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Abstract — This paper outlines a neural-based strategy to 

diagnose stator-inter-turn faults (STIFs) at low severities. The 

proposed strategy involves the study of a state-space model for 

healthy and faulty SITF configuration of squirrel cage 

induction machine (IM). Following the acquisition of healthy 

and faulty 3-phase currents from the state-space models, 

exploratory analysis of data are conducted using principal 

component analysis (PCA) and independent component 

analysis (ICA). Thereafter, various neural and non-neural-

based classifiers are trained respecting appropriate data 

divisions. After considering factors like the least number of 

trainable parameters, confidence level of the outputs and 

highest classification metrics, the best classification model 

belonged to the family of LSTM neural networks.   

Keywords—Induction motor, Stator Inter-turn Fault, 

Principal Component Analysis, Machine Learning, Neural 

Network, State Space 

I. INTRODUCTION 

Through the years, industrial automation has been 
enormously progressing; this involves research in devising 
new Condition Monitoring (CM) schemes for IMs. These 
motors generally are robust and reliable machines. 
However, scenarios such as prolonged activity times and 
harsh operating conditions, among other factors [1], [2], 
lead to electrical and mechanical faults in the IMs. 
According to recent literature [1], 37% of faults in IM are 
stator related, where stator inter-turn short circuit faults are 
the most common failure events. This fault occurs in a 
similar case of a short circuit between two turns in the same 
phase winding. The shorting typically occurs whenever the 
winding insulations gets removed due to aging. STIFs at 
incipient stages are very hard to detect, and if left unnoticed 
with normal operation, faults such as; phase-to-phase, and 
phase-to-ground evolve quickly [3].  

Identifying SITFs at an early stage has been a challenge 
and a motivational factor for individuals in the respected 
research field to find various methodologies to detect them. 
An application of both motor current signature analysis 
(MCSA) and motor vibration analysis (MVA) to diagnose 
SITFs is seen in [4], and the trained system recognizes both 
single and multiple faults (electrical and mechanical) 
simultaneously. This study tests and finds Matching Pursuit 
(MP) and Discrete Wavelet Transform (DWT) appropriate 
feature extraction methods. Moreover, fine Gaussian 
Support Vector Machines (SVM), fine K-Nearest 
Neighbors (KNN), weighted KNNs, bagged trees, and 
subspace KNN [4], are the few classification algorithms 
selected from the MATLAB Classification learner toolbox 

that show 100% classification accuracy in practice. 
However, these methods fail to output the class membership 
probability upon subjecting the classifier to the test sets. 

Shao et al. in [5] discovered using multi-signal analysis 
that the merged architectures perform better than multi-
channel architectures. The study used a Deep Learning (DL) 
model, which automated feature extraction based on motor 
current and vibrational data. Moreover, the analysis was 
done in the time-frequency domain (TFD), and the literature 
demonstrated the capabilities of convolutional neural 
network (CNN) in learning features from the image maps 
for each of the two input signals. Upon comparing the model 
with other traditional classifiers, TFD + Deep CNN 
(DCNN) output the best prediction accuracy of 99.87%.  

Machine Learning (ML) techniques have many 
profound applications; however, they do not perform as 
expected when applied in the real world. Xiao et al. [6] 
states that real-world working conditions differ drastically 
and do not have labeled outputs – which is not the case in 
experimental laboratory data. With this argument, the 
authors utilize transfer learning methods to train a CNN 
which performs feature identification on the target domain 
(which consists of unlabeled data under varying working 
conditions) using a source domain (labeled data under non-
varying working conditions) as reference. Maximum Mean 
Discrepancy (MMD) [7] is used as a regularization term to 
minimize feature mismatch between the two domains. The 
learned features are then attached to the fully connected 
layer, which performs the final fault classification. 

One of ML's major drawback that is rarely discussed is 
how dependent the strategy is on the training dataset. 
Implementing a specifically trained algorithm to an 
alternate IM with different characteristics shows a reduction 
in accuracy for fault classification. Furthermore, a 
comprehensive fault diagnosis (FD) method for 
classification, employing a multiresolution approach built 
on wavelet functions, is emphasized in the works of [8]. The 
technique incorporates multivariate quality control charts 
that use statistical procedures to detect multivariate outliers. 
The significant advantage of this method is that it can be 
implemented onto any industrial motor regardless of its 
brand or the type of feeding system it operates on. 

