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Abstract— Stator-based faults are one of the most common 

faults among induction motors (IMs). The conventional 

approach to IM control and protection employs current sensors 

installed on the motor. Recently, most studies have focused on 

fault detection by means of stator current. This paper presents 

an application of the Growing Curvilinear Component Analysis 

(GCCA) neural network aided by the Extended Park Vector 

Approach (EPVA) for the purpose of transforming the three-

phase current signals. The GCCA is a growing neural based 

technique specifically designed to detect and follow changes in 

the input distribution, e.g. stator faults. In particular, the GCCA 

has proven its capability of correctly identifying and tracking 

stator inter-turn fault in IMs. To this purpose, the three-phase 

stator currents have been acquired from IMs, which start at 

healthy operating state and, evolve to different fault severities 

(up to 10%) under different loading conditions. Data has been 

transformed using the EPVA and pre-processed to extract 

statistical time domain features. To calibrate the GCCA neural 

network, a topological manifold analysis has been carried out to 

study the input features. The efficacy of the proposed method 

has been verified experimentally using IM with 1.1kW rating 

and has potential for IMs with different manufacturing 

conditions. 

Keywords—Park vector, diagnosis, incremental neural 

networks, principal component analysis, stator fault, feature 
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I. INTRODUCTION  

Electrical faults are most common in rotating machines 
and involve mainly the incorrect connection of the motor 
windings, grounding errors, short circuit of stator windings, as 
well as the open circuit of the whole phase. In particular, 
stator-based faults contribute up to 38% of all the motor faults 
[1]. Within this category, inter-turn short circuit of the stator 
windings is the most common one. It deeply influences the 
machine since it adversely affects the reliability and safety 
during the operation. This class of fault has a very small time 
constant and evolves at a tremendous rate whereby many 
condition monitoring schemes fail to recognize its inception. 
Therefore, a much more robust detection method is necessary 
to recognize this type of fault on an online basis, such that 
users are constantly informed about the health of the machine.  

While many protection systems for rotating machines 
(regardless of grid connected or inverter fed configurations) 

are designed to trip the circuit breaker off under these 
circumstances, a near to permanent damage is already done to 
the stator/stator windings. This mostly happens at the time 
between the inception of fault and tripping of the circuit 
breakers. The protection system for electrical drives 
accommodates a certain level of tolerance for phase unbalance 
during its transient and steady state operation [2]. For the case 
of stator inter-turn faults (SITFs), a low level of phase 
unbalance is initially not so evident (because SITF starts from 
a very low severity). On this basis, the protection systems do 
not cut off the supply unless it exceeds a fixed tolerance level 
for phase unbalance or simply when the fault evolves to higher 
severities. In other words, the protection system comes into 
effect only when the motor rating is violated by either a supply 
or a noticeable internal failure [3]. 

This study focuses on IM SITF because of its time varying 
nature and of its hard to detect incipient behavior. The authors 
propose a novel architecture for diagnosing and modelling the 
SITFs in IMs. The diagnosis scheme consists of a growing 
neural based technique known as the “Growing Curvilinear 
Component Analysis (GCCA)” [4], which is the non-
stationary extension of the Curvilinear Component Analysis 
(CCA) [5]. The GCCA requires fewer parameters than CCA 
and it is completely online, i.e. it works on continuous data 
stream, not batches. 

Moreover, an IM with 1.1kW rating has been used for 
experimentation.  The phase current signatures of the healthy 
and faulty cases are acquired at varying loads with a realistic 
degree of voltage asymmetries. Thereafter, the phase current 
signatures are transformed using EPVA and then pre-
processed (which involves data fusion,  normalization, feature 
extraction). After this, the features are fed to the diagnosis 
scheme to detect and infer the level of fault severity. Differing 
from the existing strategy as presented in [6], the 
transformation of the phase currents using EPVA prior to 
feature extraction has significantly improved the results upon 
exploring the  GCCA input quantization in this study. Through 
extraction of the statistical time domain features [7] from the 
EPV current (3), the data is well captured since all the phases 
have been used under this strategy. The data geometry has 
been studied in a much more efficient way to derive the SITF 
class cluster relative positions at different severity levels. 
Similarly, with this approach, a suitable judgement on the 
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dataset intrinsic dimensionality (ID) has been accurately 
determined. With this ID value, the input dimensionality has 
been reduced and its projection contains only significant 
information that clearly indicates the SITF evolution over 
time.  

This paper is organized as follows: Section II provides a 
theoretical overview of GCCA neural network followed an 
artificial example using this algorithm. Section III explains the 
SITF fault emulation and the feature engineering aspects. 
Then, Section IV presents the exploratory data analysis using 
PCA and CCA. Thereafter, Section V gives results and 
discussion for the proposed strategy to track the evolution of 
the stator inter-turn-fault using GCCA. Finally, Section VI 
summarizes this paper and gives direction for future works.  

