from a user even if the researcher thought the idea
was not in the right direction;

� Thanked participants, de-briefed key lessons learnt,
sought participants’ experience during the process, and
shared future activities that might be important for par-
ticipants to be aware of.

The actual session time for card sorting varied from 30
to 70min.

2.2. Participants

The target population was staff members and students of
the institution who were typical users of the chosen website.
This study recruited 20 (10 men and 10 women) partici-
pants who were working and/or studying at the University.
The sample age range varies from 25 to 45 (M¼ 31 and
SD¼ 6.8). Some participants created just four categories
while others created more complex classifications involving
up to 11 categories (M¼ 7, SD¼ 1.5). There were no signifi-
cant (ns) differences between the number of categories
formed by male (M¼ 7) and female (M¼ 7) participants.
We run a t-test for the number of categories created by
males and females to compare their respective means. Our
analysis shows that p-value ¼ 0.89 is greater than the
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standard significance level of 0.05. This shows no significant
difference between the means of categories created by males
and females. The number of categories formed was also
unrelated to age (r¼�0.25, ns).

There are two known articles (Lantz et al., 2019; Tullis &
Wood, 2004) addressing how many participants are needed
for card sorting studies. Tullis and Wood (2004) found that
the number of participants for a card sorting study to
achieve reliable results should lie between 20 and 30 partici-
pants. The study by Lantz et al. (2019) found that a rela-
tively smaller number of participants (i.e., 10–15) is needed
for card sorting methods. The current study uses 20 partici-
pants, a sample of adequate size based on the exist-
ing literature.

Participants were recruited through a variety of means,
including personal contacts, referrals, and voluntary.
Participants were also recruited using an informal snowball
process (O’Leary, 2014) that was based on researchers’ cul-
tural knowledge and skills in recruiting participants through
networking and relationship building (Paea et al. 2021). This
type of recruitment is essential for building trust and respect
between participants and the researcher. People can willingly
partake when they trust the researcher and know their con-
tribution is recognized and valued (Paea et al. 2021). Careful
selection of potential users of a website provides real-world
validation of ideas from sponsors, stakeholders, and team
members (Spool et al., 1999).

2.3. Data analysis methods

2.3.1. Number of clusters
One important challenge that arises in quantitative analysis
of open card sort data is deciding the number of clusters. In
the initial solution, the number of clusters is equal to the
number of cards included in the study, that is 41 cards (see
Figure 5). This article uses the approach by Katsanos et al.
(2008) based on the widely used eigenvalue-one criterion
(Hatcher & O’Rourke, 2013) to identify the optimal, in
terms of variance explained, number of clusters. Every clus-
ter has an eigenvalue representing the amount of variance
accounted for by a given cluster.

Table 1 presents the eigenvalue and percentages of vari-
ance associated with each factor. These values are also

summed and expressed as a cumulative eigenvalue and per-
centage of variance. Usually, the first variables have the
greatest eigenvalues. The method identifies the optimal
number of clusters in terms of variance explained by imple-
menting an eigenvalue analysis of the similarity matrix
(Figure 5) and keeping only the eigenvalues greater than 1
(see Table 1). Table 1 shows that only the first six principal
components (PCs) have an eigenvalue greater than 1
(Kaiser, 1960). So based on this proposal, six factors explain-
ing 70.973% of the total variance must be retained for our
open card sort dataset. However, the seventh eigenvalue
k7 ¼ 0:823 is approximately close to 1, so the first seven
PCs can be retained to explain up to 72.979 percent of the
total variability (Gulumbe et al., 2012). Using the eigen-
value-one criterion has been criticized for overestimating the
number of factors to retain (Lance et al., 2006), leading to
results that can be justified on the mathematical level but
with no interpretable meaning at the conceptual level.

Another popular existing method for determining the
number of factors to retain is the scree plot (Cattell, 1966)
or elbow criterion, which involves the visual exploration of
a graphical representation of the eigenvalues for breaks or
discontinuities. The number of data points above the break
(not including the point at which the break occurs) is the
number of factors to retain. In other words, the significant
factors are disposed like a cliff, having a big slope, while the
trivial factors are disposed at the base of the cliff. Inspection
and interpretation of a scree plot involve two steps (see
Figure 1(a)): (a) draw a straight line through the smaller
eigenvalues where a departure from this line occurs. This
point highlights where the debris or break occurs. If the
Scree is messy and difficult to interpret, additional manipu-
lation of data and extraction should be undertaken, (b) the
point above this debris or break (not including the break
itself) indicates the number of factors to be retained.

Figure 1(a) shows that the scree plot inspection for our
dataset produced a departure from linearity coinciding with
a 6-factor result. In Table 1, this break occurs at component
7; thus, the number of factors to retain is six. The percent-
age of variance was also plotted and explained against the
number of clusters (Figure 1(b)), which indicated any value
between 6 and 12 can be used for our case. This article
keeps the seven clusters as the optimal number based on the

Table 1. Eigenvalues, percent of variance, and cumulative percent of variance for our card sort dataset.

Component

Initial Eigenvalues Extraction sums of squared loadings

Total % Of variance Cumulative % Total % Of variance Cumulative %

1 10.760 26.244 26.244 10.760 26.244 26.244
2 5.495 13.401 39.645 5.495 13.401 39.645
3 5.018 12.240 51.885 5.018 12.240 51.885
4 3.871 9.441 61.326 3.871 9.441 61.326
5 2.325 5.670 66.996 2.325 5.670 66.996
6 1.631 3.977 70.973 1.631 3.977 70.973
7 0.823 2.006 72.979 0.823 2.006 72.979
8 0.798 1.947 74.926
�
�
�

�
�
�

�
�
�

�
�
�

41 0.000 0.000 100.000
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other approaches. However, this method is very subjective
because the curve’s cut-off point is not always very clear
(e.g., see Figure 1(b)).

Tibshirani et al. (2001) proposed another method for
deciding the number of clusters called gap-statistic. This
method compares intra-cluster variance with the expected
values under the dataset’s null reference distribution. After
clustering the dataset for different values of k (number of
clusters), we get the intra-cluster variance for the observed
dataset as well as the reference dataset (uniform random ref-
erence datasets over the range of the observed data are gener-
ated), and then calculate the gap-statistic for r clusters Cr as:

GapnðkÞ ¼ E�n logWk½ � � logWk,

where nr ¼ Crj j, Wk ¼ r
Pk

r¼1
1
2nr

Dr ¼
Pk

r¼1
1
2nr

P
i, i02Cr

dii0
is the total intra-cluster distance d, across all r clusters Cr

and E�nf:g denote the expectation under a sample of size n
from the reference distribution. To estimate the gap statistic
and find the number of clusters via

k̂G ¼ smallest k such that GapðkÞ � Gapðkþ 1Þ � Skþ1,

where Sk is the standard error from the estimation of
GapðkÞ: Tibshirani et al. (2001) examined both a uniform
distribution approach and a principal component construc-
tion as the reference dataset. In many cases, the uniform
distribution performed better, and this is also used for our
dataset. Using the gap statistic method, the optimal number
of clusters k is seven. Figure 2 visualizes the distribution of
the GapðkÞ values against the number of clusters k:

We compare the results from Table 1 and Figures 1 and
2 with the 3D Cluster View (3DCV) algorithm used in
OptimalSort (Optimal Workshop), a popular online card
sorting tool. 3DCV calculates the optimal number of clusters
simply by taking the average (mean) of the number of cate-
gories created by participants in the survey. In agreement
with the findings in Figures 1 and 2, the 3DCV algorithm
also provides seven clusters for this dataset.