This paper focuses on one of IM's major faults: stator-
inter-turn-fault, also known as stator short-circuit fault. This 
fault at the incipient stage is critical and tends to evolve 
quickly over time that may lead to permanent damage to the 
stator. Thus, early diagnosis is necessary to prevent the fault 
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from further developing in the motor. The proposed scheme 
(Fig. 1) presents a data-driven approach where a state-space 
model of healthy and faulty 2.2kW IM is developed. With 
respect to the faulted IM, the stator inter-turn faults are 
considered from [9]. It should be note that only low SITF 
severities (0.3%, 0.7%, 1.05%, 2.1%) have been considered 
for analysis. Along with that, PCA and ICA techniques are 
only used for exploratory analysis of the data. Thereafter, 
division of data with respect to various ratios is done to train, 
validate and test neural and non-neural based classifiers. 

This paper is organized as follows: Section II discusses 
the proposed strategy while Section III shows the modelling 
of healthy and faulty (SITF) IM and, details on acquisition 
of the data. Section IV gives an insight to the data geometry 
using exploratory data analysis tools to choose a suitable 
architectures for classification. Section V presents all the 
results and discussions for the neural and non-neural based 
classifiers followed by Section VI that concludes this study 
and gives overview of future works. 

II. STATOR INTER-TURN FAULTS (SITFS) 

The proposed SITF diagnosis scheme is inspired by 
recent works of literature published in [10], [11]. Fig. 1 
illustrates the proposed scheme that outlines the following: 
fault generation with different loadings induced on IM, 
current signature extraction, preprocessing, data division 
(training, validation, and test sets), neural network (NN) and 
non-NN model development, training of the developed 
model, model prediction accuracy analysis and model 
comparison study.  

 

Fig. 1. Proposed scheme of IM with SITF and PCA 

For simulation, the SITF has been modelled as an 
external stimulus to a grid controlled 3-phase healthy IM 
(four pole 2kW motor), which generates an additional 
current in the faulty phase. Knowledge of machine 
parameters and state space (SS) equations is essential in this 
process to successfully emulate the STIF in MATLAB 
Simulink. The resultant faulty current signatures are a 
summation of SITF-generated and healthy 3-phase currents. 
In addition,  the works of [9] have inspired the SS equations.  

III. IM MODELING 

A. Healthy State Space Representation for IM 

This section guides the implementation of an IM model 
using SS equations. The mechanical reference frame 
representation of IM, presenting the state vector, is shown 
below; 
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This IM model operates using the Park's transformed 
voltages ��/ and ��0 . The controllable states are �� stator 

current and ���  rotor flux. The flux density on the rotor 
surface is denoted by 	.  

The identifier matrix is represented by variable , and �, 
where , is the inertia coefficient matrix for this IM model. 
The Inertia state matrix breakdown (A) is given by:  
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The dq axis reference representation matrix is formulated 

using equation (1) and the breakdown matrices (A, B, C, D). 

The final matrix representation can be visualized in the 

works of [9], along with the IM model's mechanical speed 

equations. 

B. Stator Inter-turn Fault State Space Representation for 

IM 

For the faulty portion of the modeling, only SITFs with 
very low severity is applied to the IM. This fault is best 
described as the shorting between turns of the stator 
windings producing additional current in the phases of the 
fault. This additional current is theoretically categorized as 
disturbance and represented as a direct transition or a feed-
forward matrix in the SS equation. Additional parameters 
such as; short-circuit flux, CDD, short-circuit winding, 	DD , 
short-circuit current, �DD , are also considered. An elaborate 
detail can be found in the works of [12], [13]. 

The following equation describes the new output due to 
the presence of these disturbances.  

E��� � &���� � FG��� �9� 

where:  

• G���, E���, and ���� are respectively the system 
input, output, and state variables. 

• & is the output matrix of constants 

& � �1 0 0 0
0 1 0 0� �10� 

• F is the direct transition matrix 

F � J 2KDDL
34�

M

LN�
 O�#P�Q�PDDL�O�P� �11� 

• O�P�, O�#P�, and Q�PRRS� are respectively the 
Park, inverse Park, and rotational matrices 
respectively (12-13). 
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O�P� � �cos�P� # sin�P�
sin�P� cos�P� � �12� 

Q�PDDL� � � cos�PDDL�� cos�PDDL� sin�PDDL�
cos�PDDL� sin�PDDL� sin�PDDL�� � �13� 

STIF % � KDDL
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The following variables identify the direct transition (or 
feedforward) matrix (11): 

• KDDL quantifies the SITF and is the ratio of the 
number of inter-turn short circuit winding in phase 
S and the number of turns in a healthy phase. 