II. THE GCCA NEURAL NETWORK 

A. Theoretical Aspect 

The GCCA is a self-organizing neural network that is able 
to detect non-stationarity in the data flow. To demonstrate the 
detection of non-stationarity in the data, two different neuron 
connections (the “bridges” and the “links”) and the colonizing 
seeds have been introduced in the algorithm [8, 9]. In case of 
IM operation, the occurrence of the “bridges”, i.e. a change in 
the data distribution (non-stationarity), indicates the fault. 
Indeed, GCCA exploits bridges and seeds to learn how the 
input evolves over time. A comprehensive flowchart of the 
algorithm is laid out in [4]. 

The fact that GCCA is supervised and incremental is 
because the number of neurons is dependent on the input space 
quantization. Just like CCA, the neurons of GCCA have two 
weight vectors: (1) input space (X-weight) and (2) 
output/latent space (Y-weight), that eventually gives the 
projection of the data. For the aforesaid neuron of GCCA, it 
should be noted that it carries a threshold that represents the 
Voronoi region in the input space. This idea of threshold is 
quite important, and it is neuron specific; meaning that it is 
used to recognize novelty of the input data with respect to the 
existing quantization. The threshold is automatically 
calculated by considering distance in the input space between 
the considered neuron and its farthest neighbor. Considering 
the flowchart in [4], a new neuron is created when the input 
data is novel with respect to the first winner’s threshold. In 
this case, the new neuron’s weight vector in the X-space is the 
data itself. In the Y-space, its weight is deduced by CCA. 
However, if the oncoming data fails the novelty test, Soft 
Competitive Learning (SCL [10, 11]) is applied to the first 
winner and its neighbors to adjust their weight vectors in X-
space. As for their projections, CCA is applied in the same 
manner. 

To differentiate stationary and non-stationary dataflow, 
GCCA uses two different kinds of links to connect the neurons 
in question. These are edges and bridges: for edges, the 
Competitive Hebbian Learning (CHL [12]) technique is 
utilized to determine the topology of the data manifold while 
bridges track jumps in the input distribution. In particular, the 
bridge is a directional connection to link a new neuron to the 
existing quantization to represent non-stationarity in the data 
flow.  

Moreover, the idea of seed has also been instrumental in 
the development of GCCA. It utilizes the hard competitive 
learning, HCL [10, 11] strategy to adjust the weight vector for 
a couple of neurons and its double (seed). The process of 

neuron doubling is carried out whenever the first winner is at 
the top of the bridge emanating from the second winner: it is 
under these circumstances GCCA populates a novel part of the 
input manifold. Besides, if the first winner is not at the top of 
the bridge (meaning it is the bridge tail), then the region 
formerly linked with a bridge does not present a change in the 
input distribution (stationary scenario). Therefore, this 
connection is turned into an edge, that details information only 
about the topology of the manifold. 

GCCA adapts well with the data fed to it provided the 
input parameters are well defined. The projection of the data 
is entirely based on the CCA algorithm. For this application, 
due to the nature of the data, detection of the SITF is well 
presented for various levels of severities and also, degradation 
of the SITF is also observed to some extent. 

B. Artificial Example 

The GCCA neural network has been applied to two 
artificial examples: 3D rectangles, 2 rectangles. In Figs. 1-2 
below, the bridges depict change in distribution of the data. 
Single long bridges represent abrupt changes in the 
distribution and the length of the bridges represents how far 
the clusters with different distribution are located. Indeed, for 
a smoother change in the distribution, more bridges are 
observed, and this is the case for Figs. 1-2, whereby the 
density of the bridges is proportional to the displacement 
speed of the distribution. The resulting quantization 
memorizes the previous positions of the distributions; the 
deformations in the grid are due to a lower number of data fed 
to the network. It should be noted that in spite of having a 
pruning parameter, GCCA is not a memoryless system. It 
organizes the data so that significant transitions in the 
distribution can be represented by bridges, while minor ones 
can be illustrated through links/edges. In addition, the 
structure of the shapes are well maintained, which implies the 
GCCA’s adaptive ability to preserve the topology of the data.   