Table 2 summarizes the number of clusters provided by
all the aforementioned methods. Based on these results, the
authors chose seven clusters for the dataset in this study.
The decision is also based on Figure 4; when the threshold
is 60%, seven groups have two or more cards.

Figure 1. Determining the optimal number of categories for our card sort dataset. (a) The scree plot for the initial variables. (b) The scree plot for the cumula-
tive variance.
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2.3.2. Multidimensional scaling (MDS) and goodness of fit
Card sort data can be quantitatively analyzed using multidi-
mensional scaling (MDS) (Paea & Baird, 2018). One chal-
lenge that arises in this context is deciding the appropriate
number of MDS dimensions. MDS is a technique that trans-
lates a table of similarities between pairs of cards into a map
where distances between the points match the similarities as
much as possible (Groenen & van de Velden, 2005), express-
ing all combinations of pairs within a group of cards. MDS
aims to transform the participant judgments of similarity
into distances represented in multidimensional space, result-
ing in the perceptual maps to show the relative positioning
of all cards (Paea & Baird, 2018). Hence, MDS moves cards
around in the space defined by the requested number of
dimensions and checks how well the new configuration can
reproduce the distance cards. In more technical terms, it
uses a function minimization algorithm that evaluates differ-
ent configurations intending to maximize the goodness of fit.

The goodness of fit of the MDS results for our card sort
dataset was determined by stress values and squared correl-
ation (R-squared), as displayed in Table 3 and Figure 3. The
stress numbers drop to 0 and R-squared increases to 1 with

the increasing number of dimensions. The numerical index
of stress ranges from 0 (the best possible fit) to 1 (the worst
possible fit). R-squared is perceived as the amount of vari-
ance in proximities in the data matrix. A higher numerical
R-squared index indicates a better fit of the dimensionality
(Davison & Sireci, 2000; Stalans, 1995). To select the best
fitting model data, the fit values of stress and R-squared
were examined. For any given configuration, the stress indi-
cates how well that configuration matches the data. MDS lit-
erature suggests that lower stress values are preferred and
reflect better congruence between the raw data and the proc-
essed data (Davison et al., 1983). The stress value (0.336) in
the three dimensions is lower than the stress value (0.484)
in the two dimensions for the output shown in Figure 3(a).
However, the stress value (0.264) for the four dimensions is
even lower.

The R-squared (R2) against the number of dimensions was
plotted to assist us in choosing the best number of dimen-
sions. Figure 3(b) shows that as the number of dimensions
increases from three to four, the R-square value increases.
The three dimensions squared correlation (R-squared) value
(0.886) approaching 1 (100%) indicates that the MDS model

Figure 2. Determining the optimal number of clusters k for our open card sort dataset using the gap statistics method.

Table 2. Optimal number of clusters from five methods for our open card
sort dataset.

Number Name Number of k

1 Eigenvalue-one criterion 7
2 Scree plot (eigenvalue) 6
3 Scree plot (percentage of variance) 7
4 Gap statistics method 7
5 Average of the number of categories 7

Table 3. The numerical fit indexes for the MDS analysis of our card sort-
ing dataset.

Number of dimensions Stress R-squared

1 0.651 0.516
2 0.484 0.742
3 0.336 0.886
4 0.264 0.911
5 0.224 0.924
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can be characterized as good (Redell, 2019; Seok, 2009).
Thus, the three-dimensional solution was chosen as the
appropriate model for our card sort dataset. Note that more
than three dimensions are rather difficult to both visualize
and understand visually. When we refer to dimensions at this
point, we are considering the number of coordinate axes in
the multidimensional space. The position of a card in a space
is specified by its coordinates on each dimension. When we
use MDS, we prefer three dimensions because there is a sub-
stantial improvement over two, reducing the difficulty of
interpretation. Because MDS techniques do not have any
built-in procedures for labeling the dimensions, we suggest
the coordinate axes as the first place to look at for the pur-
pose of labeling dimensions. Paea and Baird (2018) support
our claim. Their study found that the three-dimensional solu-
tion is a good fit for card sort data analysis.

3. Proposed algorithm and experiment results

This section discusses the proposed algorithm for open card
sort data analysis.

3.1. Proposed techniques for open card sort
data analysis

Cluster analysis itself is not a specific algorithm but a gen-
eral task to be solved. It can be achieved by various algo-
rithms that differ significantly in understanding what
constitutes a cluster and how to find them efficiently.
Popular notions of clusters include groups with small distan-
ces between cluster members, dense areas of the data space,
intervals, or particular statistical distributions that have
been used.

Figure 4. The BMM dendrogram (OptimalSort). The scores show that 60% of participants agree with this grouping. The thicker the lines, the more cards are merged
together. The results are from the dataset of this study involving 20 participants who completed an open card sort with 41 cards.

Figure 3. The graph of stress against the number of dimensions (a) and R2versus the number of dimensions (b) for our open card sort dataset.
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This section describes the proposed algorithm called the
Best Merge Category Validity Multidimensional Scaling
(BM-CV-MDS) algorithm, which combines the best merge
method (BMM) and the category validity technique (CVT),
and then visualizes the results using multidimensional scal-
ing (MDS). This study uses the similarity matrix algorithm
and the BMM created by OptimalSort. The BM-CV-MDS
algorithm is divided into three parts.

3.1.1. Part 1: Dendrogram: Best merge method (BMM)
Deriving information structures from card sorting data can
be a challenge. Various quantitative analysis techniques have
been proposed in the literature, such as factor analysis, K-
means, and multidimensional scaling (Capra, 2005; Nawaz,
2012; Paea & Baird, 2018). However, hierarchical cluster
analysis remains the most widely used technique for this
purpose (Katsanos et al., 2019; Paul, 2014; Tullis & Wood,
2004; Villalonga-G�omez & Mora-Cantallops, 2021).

This article employs the method reported in (Paea &
Baird, 2018), the BMM (OptimalSort). BMM is a dendro-
gram tree graph that can be used to examine how clusters
are merged in hierarchical cluster analysis (Everitt & Dunn,
2001; Timm, 2002). It can provide insights into high-level
topics (Righ et al., 2013). BMM is a technique based upon
similarity matrixes and is the industry standard
(Nawaz, 2012).