• PDDL  is 0 for phase �, 2b/3 for phase 	, and 4b/3 
for phase & 

• 4� is the stator resistance that is obtained from the 
DC test results 

• S is the phase containing the short-circuit, and the 
only accepted values are 1, 2, and 3 (denoting each 
phase) 

• K� is the number of turns in a phase 

C. Data Acquisition 

A complete dataset was obtained from numerous 
simulation trials, with various loading levels and fault 
severity varying each time. In total, twenty trials were 
performed to account for five different machine states at 
four loading levels, which were at; no load (0 Nm), 50% 
load (3.5 Nm), 75% load (5.25 Nm), and full load (7 Nm). 
These trials were performed respecting the machine's 
maximum torque rating of 7 Nm. Moreover, at a sampling 
rate of 5 kHz, 30000 individual samples were obtained for 
the 3-phases. A total of five class datasets have been sorted, 
class 1 (Healthy), and class 2-5 (SITFs at ranging 
severities). A description of the above can be seen in Table 
I, where the fault severity (%) is computed using equation 
(14). 

TABLE I. CLASS LABEL DETAILS 

Fault Class Fault severity 
Inter-turns 

shorted 

1 Healthy 0 

2 0.3% 1 

3 0.7% 2 

4 1.05% 3 

5 2.1% 6 

 

In the data division phase, the global dataset totaled 
600,100 samples. It contained three features (normalized 
principal components) and one hot encoded class label. The 
training, validation, and test sets have been divided 
accordingly as such;  

• Training (420,060) – 70% 

• Testing (120,040) – 20% 

• Validation (60,000) –10% 

IV. DATA GEOMETRY AND VISUALIZATION 

The 3-phase currents are visualized to understand the 
electrical impact of the STIF fault. It is hypothesized that 
the severity of the fault is directly proportional to the 
amplitude of the 3-phase currents. Moreover, the faulty 
phase should receive a higher current compared to its other 
two counterparts. This is because the SITF phenomenon 
lowers the resistance in the affected phase, causing 
unbalance. Hence, increasing the value of the current. 
Furthermore, to support the above statements, Fig. 3 shows 
the current amplitudes increment as the IM model deviates 
from healthy to faulty state. 

 

Fig. 2. (a) Healthy IM 3-Phase Currents – Full Load, (b) 0.7% fault severity 
IM 3-Phase Currents – Full Load 

Figs. 2a-b illustrates the 3-phase currents of the healthy 
and faulty IM model with 0.7% severity (2-shorted turns), 
respectively. Both the plots are under 100% loading 
condition (7 Nm) considering the derived to IM model in 
the preceding section. For the healthy 3-phase current plot, 
peak values were measured to be 3.69 A, portraying normal 
operation of the IM. The SITFs were emulated for the faulty 
model in phase A of the IM. The reason why the faulty phase 
receives a higher current than its other two counterparts is 
because the STIF phenomenon lowers resistance in the 
affected phase, causing and unbalance among the phases, 
thus, the presence of spikes in the phase currents.    

 

Fig. 3. Healthy and Faulty Induction Motor Phase A plots 

The Pareto charts give an indication on the intrinsic 
dimensionality of the data. In case of PCA, they give 
information on the variability data in the descending order 
of principal components (PCs). For the generated dataset, 
Fig. 4a illustrates that first two components are sufficient 
enough to explain more than 95% of the variability in the 
dataset.  

C
u

rr
e

n
t(

A
)

C
u

rr
e

n
t(

A
)

C
u
rr

e
n
t(

A
)

Authorized licensed use limited to: University of the South Pacific. Downloaded on February 04,2024 at 23:38:30 UTC from IEEE Xplore.  Restrictions apply. 



 
Fig. 4a. Pareto Chart 

 
Fig. 4b. 2D PCA plot of IM at no load 

 