 

Fig. 1. GCCA Vector quantization: 3D rectangles – GCCA parameters ���� � �. ���, 	
 � �, 	� � �. ��, �� � �. ��, �� � �. ���, 
���
� � �  

 

Fig. 2. GCCA Vector quantization: 2 rectangles – GCCA parameters ���� ��. ���, 	
 � �, 	� � �. ��, �� � �. ��, �� � �. ���, 
���
� � � 
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III. EXPERIMENTAL SETUP AND FEATURE ENGINEERING 

A. Stator Inter-turn Fault Description and Emulation 

To generate the SITF in hardware, a prior study of the 
SITF in IM was conducted using finite element analysis 
(FEA). For this purpose, up to 10% of the SITF was studied 
considering shorted turns in a single coil. This priory study 
was conducted to avoid permanent damage to the IM under 
test. It was evidenced in the FEAs that a single shorted turn in 
a coil resulted in a higher fault current way above the rated 
current of the IM. This phenomenon is due to very low short-
circuit impedance with respect to the induced electromotive 
force (emf). To maintain consistency and considering safety 
of the IM, the SITF is characterized by using appropriate 
values of shunt resistors to limit the fault currents to 
sustainable values. Various trials via FEM were carried out to 
select the values of the shunt resistance for various levels of 
SITF severities. 

Following the above setting, the severity of the SITF is 
varied in between � 5% to � 10%, by choosing appropriately 
the shunt resistance values and number of turns in the phase 
branch. Data is acquired by first obtaining the healthy current 
signal, after which, the faulty data (SITF) is acquired by using 
appropriate values of shunt resistance.  

Considering the shunt resistance value and number of 
turns in the phase branch, following SITF severities were 
explored in this study: 5%, 5.77%, 6.85%, 8.42% and 10.92%. 
Data acquisition involved logging of the three-phase current 
signals for no-load, 25% load and 40% load conditions. For 
no-load operation, data has been acquired for all fault severity 
levels. However, for 25% and 40% loads, data has been 
acquired only up to the fault severity of 6.85%. This was to 
avoid excessive vibrations and permanent damage to the stator 
of the IM. 

B. Feature Engineering 

Since the three-phase stator current signal of the IM is 
insufficient to separate the fault and differentiate the levels of 
fault severity, statistical time domain features were calculated. 
A total of fifteen statistical time domain features were 
extracted from the Extended Park Vector (EPVA) [13]. 

The EPVA transforms the three-phase stator current 
signal ���� , ��� , ����  into direct and quadrature 
axis  components  ��� , ���  and computes their combination 

modulus ���� as follows: 

�� �  �23 ��� " �16  ��� " �16 ���  �1� 

�� �  √½ ��� " �12  ���  �2� 

�� �  '(�� ) *��+' �3� 

In this work, only the ��  current is used to calculate the 
fifteen statistical time domain features [7] because, by 
definition, it includes all the dynamical information of the 
three-phase stator current signal.  

IV. DATA GEOMETRY AND INTRINSIC DIMENSIONALITY 

(ID) ESTIMATION 

After the feature extraction and preprocessing phase, the 
resulting data geometry was analyzed to determine its intrinsic 
dimensionality (ID), since it is one of the most important 
GCCA hyper parameters. More in detail, the ID is defined as 
the dimensionality of the smallest space able to represent 
completely the input data. This value is normally used by the 
dimensionality reduction techniques, such as CCA and its 
variant (e.g. GCCA), to project the data into a lower 
dimension space for clear visualization.  

To estimate the dataset ID, both linear (Principal 
Component Analysis - PCA) and non-linear (CCA) 
techniques have been used. The PCA associated Pareto charts 
of the evolving IM SITFs under different loads (no load, 25% 
load and 40% load) are shown in Fig. 3: for all cases, the first 
three principal components (PCs) are able to explain more 
than 95% of the feature set. The first PC is able to explain over 
60% variability, while the following second and third PCs 
explain the rest and amount to over 95% of explained 
variability. Hence, from this linear analysis it can be inferred 
that the ID of the feature-set is three.  

(a) (b) (c) 
Fig. 3. Linear intrinsic dimensionality estimation: PCA Pareto charts – (a) No load, (b) 25% Load, (c) 40% Load 

To further confirm these results, a deeper non-linear 
analysis was performed using CCA to project the feature-set 
from 15 to 3 dimensional space. To assess the projection 
quality, the plots of the inter-sample distances in the output 
space versus their corresponding ones in the input space, say 
dy-dx diagram, have been studied (see Fig. 4).  

In the perfect input-output mapping, all dy-dx points (blue 
dots) must align onto the bisector (red segment). Because the 
blue cloud is well onto the bisector, with respect to the 
chosen , , it can be deduce that the projection has not lost 
information. In this sense, the latent space dimensionality (or 
ID), i.e. three, can be considered as the sought ID. 
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(a) (b) (c) 

Fig. 4. Non-linear intrinsic dimensionality estimation: CCA dy-dx diagram - (a) No load, (b) 25% Load, (c) 40% Load 