The basic process of BMM is composed of the following
steps (Paea et al., 2021):

i. Let l1, l2, :::, lk be the cards to be sorted. We have lk
categories with a card each.

ii. Produce combinations of two cards in a category
(called the based pairs) for all cards. For instance,
[l1, l2], [l1, l3], … , [l1, lkþ1], [l2, l3],… ,
[l2, lkþ1], … , [lk�1, lk]. The order of the cards is not
important, so [l1, l3]¼ [l3, l1].

iii. The based pair with the highest score is locked in as a
new category.

Figure 5. The similarity matrix displays how many participants agree with each pair combination of cards. The algorithm attempts to cluster similar cards along the
right edge of the similarity matrix. The results are from the dataset of this study involving 20 participants who submitted valid results from a total of 41 cards.

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 7



iv. The process in (iii) repeats, and when a pair is locked
in intersects with an existing locked category, the for-
mer is agglomerated with the latter.

v. All subsets of this new category are eliminated.
vi. The algorithm stops when all the cards are merged into

a single category for incidence [l1, l2, l1, l2, :::, lk].

An example is provided to help explain the calculations
better (see Appendix 1).

Figure 4 presents the dendrogram produced for our card
sort dataset based on BMM results. The dendrogram has 41
leaves, each representing a single card name. The leaves are
spaced evenly along the vertical axis at 100% agreement.
The horizontal axis gives the distance (or dissimilarity meas-
ure) at which any two clusters are joined. At 0% agreement,
all the cards are merged as a single group. The thicker the
lines, the more cards are being merged together in a sin-
gle group.

One important challenge that arises in quantitative ana-
lysis of card sort data is where to cut the line in the dendro-
gram. This decision greatly affects the final navigation
scheme (Katsanos et al., 2019; Ntouvaleti & Katsanos, 2022;
Pampoukidou & Katsanos 2021). We employed the five
methods reported in Table 2 to overcome this challenge. It
was found that for our dataset, a total of seven clusters was
required. A threshold t of 60% agreement of cards across
participants was used to cut the dendrogram and produce
seven clusters. The vertical grey line in Figure 4 shows the
60% threshold. This means that 60% of participants placed
together at least two cards of each of the seven clusters in
Figure 4. This also suggests that 60% of participants created
the 11 single-card clusters in Figure 4. Below are a couple of
criteria that the algorithm applied when selecting the thresh-
old t in Figure 4.

1. The choosing of a threshold t value:
The algorithm will look at a t value (Figure 4) that con-
tains the optimal number of clusters k presented in
Section 2.3.1 for the dataset using the following steps:
i. The algorithm starts by moving the dashed vertical

line (threshold) from the right (0% agreement) to
the left (100% agreement) side of the dendrogram
in Figure 4;

ii. While moving the line, the algorithm is searching
for the clusters that contain two or more cards
using the equation below

k ¼
Xn

i¼0

kn�i,

where n is the highest number of cards in a cluster, kn
represents one cluster with maximum n cards, and k
is the optimal number of the clusters at a t value.

iii. Repeats the process in steps (i) and (ii) and stores
the results in memory until the dashed line reaches
100% participant’s agreement;

iv. Compares all the calculated k values in (iii) and
chooses the k value that each cluster contains the
highest number of cards. Following the steps (i) to

(iv) in this dataset, seven clusters lead to a thresh-
old t ¼ 60% participant’s agreement with two or
more cards in each cluster (Figure 4 and Table 4);

v. Suppose step (iv) contains more clusters than the
calculated k value due to more similar clusters of
the same lowest number of cards. In this case, the
algorithm will include a cluster with the closest
next merge to t value (dashed vertical line) from
the right side. The new cluster must not be part of
any previously chosen clusters.

2. The chosen clusters must equal the number of k pre-
sented in Section 2.3.1.

Table 4 presents the findings from Figure 4 on participants’
preferences for IA in seven clusters. The BMM analysis
shows that for 30 (73.2%) out of 41 cards, 60% of partici-
pants or more agreed to place the cards in the same cluster.
A single card is included only if at least 60% of the partici-
pants have decided to group that card in the same cluster.
The participants organized cards in seven clusters, with an
average of 4 cards in a single group. BMM shows that par-
ticipants substantially concurred that 11 cards (26.8%) on
which the study participants did not meet the threshold of
at least 60% agreement or belong to one of the seven clus-
ters. These 11 cards are shown in Table 5. Even though
these cards will be grouped at a later stage by BMM, it is

Table 4. There are seven possible groups obtained from Figure 4.

Group Card name (30 cards)

1 4 cards
� Information for international students studying at USP
� FAQs for international students
� Application for international students
� Programme for international students

2 2 cards
� Regional research partnerships
� Industrial research partnerships

3 6 cards
� Research success
� Research focus areas
� Faculty research
� Research concept at USP
� Research ethics
� Research impact

4 4 cards
� About us
� Contact us
� News
� Current staff

5 4 cards
� Income from intellectual property
� Income from contract research
� Income from collaborative research
� Consultancy income

6 7 cards
� Innovation key focus areas
� Innovation opportunities
� Innovation in research
� Innovation in teaching and learning
� Innovation partnerships
� Laucala innovation hub
� University support for innovation

7 3 cards
� How to apply for postgraduate research
� Postgraduate scholarships
� PhDs and research degrees
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suggested that these card names might have puzzled our
participants and need careful scrutiny.

BMM algorithm is used to determine the initial core clus-
ters. In clustering algorithms, the quality of initial clusters is
extremely important and it has a direct effect on the final
clustering quality (Barbar�a & Chen, 2003).

3.1.2. Part 2: Category validity technique (CVT)
CVT is a technique based upon similarity matrixes. Figure 5
demonstrates the findings from the current study dataset in
a similarity matrix to illustrate the proposed method.
Accordingly, the strongest pair is positioned at the top left
corner, grouping them with the next associated strongest
pair that either of those cards has, and then the process is
repeated for that new pair. This way, groups of cards that
are strongly related to each other appear together in the
same shade of blue on the similarity matrix. The darker the
blue shaded areas where two cards intersect, the more often
they were paired together by the participants. A percentage
of 100% indicates that all participants agree to pair two
cards together, and 0% shows that no participant placed
those two cards together.

There are 11 cards (26.8%) out of 41 in Table 5, which
need to be grouped in a category. The primary purpose of
CVT is to combine Tables 4 and 5 by distributing the 11
cards of Table 5 into the seven clusters of Table 4 such that
cards within a given cluster have the highest degree of simi-
larity. CVT conducts an individual analysis of each card in
Table 5, and different steps need to be followed:

1. Create agreement levels: The authors subsequently dis-
play the data positioned along the right edge in Figure
5 as a line graph (Figure 6) to identify the 11 cards in
Table 5. The line graph in Figure 6 is being layered in
black lines. Level 1 includes the cards that are located at
60% or over. Level 2 includes the cards in the range of
55 and 59%. The rest of the levels lower the agreement
threshold by 5% per level.

2. Pick a card to cluster: The algorithm starts at level 2 by
looking at the card with the highest percent of partici-
pant’s agreement. If two cards have the same percen-
tages, the algorithm will pick the card in the order they
appear, as shown in Figure 6. The process continues up
to the final level.

