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Abstract—Fault detection in electrical drives can be really 

challenging, especially when the input data is collected from an 

operational electrical machine. In order to prevent machine 

damages and downtimes, it is really important to detect pre-

fault conditions. This paper presents the detection of stator 

inter-turn fault for Synchronous Reluctance Motor (SynRM) 

with a severity as low as 1.3%. After the transformation of the 

three-phase currents using Extended Park Vector (EPV) 

approach, the temporal features were calculated. Thereafter, 

the geometry of the features has been studied by using the 

Principal Component Analysis (PCA) and the Curvilinear 

Component Analysis (CCA) to estimate the best intrinsic 

dimensionality and extract the most significant features. Finally, 

a variety of classifiers have been trained with this feature-set 

(FS) and the shallow neural network has proved to give the best 

performance. 

Keywords—synchronous reluctance motors, diagnostics, 

shallow neural networks, data, classification, Park’s 

transformation 

I. INTRODUCTION  

 Over the recent years, a wide research interest in 
Synchronous Reluctance Motors (SynRM) has been ever 
increasing. Indeed, SynRMs have drawn immense attention 
due to high demand in high power and high speed 
applications. For the past few decades, the SynRM has been 
considered as valid alternative to the Permanent Magnet 
Synchronous Motor (PMSM) due to its structural simplicity, 
lower prices, and mechanical robustness [1-3]. The high 
dynamic performance, the existence of cold rotor, the 
capability of working in a wide speed range, and the ability to 
operate under deep flux weakening are all properties that make 
the SynRM one of the most interesting electrical machines [4]. 

Although the SynRM has regained a widespread interest 
in research, this has been generally limited to either motor 
design or motor control techniques. On the other hand, there 
has been a number of research on the detection and 
classification of faults in electrical machines, but this has not 
been as extensive when it comes to SynRMs. Actually, 
SynRMs are utilized ever increasingly in motor drive 
applications nowadays and it is consequently important to 
detect and classify SynRM fault conditions. This paper wants 

to give a contribution with this respect and focusses on one 
class of motor faults: stator faults in SynRM. The rationale of 
this choice is given in the next paragraph. Internal Faults in 
electrical machines can be classified into two major 
categories; mechanical and electrical faults, which are sub-
divided into other specific fault types as shown in Fig. 1:  
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Fig. 1. Classification of Faults in Electrical Machines [5]  

According to the statistics available from EPRI for motor 
faults [6], 41% of overall synchronous motor faults are 
bearing and gear related, 37% are stator winding related, and 
10% are rotor related. As stated by [7], a number of surveys 
relating to electrical machine failure indicate that in general, 
almost 37% of any motor failure are related to stator winding 
faults. Early identification and precise determination of 
machine faults will not only help in quick maintenance, but 
reduce downtime as well as prevent financial losses and 
permanent damages to the machines. It is most important for 
SynRM drives being used in dangerous applications to have 
reliable fault detection systems together with an appropriate 
remedial action to allow the drive to maintain uninterrupted 
operation. In order to have an accurate and reliable 
classification and detection of motor faults, it is fundamental 
to employ an analysis method which can use minimum 
amount of data extracted from the machine to classify and 
detect motor faults at its early stages without interrupting the 
operation.  

This paper presents the detection and classification of the 
stator inter-turn fault in SynRMs. Using the Extended Park 
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Vector (EPV) transformation of the stator current, the 
temporal [8] features are calculated. Afterwards, with the use 
of the Principal Component Analysis (PCA) and the 
Curvilinear Component Analysis (CCA), the data geometry 
and topology are studied to estimate the intrinsic 
dimensionality of the Feature Set (FS). After reducing the 
dimension of the FS, neural and non-neural based classifiers 
are trained to determine the best classification model. Finally, 
this approach has been assessed experimentally. 

II. METHODOLOGY 

Figure 2 below gives an overview of the approach and the 
different steps are described in the following. 
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Fig. 2. Flowchart of the proposed methodology 

A. Feature Extraction  

In order to extract the features from the signal, the most 
reliable approach would be to use the Extended Park Vector 
(EPV) transformation of the stator current where the direct 

and quadrature currents (�� , ��) are acquired from the three-

phase stator currents (���, ��� , ���) of the SynRM. 

�� =  �2 3⁄ ��� −  �1 6⁄ ��� − �1 6⁄ ��� �1� 

�� =  �1 2⁄ ��� −  �1 2⁄ ��� �2� 

�� =  ���� + �����  �3� 

 Using the EPV current ��, 15 temporal features have been 

generated. The set formed by all of these 15-component 
vectors is the feature set FS. These features are adapted from 
[8] and listed as follows: mean, maximum value, root mean 
square (RMS), square root mean (SRM), standard deviation, 
variance, RMS shape factor, SRM shape factor, crest factor, 
latitude factor, impulse factor, skewness, kurtosis, 5th 
moment and 6th moment. After this step, the PCA technique 
is used in two ways: (1) to study the geometry of the data and 
explore the differences between healthy and faulty clusters to 
infer appropriate intrinsic dimensionality and, (2) to reduce 
the dimensionality of the features on the basis of variability 
of the data, so that they can be ready for classification. 