V. STATOR FAULT TRACKING USING GCCA 

To detect and track the SITF using the aforementioned 
feature-set, GCCA has been applied on the three different 
loading conditions (no load, 25% load and 40% load) by 
projecting the input into a 3-D space (as the ID derived 
before). Fig. 5 shows the GCCA quantization of the input 
space, using the first three PCs for visualization. The red 
segments are the “bridges”, showing transition from healthy 
to faulty regions. It can be observed, the healthy cluster (black 
data cloud) is always well isolated from the faulty ones 
(yellow, green, blue, cyan, magenta points), demonstrating the 
robustness of the method. In this sense, it enables fast and 
accurate detection of SITFs in IMs. Similarly, long bridges 
indicate the transition from one level of fault severity to 
another: therefore, the degradation of the stator windings can 
be accurately tracked and appropriate measures can be taken 
to avoid severe damage to IMs. The fact that the IM operating 
at 25% and 40% load did not exceed 6.85% of SITF severity 
was because the protection system of the IM fed by the 
inverter took effect, thus tripping the circuit breaker off. 
Similar explanation is for the no load condition which only 
went up to 10.92% of SITF.   

In addition, the GCCA is not only able to learn the time 
varying manifold but is also able to extract important features 
and projects it to the latent space, which can later be used for 
other analyses. For instance, the bridge lengths can be used as 
an early detector and an indicator of the level of fault in case 
of SITFs. This is because, as per Fig. 5, higher values of bridge 
lengths correspond to transition from healthy to faulty states. 
Compared to the results emanating from only using the 
affected phase current of the IM in [6], the proposed strategy 
in this paper, i.e. GCCA aided by EPVA captures all the phase 
information and shows adequate amount of separation upon 

tracking the Stator inter-turn fault (SITF) as it evolves from 
healthy to faulty states. Moreover, unlike the GCCA input 
quantization of the affected phase in [6], the proposed strategy 
using EVPA shows very clearly the changes in the severity of 
the SITF. While using only the affected phase is instrumental 
in isolating the fault, there is very little information about the 
SITF severity levels. A major reason behind this setback is the 
changes in the loading condition for the induction motor; i.e. 
under no load condition, the SITF tracking with severities are 
to some extent apparent. But, when there is a load change, the 
GCCA input quantization plot is unable to describe correctly 
the faulted states (severity). In the proposed strategy, both 
fault isolation and different fault severities are clearly denoted 
by the bridges regardless of the IM being subjected to different 
loads or operating at no load condition.  

It is worth mentioning that the cluster (healthy or faulty) 
positions correlates with the severity of the SITF for the IM. 
According to Fig. 5, the transition from healthy to faulty state 
is abrupt due to the 5% SITF, which is currently the lowest 
SITF percentage as per our hardware experimentation. 
However, to measure the sensitivity of the proposed strategy, 
even small percent changes in the fault severity is captured by 
the GCCA. Considering Fig. 5a, the SITF percentages are: 
5%, 5.77%, 6.85%, 8.42% and 10.92%. The increment of 
0.77% SITF (fault transition from 5% to 5.77%) is clearly 
captured in the GCCA input quantization plot not only in 
Figure 5a, but under all loading conditions (Figures 5a-c). 
Thus, regardless of the constraints in terms of the hardware 
(lowest SITF severity being 5%), it can be confirmed that the 
proposed strategy will also be able to detect even small degree 
of SITF. Thus, for this application, the lowest percentage of 
SITF change detected and tracked by GCCA neural network 
is 0.77%.  

(a) (b) (c) 

Fig. 5. The GCCA input quantization of IM SITF datasets - (a) No load, (b) 25% Load, (c) 40% Load 
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VI. CONCLUSION 

In this paper, the GCCA neural network has been 
employed for detecting and tracking SITF in IMs, which were 
the root cause of non-stationarity in the data flow. While other 
non-linear techniques and neural based methods are 
computationally expensive, GCCA is the only neural network 
available that is able to track non-stationarity and, at the same 
time, project input data to a lower dimension space. It should 
be noted that EPVA played an important role at the prior stage 
of pre-processing in order to transform the three-phase current 
signals into a lower dimension that has improved the 
preceding results in case of a single-phase (affected phase) 
analysis. In terms of fault detection, GCCA results in a much 
more accurate detection of SITFs as well as the inference on 
the fault severities in IMs. For this study, the lowest 
percentage of fault severity change detected by the GCCA 
neural network was 0.77%.  

Its effectiveness in alarming the fault conditions at low 
severities would aid the protection systems to shut down the 
operation of the IMs at very early stages to avoid permanent 
damages. This has been demonstrated under the results 
explaining at which SITF severity the protection systems take 
effect. Moreover, because GCCA is an online technique, it is 
possible to embed on single board computers or FPGAs for 
real time condition monitoring and fault diagnosis of not only 
IMs, but other rotating machines and electrical systems.  

Future work will involve analysis of the SITF using IM 
with different manufacturing conditions, particularly to 
observe the starting point of SITF using GCCA neural 
networks. This will involve an in-depth study of “bridges” and 
“links”. 
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