3. Assign a card to a cluster: A similarity matrix is a
square m�m matrix, where m represents the number
of cards. Each cell ci, j represents the number of times
the card i and the card j have been categorized into the
same group. Given a partition of the elements (calcu-
lated, for instance, with the BMM algorithm), we can
calculate for each card the category validity using the
following formula:

hðk � AÞ ¼
PI�A

i 6¼k Ck, i

n
PI�M

i 6¼k Ck, i

¼ bk
ak

,

where hðkÞ is the category validity of the card k, I � A are
the cards that belong to the same A category of k (except k
itself) and I � M are all the cards (except k itself category),
and n is the number of cards in A category (Bussolon, 2009)
including the newly added cards. The algorithm, therefore,
sums all the cells of a given k row (except the diagonal value
cðk, kÞÞ, all the cells of the cards which belong to the same
category of k (except, again, the diagonal value cðk, kÞÞ, then
divides the latter value with the former. The formula reaches
its maximum value (1.0) when an card has been categorized,
by all the participants, with the cards of its category and
never with the other cards.

For instance, let’s find a cluster for card 1 circled in black
color in level 2 (Figure 6) and indicated in Figure 5; card 1
is “International Research Partnerships.” The red color in
Figure 5 displays the row and column of all other cards par-
ticipant’s agreement related to card 1. The algorithm calcu-
lates the category validity for card 1 in each of the seven
groups indicated in Table 4. In the following, we present
examples of the calculations for groups 1, 2, and 3.

For group 1 (see Table 4).

XI�A

i 6¼5

C5, j ¼ b5 ¼ C5, 1 þ C5, 2 þ C5, 3 þ C5, 4 ¼ 55þ 55þ 55þ 55 ¼ 220,

XI�M

i 6¼5

C5, j ¼ a5 ¼ 4C5, 1 þ C5, 2 þ C5, 3 þ C5, 4 þ :::::::þ C5, 41 ¼ 400,

and n ¼ 5:

Then, hð5 � AÞ ¼ b5
a5

¼ 220
5ð400Þ ¼ 0:11:

The category validity of card 1 in group 1 is there-
fore 0.11.

For group 2 (see Table 4)

XI�A

i 6¼5

C5, j ¼ b5 ¼ C5, 6 þ C5, 7 ¼ 45þ 35 ¼ 80,

XI�M

i 6¼5

C5, j ¼ a5 ¼ 4C5, 1 þ C5, 2 þ C5, 3 þ C5, 4 þ ::::::: þ C5, 41 ¼ 400,

and n ¼ 3:

Then, hð5 � AÞ ¼ b5
a5

¼ 80
3ð400Þ ¼ 0:067:

The category validity of card 1 in group 2 is there-
fore 0.067.

Table 5. Cards on which the participants of the study did not attain the
threshold of 60% agreement or higher.

Card name (11 cards)

� International research partnerships
� Pacific research guidelines
� Centers and institutes research
� Meet our research students
� Find a supervisor
� Research office
� Active research projects
� Find a researcher
� Strategic research themes (SRT) funding
� Publication and ranking
� Intellectual property
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For group 3 (see Table 4)

XI�A

i6¼5

C5, j ¼ b5 ¼ C5, 10 þ C5, 11 þ C5, 12 þ C5, 13 þ C5, 21

þC5, 22 ¼ 0þ 5þ 5þ 0þ 10þ 10 ¼ 30,
XI�M

i 6¼5

C5, j ¼ a5 ¼ 4C5, 1 þ C5, 2 þ C5, 3 þ C5, 4 þ :::::::þ

C5, 41 ¼ 400,

and n ¼ 7:

Then, hð5 � AÞ ¼ b5
a5

¼ 30
7ð400Þ ¼ 0:01:

The category validity of card 1 in group 3 is there-
fore 0.01.

The algorithm repeats the same calculation for the rest of
the categories to find each category’s validity for card 1.
Then, it compares the category validity values of all the

seven clusters and puts card 1 “International Research
Partnerships” in the cluster with the highest category validity
value. Therefore, the algorithm places card 1 in group 1.
The algorithm repeats the same calculations for all the single
clusters indicated in Table 5, Figures 5 and 6. Table 6 shows
the final clusters after using the proposed algorithm.

Table 6 demonstrates the combination of Table 4 and 5
findings in five columns, where the first column is focused
on the primary level group number. The second column
indicates the proposed group labels, based on the highest
number of similar group labels chosen by participants.
These group labels indicate the most repeated similarities
amongst all participants’ data, which can be considered as
the primary level contents to appear on the chosen website.
For instance, Group 4 of Table 6 shows that 83% of partici-
pants label primary level “Home,” 75% of participants label
it “About us,” and 67% label it “Essential Information.” This
result suggests that “Home” can be the proposed label for

Figure 6. Line graph shows the steps in Part 2 of the proposed algorithm and displays the 11 single clusters for the dataset of this study.
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Table 6. The proposed clusters for our card sorting dataset after running parts 1 and 2 of the proposed algorithm.

Level 1 group Proposed group label (%) Popularity score (%) Card names Participant’s agreement score

Group 1 Similar category labels
� International (100)
� International

student (100)
� International

partnership (100)
� Info for international

student (100)

� International (34)
� International student (20)
� International

partnership (10)
� Info for international

student (5)

5 Cards
� Information for

international students
studying at USP

� FAQs for
international students

� Application for
international students

� Programme for
international students

� International research
partnerships

805/1000¼ 0.805

Group 2 Similar category labels
� Research

partnership (100)
� Partnership (75)
� Pacific and regional

research (75)
� Strength (50)

� Research partnership (10)
� Partnership (16)
� Pacific and regional

research (3)
� Strength (3)

3 Cards
� Regional research

partnerships
� Industrial research

partnerships
� Pacific research guidelines

175/300¼ 0.583

Group 3 Similar category labels
� Research at USP (75)
� Research strength (67)
� Support (64)
� Research concept and

area (58)

� Research at USP (19)
� Research strength (11)
� Support (41)
� Research concept and

area (7)

11 Cards
� Research success
� Research focus areas
� Faculty research
� Research concept at USP
� Centers and

institutes research
� Research ethics
� Research impact
� Research office
� Active research projects
� Find a researcher
� Publication and ranking

1910//5500¼ 0.347

Group 4 Similar category labels
� Home (83)
� About us (75)
� Essential information (67)
� Staff information (56)

� Home (55)
� About us (11)
� Essential information (4)
� Staff information (5)

6 Cards
� About us
� Contact us
� News
� Current staff
� Find a supervisor
� Meet our

research students

850/1500¼ 0.567

Group 5 Similar category labels
� Income (83)
� Finance (83)
� Research and income (83)
� Research income and

finding (71)

� Income (46)
� Finance (10)
� Research and income (5)
� Research income and

finding (5)

6 Cards
� Income from

intellectual property
� Income from

contract research
� Income from

collaborative research
� Consultancy income
� Intellectual property
� Strategic research themes