B. Data Geometry and Topology 

After generation of the features, the next step is the 
interpretation of the geometry and topology of the data [9]. 
While many techniques exist for the so-called 
Dimensionality Reduction (DR), a rule of thumb is to first 
explore the features using linear techniques for their speed 
and reliability, and then confirm it by using non-linear 
approaches. To reduce the input dimension, it is essential to 

estimate the intrinsic dimensionality of the FS; however, 
prior to that, the FS should be normalized, so that each 
attribute has zero mean and variance equal to one. 

In this paper, to study geometry of the data, the authors 
use PCA [10], the Pareto charts and the data projected along 
the first three PCs. The Pareto chart gives details on the 
percentage variability of each PC together with the 
cumulative values as the PCs accumulate. The data projected 
along the first three PCs shows how the class clusters are 
positioned inside the 3-D space. This phase allows the user 
to observe either the separation or the overlapping of class 
clusters. In this way, the intrinsic dimensionality is estimated. 

An additional analysis of the FS is also carried out by the 
CCA (Curvilinear Component Analysis - [11, 12]), another 
non-linear DR (Dimension Reduction) technique. The target 
of the CCA is to confirm the deductions made by the PCA 
(confirm the intrinsic dimensionality value deduced by PCA 
analysis). The CCA is one of the most powerful nonlinear DR 
techniques. It is derived from Sammon’s mapping, but it 
proves its superiority in terms of data unfolding and 
extrapolation [11]. Essentially, it performs the quantization of 
the input space (training dataset) and projects it nonlinearly 
into a latent space (reduced dimension of the training dataset). 
For further details regarding CCA projection (and 
applications) see [8, 9, 11, 13]. 

CCA can show how good the DR is by using the dy-dx 
diagram to study the mapping between the input data space 
and the latent space with the chosen intrinsic dimensionality 
value. This diagram is the plot of the distances of samples in 
the latent space (dy) versus the distances of corresponding 
samples in the input data space (dx). In this scenario, it acts as 
a tool for the detection and analysis of nonlinearities. In most 
cases, the output space is lower than that of the input. A “good 
mapping” is achieved when the unfolding occurs for large 
values (points lie on the dy>dx of the diagonal) and a 
projection arises for small values (when the points lie on the 
dy<dx side of the diagonal). If the points lie well onto the 
diagonal (where dy = dx), it is possible to lower the 
dimension; otherwise, a “thicker” data cloud implies that the 
chosen dimensionality is very small and in order to attain a 
good mapping, the dimensionality value needs to be increased. 

Thus, as a final remark on the study of the data geometry 
and topology, PCA is initially applied to the FS to have a 
generic idea on the intrinsic dimensionality and its 
corresponding linear projection. Then, the CCA analysis is 
carried out (using dy-dx diagrams) only to confirm on the 
intrinsic dimensionality value deduced by PCA. Through 
these verifications, appropriate intrinsic dimensionality for the 
FS is deduced and in this paper, the authors utilize PCA for 
DR as the data manifold was found to be linear according to 
the results presented in section III.  

C. Fault Detection and Classification  

In recent years, Neural Networks (NN) have been widely 
used in many practical applications. Actually, it is quite 
commonly used in classification, prediction and also system 
identification. In this paper, a multilayer perceptron (MLP) 
NN classifier has been developed to detect the stator-based 
fault and also yield the fault severity. The reduced set of 
features obtained from the PCA acts as the input to the NN 
and the class membership together with its probabilities acts 
as the output of the classifier. Also, for the purpose of 
comparison, non-neural based classifiers have been trained 
and tested using the same FS (partitioned into train and test 
sets). 
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III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Experimental Test Rig  

The experimental test rig, shown in Fig. 3, has been 
developed to measure the three-phase stator currents from a 
2.2kW SynRM with parameters shown in Table I. 

 
Fig. 3. Experimental Test Rig  

The experimental test rig and its component layout, as 
shown in Figs. 3 and 4, have been developed to extract the 
three-phase stator currents from the 2.2kW SynRM. The 
three-phase power supply is connected to the 12kVA 
SEMIKRON IGBT voltage source inverter, which drives the 
SynRM. The three-phase stator current signals are acquired 
using the LEM current transducers (LA 55-P) that are 
connected to dSPACE MLBX (DS1202) using the BNC 
cable.  
 