Fig. 4c. 3D PCA plot of IM at no load 

In this section, PCA and ICA dimensionality reduction 
(DR) techniques have been used to only study the geometry 
of the data, where no form of transforming or reducing the 
dimensionality of data is done. Through visual analysis, Fig. 
4b-c shows the PCA five class clusters positioned in the 2D 
plane (2 PCs) and 3D plane (3 PCs), respectively. In the 2D 
plot (Fig. 4b), the healthy class cluster is seen to be well 
separated from the four faulty classes. The healthy class 
points are represented in an approximately circular shape. In 
contrast, for the faulty class clusters, the points projected on 
the plane seem more elliptical in nature as the fault severity 
increases. In the scenario of increasing loading levels (50 % 
- 3.5 Nm and 100 % - 7 Nm) in the 2D PCA plot, the healthy 
class projection remains unmoved, whereas the four fault 
class clusters further separate from the healthy class clusters 
[9]. The reasoning is the different level of fault classes with 
the incrementing loading levels causes abrupt changes in the 
current signals, which make the fault points stand out from 
the healthy data points. In addition, during incremented 
loading levels, the fault class clusters become larger in 

surface area and caters more overlapping on each other, 
making it tough to distinguish between the fault class 
clusters.  

As for the 3D plot (3 PCs) Fig. 4c, each of the five class 
clusters can be easily distinguished as the separation is well 
presented. The healthy class cluster (blue data points) in plot 
appears elliptical and roughly inclined at a 30° angle 
concerning PC 1 and PC 2 planes. Hence, using the healthy 
class cluster as a reference, the four fault clusters, which are 
also elliptical, tend to rotate in a clockwise motion away 
from the healthy class plot. It can be observed the highest 
fault class (2.1% - green data points) has moved the furthest 
from the healthy clusters. In addition, in the 3D PCA plot 
with (50 % and 100 % loading levels), the plots are 
presented in [9]. An observation made during the case of 
incrementing load in IM, each class cluster’s plot surface 
area tends to widen with respect to the loading level. Still, 
for the same classes, the clusters' positioning is unaffected, 
which is similar to Fig. 4c. 

 
Fig. 4d. 2D ICA plot of IM with no load 

 

Fig. 4e. 3D ICA plot of IM with no load 

Another linear, fast and reliable DR technique is the 
ICA, which is also a good candidate for visualizing data. 
Figs. 4d-e illustrate the five class clusters positioned in the 
2D plane and 3D plane, respectively using ICA. For Fig. 4d 
the class clusters appear to be identical to the 2D PCA (Fig. 
4b). Hence, due to the similarities in 2D plots using PCA 
and ICA, it can be said the datasets were at their limit-
reduced rank upon using PCA and characterized as 
independent sub-elements for the ICA technique. 

Furthermore, interpreting the ICA 3D plot (Fig. 4e), it 
can be observed that all the five class clusters have 
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developed a similar elliptical nature as illustrated by PCA in 
Fig. 4c. Still, a significant dissimilarity is displayed when 
the fault severity increments. As the value of the fault 
increases, the corresponding elliptical plot elevates upwards 
as shown in the 3D ICA plot (Fig. 4e). 

In addition to that, the 3D ICA plot captures not only the 
changes in the SITF severity, but also the varying load 
conditions. Unlike PCA, the fault severities are well 
separated together with the variation in the load (which is 
expressed in Fig. 4c).  

V. CLASSIFICATION USING NEURAL AND NON-NEURAL BASEDTECHNIQUES 

Table II details a comparative analysis of the classification using the developed neural and non-neural based classifiers. It 
should be noted that LSTM architectures were developed using Python platform (packages: TensorFlow, Keras, Pandas, NumPy), 
while families of NN and Decision Tress are derived using MATLAB®. 

TABLE II. COMPARATIVE ANALYSIS OF THE CLASSIFICATION MODELS (TEST ACCURACIES) 

Classifier Class 

1  

Accuracy 

Class 

2 

Accuracy 

Class 

3 

Accuracy 

Class 

4 

Accuracy 

Class 

5 

Accuracy 

Overall 

Accuracy 

Comments 

Unidirectional 

LSTM 
99.2 99.3 99.35 98.8 98.7 99.08 

20% dropout rate, Architecture: 

25IN |16DL-tanh activation|1FL|5OUT-softmax 

activation|, No. Parameters = 11321 

Deep LSTM 99.45 99.3 99.2 98.6 98.6 99.04 

20% dropout rate, Architecture: 
25IN |16DL–tanh activation |1FL|5OUT-

softmax activation|, No. Parameters = 

43001 

Bidirectional 

LSTM 
99.15 99.05 98.65 98.5 98.5 98.77 

Architecture: 20IN |16DL–tanh activation 

|1FL|5OUT-softmax activation|, No. 

Parameters = 12501 

Stacked 

LSTM 
99.2 98.8 98.85 98.6 98.65 98.82 

10% dropout rate, Architecture: 
20IN |16DL–tanh activation |20BL|5OUT-

softmax activation|, No. Parameters = 
11157 

Bilayered NN 98.5 95.3 86.3 82.3 89.3 90.3 

2 FC: (20, 25), ReLU activation, 5 

cross-fold validation, No. 