(SRT) funding

750/1500¼ 0.500

Group 6 Similar category labels
� Innovation (100)
� Innovation hub (100)
� Innovation

partnership (100)
� Innovation research at

USP (88)

� Innovation (86)
� Innovation hub (7)
� Innovation partnership (7)
� Innovation research at

USP (7)

7 Cards
� Innovation key

focus areas
� Innovation opportunities
� Innovation in research
� Innovation in teaching

and learning
� Innovation partnerships
� Laucala innovation hub
� University support

for innovation

1775/2100¼ 0.845

Group 7 Similar category labels
� Postgraduate (100)
� Application (100)
� Postgraduate

research (75)
� Postgraduate student at

USP (60)

� Postgraduate (29)
� Application (3)
� Postgraduate research (3)
� Postgraduate student at

USP (3)

3 Cards
� How to apply for

postgraduate research
� Postgraduate scholarships
� PhDs and

research degrees

235/300¼ 0.783

Sum of highest scores in each
cluster ¼ 641

Sum of highest scores in each
cluster ¼ 307

Total ¼ 6500¼ 4.430
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the primary level Group 4 as determined by the list of simi-
lar related cards displayed in the fourth column. A similar
approach can be repeated for the rest of the proposed group
labels in Table 6.

However, the second and third highest similar group
labels are also considered to be important representations of
participants’ card similarities. The third column proposes
the popularity score of each category. The total number of
cards was counted from the group that each and every par-
ticipant puts into a category, then divided by multiplying
the total number of cards in that category by the total num-
ber of participants. The higher the score, the more popular
the category is. This is especially useful when resolving ties
where two categories may be having the same similar cat-
egory (group) labels (%). The most popular category could
then be adopted as the best category name for that particu-
lar group of cards. Column four of Table 6 lists the card
names associated with each category. Column five calculates
the percentage of participants’ agreement in each cluster by
summing all the combinations of cards in a category, then
dividing by the number of combination cells multiplied
by 100.

Given a partition of the elements (calculated, for instance,
with the BM-CV-MDS algorithm), we can calculate for each
category the participant’s agreement using the following for-
mula:

PASðAÞ ¼
PI�A

I¼1Ci, j

n� 100%
,

where PASðAÞ is the participant’s agreement score of a cat-
egory A, I � A are the elements that belong to the category
A and n is the number of the combination cards (cell)
inAcategory including the newly added cards. The algo-
rithm, therefore, sums all the cells of the elements which
belong to the same category of k, then divides by n� 100%:
The final step is to sum all the category participant’s agree-
ments. An example is provided to explain the calculation
better. Refer to Group 1 of Table 6 and Figure 7.

PASðGroup 1Þ ¼
XI�A

I¼1
Ci, j

n� 100%
¼ C2, 1 þ C3, 1 þ C3, 2 þ C4, 1 þ C4, 2 þ C4, 3 þ C5, 1 þ C5, 2 þ C5, 3 þ C5, 4

6ð100Þ
¼ 100þ 100þ 100þ 95þ 95þ 95þ 55þ 55þ 55þ 55

10ð100Þ ¼ 805
1000

¼ 0:805:

The same calculation was applied to the other six catego-
ries. Total participant’s agreement measures the strength of
a method compared to others. The same calculation of PAS
is employed in the last column of Tables 7 and 8.

3.1.3. Part 3: Multidimensional scaling (MDS) visualization
The main purpose of Part 3 is to use MDS to visualize the
position of the cards in the proposed clusters (Table 6) and,
thus, support a human (practitioner, researcher) in making
sense of the BM-CV-MDS algorithm results. We made this
choice in the context of explainable artificial intelligence,
which is particularly important today. MDS and goodness of
fit were described in section 2. MDS reduces the difficulty
of interpreting a plot containing too much data, long labels,
and inconsistent patterns. Figure 8 is designed to represent
the relationships between cards in a multidimensional space.
Placing the cursor over any color markers will highlight the
card name that the markers represent, the group number,
and the coordinates. Some of the cards have the same coor-
dinates in Figure 8. Figure 8 shows three markers assigned
to Group 1 but there are five cards in Group 1 according to
Table 6. This is because the 3 cards have the same coordi-
nates (see Figure 8 Group 1). The current study plots the
MDS of the dataset and then uses the result in Table 6,
column 4 to cluster the MDS as shown in Figure 8.

4. Existing techniques applied to our dataset:
Hierarchical agglomerative clustering and K-means

Before the actual comparative analysis between the BM-
CV-MDS algorithm and the existing popular techniques, i.e.,
Hierarchical Agglomerative Clustering (HAC) and K-means,
we provide a brief description of how we used each one for
our dataset.

4.1. Hierarchical agglomerative clustering

To examine the underlying patterns of dataset behaviors, we
conducted a hierarchical cluster analysis in R using Ward’s
method. Ward’s method is an agglomerative clustering
method that merges pairs of clusters based on a given criter-
ion, often the minimum variance between clusters (Murtagh
& Legendre, 2011; Ward, 1963). This method is the most
straightforward and accepted to compute distances and it is
useful to handle raw data (Murtagh & Legendre, 2011).

We plot the dendrogram resulting from the hierarchical
cluster analysis of our card sorting dataset. Figure 9 shows
seven group solutions from the dataset given in Figure 5,

Figure 7. Portion of Figure 5 shows the card names in group 1 of Table 6.
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Table 7. The findings from the dendrogram resulting from the hierarchical cluster analysis of our card sort data.

Level 1 group Proposed group label (%) Popularity score (%) Card names Participant’s agreement score

Group 1 Similar category labels
� Home (100)
� Essential

information (100)
� Header/footer (75)
� About us (50)

� Home (46)
� Essential information (4)
� Header/footer (3)
� About us (7)

4 Cards
� About us
� Contact us
� Current staff
� News

525/600¼ 0.875

Group 2 Similar category labels
� Strength (67)
� Research assistant (50)
� Research project (38)
� Research support (36)

� Strength (28)
� Research assistant (5)
� Research project (5)
� Research support (10)

9 Cards
� Active research projects
� Centers and

institutes research
� Intellectual property
� Pacific research guidelines
� PhDs and

research degrees
� Publication and ranking
� Research ethics
� Research impact
� Strategic research themes

(SRT) funding

880/3600¼ 0.244

Group 3 Similar category labels
� International (100)
� International

student (100)
� International

partnership (100)
� Info for international

student (100)

� International (34)
� International student (20)
� International

partnership (10)
� Info for international

student (5)

5 Cards
� Application for

international students
� FAQs for

international students
� Information for

international students
studying at USP

� International research
partnerships

� Programme for
international students

805/1000¼ 0.805

Group 4 Similar category labels
� Income (100)
� Research income (100)
� Finance (80)
� Research and income (80)

� Income (44)
� Research income (4)
� Finance (8)
� Research and income (4)

4 Cards
� Consultancy Income
� Income from

collaborative research
� Income from

contract research
� Income from

intellectual property

530/600¼ 0.883

Group 5 Similar category labels
� Research strength (70)
� Support (67)
� Research (67)
� Research concept and

area (60)

� Research strength (11)
� Support (34)
� Research (6)
� Research concept and

area (6)

8 Cards
� Faculty research
� Find a researcher
� Find a supervisor
� Meet our

research students
� Research concept at USP
� Research office
� Research success
� Research focus areas

1130/2800¼ 0.404

Group 6 Similar category labels
� Postgraduate (50)
� Partnership (50)
� Postgraduates

information (50)
� Research partnerships (40)

� Postgraduate (20)
� Partnership (12)
� Postgraduates

information (2)
� Research partnerships (8)

4 Cards
� How to apply for

postgraduate research
� Industrial research

partnerships
� Postgraduate scholarships
� Regional research

partnerships

195/600¼ 0.325

Group 7 Similar category labels
� Innovation (100)
� Innovation hub (100)
� Innovation

partnerships (100)
� Innovation research at

USP (88)

� Innovation (86)
� Innovation hub (7)
� Innovation

partnerships (7)
� Innovation research at

USP (7)

7 Cards
� Innovation in research
� Innovation in teaching

and learning
� Innovation key

focus areas
� Innovation opportunities
� Innovation partnerships
� Laucala innovation hub
� University support

for innovation

1775/2100¼ 0.845

Sum of highest scores in each
cluster ¼ 587

Sum of highest scores in each
cluster ¼ 292

Total ¼ 5840¼ 4.381
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with each cluster shown by a different group number. The
dendrogram resulting from the hierarchical cluster analysis
suggests the findings presented in Table 7.

4.2. K-means
K-means clustering intends to partition n cards into k clusters
in which each card belongs to the cluster with the nearest

Table 8. The findings from the K-means method for our card sort data.

Level 1 group Proposed group label (%) Popularity score (%) Card name Participant agreement score

Group 1 Similar category labels
� Income (100)
� Research income (100)
� Finance (80)
� Research and income (80)

� Income (44)
� Research income (4)
� Finance (8)
� Research and income (4)

4 Cards
� Consultancy income
� Income from

collaborative research
� Income from

contract research
� Income from

intellectual property

530/600¼ 0.883

Group 2 Similar category labels
� International (100)
� International

student (100)
� International

partnership (100)
� Info for international

student (100)

� International (34)
� International student (20)
� International

partnership (10)
� Info for international

student (5)

5 Cards
� Application for

international students
� FAQs for

international students
� Information for

international students
studying at USP

� International research
partnerships

� Programme for
international students

805/1000¼ 0.805

Group 3 Similar category labels
� Home (83)
� About us (75)
� Essential information (67)
� Staff information (56)

� Home (55)
� About us (11)
� Essential information (4)
� Staff information (5)

6 Cards
� About us
� Contact us
� Current staff
� Find a supervisor
� Meet our

research students
� News

850/1500¼ 0.567

Group 4 Similar category labels
� Research strength (73)
� Support (70)
� Research at USP (67)
� Research concept and

area (64)

� Research strength (11)
� Support (40)
� Research at USP (18)
� Research concept and

area (7)

10 Cards
� Active research projects
� Centers and

institutes research
� Faculty research
� Find a researcher
� Research concept at USP
� Research ethics
� Research focus areas
� Research impact
� Research office
� Research success

1720/4500¼ 0.382

Group 5 Similar category labels
� Strength (75)
� Partnership (60)
� Research support (43)
� Research partnership (40)

� Strength (12)
� Partnership (13)
� Research support (3)
� Research partnership (8)

4 Cards
� Intellectual property
� Industrial research

partnerships
� Regional research

partnerships
� Strategic research themes

(SRT) funding

165/600¼ 0.275

Group 6 Similar category labels
� Innovation (100)
� Innovation hub (100)
� Innovation

partnership (100)
� Innovation research at

USP (88)

� Innovation (86)
� Innovation hub (7)
� Innovation partnership (7)
� Innovation research at

USP (7)

7 Cards
� Innovation key

focus areas
� Innovation opportunities
� Innovation in research
� Innovation in teaching

and learning
� Innovation partnerships
� Laucala innovation hub
� University support

for innovation

1775/2100¼ 0.845

Group 7 Similar category labels
� Postgraduate (80)
� Application (60)
� Postgraduate

research (50)
� Postgraduate student at

USP (43)

� Postgraduate (32)
� Application (3)
� Postgraduate research (3)
� Postgraduate student at

USP (3)

5 Cards
� How to apply for

postgraduate research
� Pacific research guidelines
� PhDs and

research degrees
� Postgraduate scholarships
� Publication and ranking

330/1000¼ 0.330

Sum of highest scores in each
cluster ¼ 611

Sum of highest scores in each
cluster ¼ 304

Total ¼ 6175¼ 4.087
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centroid/mean (Karaboga & Celal, 2010; MacQueen, 1967). K-
means algorithm is straightforward to implement, relatively
fast and easy to adjust, and therefore first used in Paea and
Baird (2018) for card sort datasets. This method produces
exactly k different clusters of the greatest possible distinction.
The best number of clusters k leading to the most significant
separation (distance) is not priorly known and must be com-
puted from the data set. K-means clustering aims to minimize
total intra-cluster variance or the squared error function
(Somasundaram & Rani, 2011). Each cluster is represented by

an adaptively changing centroid (also called cluster center),
starting from some initial values named seed points (Fr€anti &
Sieranoja, 2019; Huang, 1998). K-means computes the squared
distances between the inputs (also called input data points)
and centroids and assigns inputs to the nearest centroid.

This article uses the random centroids initialization tech-
nique by Fr€anti and Sieranoja (2019) approach. We first find
the number of k discussed in section 2 and use it in the K-
means algorithm. This improvement to the K-means algorithm
for clustering card sorting datasets is another contribution of

Figure 8. Multidimensional scaling of the clustering results from Table 6. Using parts 1 and 2 of the proposed algorithm produced seven cluster solutions for our
dataset, with each cluster shown in different colors.

Figure 9. Dendrogram clustering results for our card sort data based on hierarchical cluster analysis in R using Ward’s method.
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the article. We use R to write our program. The K-means ana-
lysis suggests the findings presented in Table 8.

5. Discussion

This section compares the proposed algorithm (BM-CV-
MDS) with the two existing methods (HAC and K-means)
to provide valuable insights into which method obtains bet-
ter clustering quality.

5.1. Proposed navigation schemes

All three algorithms described in this article for open card
sort data analysis (i.e., BM-CV-MDS, HCA, and K-means)
claim a statistically optimal solution for website IA design.
The proposed approach (BM-CV-MDS) is a technique based
on the BMM, CVT, and MDS to visualize the results.