Parameters = 675 

Medium Tree 77.5 85 93.3 85 91.3 86.4 

Max. splits: 600, Split Criterion: 

Gini's Diversity index, No. 

Parameters = 1057 

Wide NN 75.7 63.5 45 71.5 81.8 67.5 

1 FC: (100), 3 Layers: ReLU 
activation, 5 cross-fold validation, 

No. Parameters = 800 

Trilayered 

NN 
99.8 95.8 90 90.5 92.8 93.8 

3 FC: (25, 20, 20), 3 Layers: 

ReLU activation, 5 cross-fold 

validation, No. Parameters = 1075 

Fine Tree 77.5 93.3 85 85 91.3 86.4 

Max. splits: 500, Split Criterion: 

Gini's Diversity index, No. 

Parameters = 1057 

Narrow NN 99.5 95.3 88.5 87.5 94.3 93.0 

1 FC: (35), ReLU activation 

layer, 5 cross-fold validation, No. 

Parameters = 280 
 

*DL filters in the dense layer 
*FC neurons in a fully connected layer: (neurons) 
*BL Bidirectional layer 
*OUT neurons in the output layer 
* IN input layer 

Reviewing the classification performance of the neural 
based approaches, over 90% accuracy on the tests was 
achieved using family LSTM NNs and for other 
configurations of the neural-based models (Narrow, Tri-
layered, and Bi-layered NN). On the other hand, the non-
NN models consisting of the two modifications of Tree-
based classifiers showed a reasonably good classification 
accuracy over 86%. With a few tweaks in constructing the 
tree models, such as; using different metrics to measure 
impurity (entropy) and using variations of maximum split 
values, the model accuracy can be enhanced. These non-
linear-based techniques use a series of conditional 
statements to partition training data into subsets. Hence, 
each successive split adds more complexity to the model, 
which is used to make predictions [14].  

The highest accuracies are undoubtedly seen for the four 
recurrent NNs (RNNs) architectures highlighted in gray. 
The bidirectional-LSTM model had been designed with an 
additional LSTM layer to allow the input sequence to flow 
forward and in the reverse direction of information using an 
additional layer. This architecture is designed as such, so the 
input sequence components can cater to the information 
from past and present states to produce more meaningful 
output. But for this application, the model accuracy falls a 
little short, with an accuracy of 98.77%.  

The next model is the stacked LSTM, a similar 
configuration to Deep LSTM consisting of multiple hidden 
LSTM layers with an accuracy of 98.82%. The second 
highest classification accuracy was found within the deep 
LSTM with a test accuracy of 99.04% and 43,001 trainable 
parameters. Finally, the best performing architecture to 
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classify low severity SITFs considering the accuracy and 
least number of trainable parameters was the Unidirectional 
LSTM model with a test accuracy of 99.08% and 11,321 
trainable parameters. The confusion matrix (classification 
trial's predicted class versus true class) and the receiver 
operating characteristic curve (ROC) for the best model 
(Unidirectional LSTM) is shown in Figs. 5 and 6, 
respectively.  

 

Fig. 5. Confusion Matrix (Unidirectional LSTM) 

 

Fig. 6. Receiver Operating Curve (Unidirectional LSTM) 

VI. CONCLUSION 

In this paper, through the proposed approach, stator-
interturn-faults with very low severities have been classified 
by suitably processing the 3-phase stator current signals. 
The analysis of geometry using PCA and ICA provides 
insight to understand and successfully distinguish the 
different class clusters (healthy and 4-fault classes) across 
various IM loading levels. This study shows the exploratory 
analysis and classification of the SITF at very low severities 
(0.3%-2.11%), which are not usually highlighted in other 
studies. Upon a thorough comparison of deep NN, shallow 
NN, and non-neural based models, the family of LSTM 
architectures achieve a test set accuracy greater than 98%. It 
is worth mentioning that the proposed strategy required no 
feature engineering step to classify the oncoming 3-phase 
signals. Amongst the LSTMs, the Unidirectional variant of 
LSTM NN proved to be the best classifier for SITFs at low 
severities, having least trainable parameters (11,321) out of 
the other LSTM variants and with the highest test accuracy 
of 99.08%.    

Future works will build on the proposed strategy of 
classification and extend the idea on estimating the fault 
severities along with the fault classification. 
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