For the proposed algorithm and HAC, Tables 6 and 7
reveal that 73.2% of cards have been arranged precisely in
both techniques. HAC applies a hierarchical clustering
method to partition the cards into clusters. Clusters are div-
ided in a way to ensure that the most similar cards are
grouped together. One group in Table 7 has clustered two
cards that were never placed together by a participant. In
specific, the HAC group 6 (Table 7) has the following cards:
“How to apply for postgraduate research,” “Industrial
research partnerships,” “Postgraduate Scholarships,”
“Regional Research Partnerships.” For this group, Table 9
shows the participant’s agreement with each card related to
others. It can be seen that “Postgraduate Scholarships” and
“Regional Research Partnerships” were never placed together
by a participant and had 0%. The HAC method is

inconsistent in clustering the cards related to participant’s
agreement in Figure 5. BM-CV-MDS algorithm overcomes
this challenge by grouping similar cards using CVT.

For the proposed algorithm and K-means, Tables 6 and 8
reveal that 90.2% of cards have been arranged precisely in
both techniques. K-means is a centroid-based algorithm, or
distance-based algorithm, where the distance is calculated by
assigning points to a cluster. In Table 8, group 5 has the fol-
lowing cards: “Intellectual Property,” “Strategic Research
Themes (SRT) Funding,” “Industrial research partnerships,”
“Regional Research Partnerships.” Table 10 shows the partic-
ipant’s agreement with each card related to others. It can be
seen that “Strategic Research Themes (SRT) Funding” and
“Regional research partnerships” were placed together by
one participant and had 5%. According to Table 10
“Intellectual Property” and “Strategic Research Themes
(SRT) Funding” have very low participant’s agreements
related to the other cards. These two cards “Intellectual

Table 9. The participant’s agreement relations of Group 6 in Table 7.

How to apply for
postgraduate research

Postgraduate
scholarships

Industrial research
partnerships

Regional research
partnerships

How to apply for postgraduate research 90 5 5
Postgraduate scholarships 90 5 0
Industrial research partnerships 5 5 90
Regional research partnerships 5 0 90

Table 10. The participant’s agreement relations of Group 5 in Table 8.

Strategic research
themes (SRT) funding

Intellectual
property

Industrial research
partnerships

Regional research
partnerships

Strategic research themes (SRT) funding 35 10 5
Intellectual property 35 10 15
Industrial research partnerships 10 10 90
Regional research partnerships 5 15 90

Table 11. The participant’s agreement relations of Group 5 in Table 6.

Income from
intellectual property

Income from
contract research

Income from
collaborative
research

Consultancy
income

Intellectual
property

Strategic research
themes

(SRT) funding

Income from intellectual property 90 85 85 30 20
Income from contract research 90 95 90 20 30
Income from collaborative research 85 95 85 20 30
Consultancy income 85 90 85 15 20
Intellectual property 30 20 20 15 35
Strategic research themes

(SRT) funding
20 30 30 20 35

Figure 10. Total values of the participant’s agreements in the three methods.
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Property” and “Strategic Research Themes (SRT) Funding”
are grouped together in a different cluster from “Industrial
research partnerships” and “Regional Research Partnerships”
by the BM-CV-MDS algorithm in Table 11. Table 11 shows
that the BM-CV-MDS algorithm did group the two cards,
“Intellectual Property” and “Strategic Research Themes
(SRT) Funding” with other cards that contain higher partici-
pant’s agreements compared to the K-means method in
Table 10.

5.2. Method strength

Figure 10 shows the total value of the participant’s agreement
in each method. These values are included in column five of
Tables 6–8. Measuring each method’s strength depends on
the total value of the participant’s agreement score—the larger
the total score, the better the technique. Figure 10 shows that
the BM-CV-MDS algorithm has the highest total score (4.43)
in red color compared to HAC and K-means. The result from
Figure 10 displays that BM-CV-MDS algorithm does combine
the most similar cards in the seven clusters. The similar cards
were selected based on their relationship and closeness
depicted by the participant’s agreement.

Figure 11 shows the sum of the highest scores in each of
the clusters. These values are also shown in the second and
third columns of Tables 6–8. These two bar graphs provide
insight on how to identify the quality of a clustering
method. Figure 11(a) displays the sum of the highest in each
cluster proposed group label (%) and Figure 11(b) demon-
strates the sum of the highest in each cluster popularity
score (%) of the three methods. It can be seen from Figure
11, both (a) and (b), that the proposed algorithm contains
the highest scores compared to HAC and K-means. This

result further supports our claim that the proposed algo-
rithm is better in card sorting clustering.

Figure 12 shows the category validities (see Appendix 2,
Tables A6–A8). The proposed algorithm has the highest cat-
egory validity score. At its best, the proposed algorithm is
clustering the 41 cards into the 7 groups more cohesively. In
Figure 12, the proposed algorithm appears to be a robust
method for analyzing cards meaningfully in relation to how
the open card sorting data collection is being carried out.

The proposed algorithm does handle the overlaps and
outliers quite well by plotting the final result in three
dimensions and listing every card coordination. It allows
single cards to be grouped together with their closest core
clusters and treats outliers by choosing the stronger similar-
ity cards in the similarity matrix.

5.3. Initial clusters

The quality of initial clusters is extremely important and dir-
ectly affects the final clustering quality. We calculated the
total participant’s agreement score (4.43) of the initialization
technique (BMM) in Table 6. The result shows that the ini-
tialization technique (BMM) has a direct effect on the final
clustering quality shown in our BM-CV-MDS algorithm
result in Figure 10. It can be seen that the BM-CV-MDS
algorithm has the highest total participant’s agreement score
compared to the existing methods HAC and K-means. Our
BM-CV-MDS supports Fr€anti and Sieranoja (2019) finding
that the clustering result depends on the goodness of the
initialization technique.

6. Conclusion

This article proposed an algorithm to cluster and visualize
open card sorting data. The algorithm first creates the initial
core clusters using the BMM and then applies the CVT to
cluster the rest of the cards. Next, it visualizes the clustering
results using MDS. The rationale for the proposed algorithm
is that the clustering results heavily depend on the goodness
of the initialization technique. Indeed, study results showed
that the quality of initial clusters is extremely important and
directly affects the final clustering quality.

The proposed algorithm (BM-CV-MDS) provides valu-
able insights and an improved clustering result compared to
the existing techniques, such as HAC and K-means. It was

Figure 11. Total percent (a) proposed group label (%) and (b) popularity score (%) in the three methods discussed in this article.

Figure 12. Total category validity scores of the three methods.
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also shown that the proposed algorithm compares favorably
to other algorithms, obtaining better clustering quality as
operationalized by the sum of each method total partici-
pant’s agreements and the total category validity score. Our
analysis shows that the proposed algorithm is closer (90.2%
of cards have been arranged precisely in both techniques) to
K-means than the HAC method.

There is a need for more in-depth future research of
components using qualitative data to provide deep and rich
insights into card-sorting findings. In addition, we plan to
investigate the effect (if any) of various open card sort study
parameters (e.g., website domain, number of cards) on the
obtained results using the proposed BM-CV-MDS algorithm
against existing approaches. One potential limitation of this
study is that it concerned the redesign of an existing web-
site, and thus involved participants that were already famil-
iar with the existing structure of the website. Future work
involves exploring the performance of the proposed algo-
rithm for the initial design of a website. Future research also
includes conducting a user testing study that compares the
IA produced by the proposed algorithm against the IA pro-
duced by HAC and/or K-means in terms of users’ inter-
action effectiveness, efficiency, and satisfaction.
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Appendix 1

An example is provided to help explain the BMM calculations better. The analysis is specific to the example shown below. Let the number of partici-
pants equal to 10 and the number of cards to be sorted equal to 5.

Step 1: Card names are a, b, c, d, and e. Table A1 shows five categories with one card each and their participant’s agreement scores.

Step 2: Combinations of two cards. The based pair with the highest score is locked in as a new construct category. In this stage, each new con-
struct category is independent of the other new construct category. Table A2 shows ten categories with two cards each and their participant’s
agreement scores. There are two locked in categories in Table A2: category 1 and category 10.

Step 3: Combination of three cards. The process in step 2 repeats, and when a pair is locked in intersects with an existing locked category, the
former is agglomerated with the latter. Table A3 shows eight categories with three cards each. The algorithm merges category 1 and category 5 of
Table A2 and locked in as the new category. In this stage, the relationship of categories does take into consideration. All subsets of this new cat-
egory are eliminated; for instance, eliminate category 2 in Table A2.

Step 4: Combination of four cards. Repeat step 3. Table A4 shows four categories with four cards each. The algorithm merges category 1 of
Table A3 and category 4 in Table A2 and locked in as the new category. All subsets of this new category [a, b, c, e] are eliminated.

Step 5: Combination of five cards. Repeat step 4. Table A5 shows one category with five cards and the participant’s agreement scores. The
algorithm merges category 2 of Table A4 and category 10 in Table A2 and locked in as the new category. All cards are merged into a sin-
gle category.

Step 6: The algorithm stops when all 5 cards are grouped in a single category.

Table A1. Five categories with a card each.

Category number 1 2 3 4 5

Category [a] [b] [c] [d] [e]
Participant’s agreement score (%) 100 100 100 100 100

Table A2. Ten categories with two cards each.

Category number 1 2 3 4 5 6 7 8 9 10

Pair [a, b] [a, c] [a, d] [a, e] [b, c] [b, d] [b, e] [c, d] [c, e] [d, e]
Participant’s agreement score (%) 62 43 43 51 58 36 42 36 41 61

Table A3. Eight categories with three cards each.

Category number 1 2 3 4 5 6 7 8

Pair (category) [a, b, c] [a, b, d] [a, b, e] [a, c, d] [a, c, e] [b, c, d] [b, c, e] [c, d, e]
New category Merge [a, b] and [b,c]
Participant’s agreement score (%) 163 141 155 115 135 130 141 138

Table A4. Four categories with four cards each.

Category number 1 2 3 4

Pair (category) [a, b, c, d] [a, b, c, e] [a, c, d, e] [b, c, d, e]
New category Merge [a, b, c] and [a, e]
Participant’s agreement score (%) 275 297 214 213

Table A5. One category with five cards.

Pair (category) [a, b, c, d, e]

New category Merge [a, b, c, e] and [d, e]
Participant’s agreement score (%) 473
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Appendix 2

Table A6. BM-CV-MDS algorithm category validity.

Group Card name Validity score

1 Application for international students 0.184
FAQs for international students 0.184
Information for international students studying at USP 0.184
International research partnerships 0.11
Programme for international students 0.17

2 Industrial research partnerships 0.126
Pacific research guidelines 0.059
Regional research partnerships 0.136

3 Active research projects 0.049
Centers and institutes research 0.05
Faculty research 0.064
Find a researcher 0.045
Publication and ranking 0.041
Research concept at USP 0.057
Research ethics 0.055
Research focus areas 0.067
Research impact 0.062
Research office 0.047
Research success 0.072

4 About us 0.123
Contact us 0.123
Current staff 0.109
Find a supervisor 0.063
Meet our research students 0.047
News 0.115

5 Consultancy income 0.133
Income from collaborative research 0.135
Income from contract research 0.15
Income from intellectual property 0.14
Intellectual property 0.048
Strategic research themes 0.046

6 Innovation in research 0.122
Innovation in teaching and learning 0.121
Innovation key focus areas 0.126
Innovation opportunities 0.129
Innovation partnerships 0.123
Laucala innovation hub 0.125
University support for innovation 0.12

7 How to apply for postgraduate research 0.151
PhDs and research degrees 0.114
Postgraduate scholarships 0.155

Total ¼ 4.28

Table A7. HAC method category validity.

Group Card name Validity score

1 About us 0.145
Contact us 0.145
Current staff 0.128
News 0.137

2 Active research projects 0.05
Centers and institutes research 0.034
Intellectual property 0.041
Pacific research guidelines 0.042
PhDs and research degrees 0.027
Publication and ranking 0.056
Research ethics 0.049
Research impact 0.047
Strategic research themes 0.053

3 Application for international students 0.184
FAQs for international students 0.184
Information for international students studying at USP 0.184
International research partnerships 0.11
Programme for international students 0.17

4 Consultancy income 0.176
Income from collaborative research 0.17
Income from contract research 0.191
Income from intellectual property 0.176

5 Faculty research 0.065
(continued)

Table A7. Continued.

Group Card name Validity score

Find a researcher 0.051
Find a supervisor 0.05
Meet our research students 0.051
Research concept at USP 0.07
Research focus areas 0.07
Research office 0.051
Research success 0.068

6 How to apply for postgraduate research 0.068
Industrial research partnerships 0.072
Postgraduate scholarships 0.069
Regional research partnerships 0.072

7 Innovation in research 0.122
Innovation in teaching and learning 0.121
Innovation key focus areas 0.126
Innovation opportunities 0.129
Innovation partnerships 0.123
Laucala innovation hub 0.125
University support for innovation 0.12

4.121

Table A8. K-means method category validity.

Group Card name Validity score

1 Consultancy income 0.176
Income from collaborative research 0.17
Income from contract research 0.191
Income from intellectual property 0.176

2 Application for international students 0.184
FAQs for international students 0.184
Information for international students studying at USP 0.184
International research partnerships 0.11
Programme for international students 0.17

3 About us 0.123
Contact us 0.123
Current staff 0.109
Find a supervisor 0.063
Meet our research students 0.047
News 0.115

4 Active research projects 0.05
Centers and institutes research 0.053
Faculty research 0.068
Find a researcher 0.047
Research concept at USP 0.06
Research ethics 0.055
Research focus areas 0.07
Research impact 0.062
Research office 0.05
Research success 0.076

5 Industrial research partnerships 0.08
Intellectual property 0.036
Regional research partnerships 0.083
Strategic research themes 0.026

6 Innovation in research 0.122
Innovation in teaching and learning 0.121
Innovation key focus areas 0.126
Innovation opportunities 0.129
Innovation partnerships 0.123
Laucala innovation hub 0.125
University support for innovation 0.12

7 How to apply for postgraduate research 0.101
Pacific research guidelines 0.017
PhDs and research degrees 0.087
Postgraduate scholarships 0.104
Publication and ranking 0.033

4.149
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