SynRM

Power 

Supply 

(3 Phase)

Inverter 

Sensor 

Signal

dSPACE 

MicroLabBox

Signal 

Processing

Fault 

Detection

 
Fig. 4. Component layout – Experimental Test Rig 

Table I below lists the parameters of the SynRM that have 
been used to obtain the current signatures for healthy and 
faulty conditions. 

TABLE I.  PARAMETERS OF SYNRM 

 

Fig. 5. 2.2 kW SynRM 

Power Rating 2.2 kW 

Number of Poles 8 

Frequency 50 Hz 

Rated Speed 750 rpm 

Rated Voltage 365Y 

Rated Current 5.7A 

Rated Torque 14Nm 

Weight 24 Kg 

 

B. Stator inter-turn fault emulation – Hardware 

This section describes the acquisition of the three-phase 
stator current signals (non-invasively) of the healthy and 
faulty SynRM. In particular, the low severity levels of the 
stator inter-turn faults have been acquired under no load 
conditions. The faulty motor data is taken at 3 different 
severity levels, that is when stator winding is short-circuited 
at 1.3%, 1.5%, and at 2.07% (pre-faults), as explained further 
below. The authors have chosen these low severity faults at 
no-load, because detection of faults under these circumstances 
is extremely difficult especially when the no-load conditions 
is at low speeds. For the acquisition of the healthy phase 
current signature, the motor is operated in its optimal 
condition and the three-phase currents are retrieved with a 
Hall-effect sensor through the dSPACE MLBX platform. 

For the implementation of stator inter-turn fault, the 
winding coil short circuit is characterized by an appreciable 
shunt resistance ����� , and the number of shorted winding 
turns is emulated by varying the �����  according to the fault 
severity. For this purpose, the fault in the SynRM described in 
Fig. 3 is emulated in phase ! windings with the �����  values 
of 0.75Ω, 1.1Ω and 2.2Ω  for 1.3%, 1.5%, and 2.07%, fault 
severities, respectively. The phase currents are obtained with 
a sampling frequency of 1 kHz.  

C. Feature Generation and Data Partition 

After the computation of the extended Park’s Vector, the 

previously mentioned 15 temporal features of the �' current 
have been calculated using a moving rectangular window 
with width of 100 samples. The heathy data have consisted of 
5710 samples and the faulty data have consisted of 19128 
samples. Subsequently, the data corresponding to the 1.3%, 
1.5% and 2.07% severities have been assigned to separate 
classes. With this aim, the stator fault with 1.3% severity 
consisted of 5303 samples, 1.5% was made up of 8115 
samples and 2.07% comprised 5710 samples. 

For classification (neural and non-neural based), the 
following data division is considered: 50% for training and 
validation; 50% for the test set. This ratio of data partitioning 
has been selected to critically observe how each classifier 
behaves and measure their learning in terms of accuracy. For 
classification problems, the accuracy [14] is defined as: 

% )*+,,�-�.+/�01 !..23+.4 =
56 + 57
86 + 87

× 100 �4� 

where: TP-True Positive, TN-True Negative, FP-False 
Positive and FN-False Negative  

D. Geometrical Analysis of Data 

After the feature generation and data partitioning, an 
essential step prior to classification is the study of the 
geometry of the data by linear techniques. Under these 
circumstances, the PCA was utilized and through Pareto chart 
(Fig. 6), the intrinsic dimensionality was deduced as 4, stating 
that only 4 Principal Components (PCs) were sufficient to 
explain over 95% of variability in the dataset. Using this 
“explained variability” metric, the cumulative variance of 
100% was attained with only 4 PCs. Thus, projecting from a 
dimension of 15 (initial dimensionality of FS) to a dimension 
of 4, linearly (via PCA) and retaining the cumulative 
variance, implies that the intrinsic dimensionality of the FS 
should be around 4. Confirmation of this value is done via 
CCA analysis in the following sub-section. 
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Fig. 6. Pareto Chart 

After application of PCA, data was projected in its first 
three PC’s as illustrated in Fig. 7, which also denotes the 
healthy and faulty conditions. It should be noted from Fig. 
7a-c that the healthy cluster appears to be well separated from 
the faulty ones; however; there is a certain level of 
overlapping among the faulty class clusters. This means that 
in terms of fault detection (healthy versus faulty), there are 
fewer chances for misclassification and the probability of the 
class output upon detection should be above the 50% 
confidence level. On the other hand, there is a high degree of 
overlapping among the faulty class clusters and therefore 
linear based classification techniques cannot be used. As a 
result, for classification, various neural and non-neural 
nonlinear classifiers have been trained and tested to 
determine the best model. This is portrayed in section IV. 

 
(a)  

 
(b) 

 
(c) 

Fig. 7. PCA Projection Plots: (a) 3D view with the first 3 PCs,                   
(b) 2D view with PC 1 and PC 2, (c) 2D view with PC 2 and PC 3 

E. CCA Analysis 

While the inferred intrinsic dimensionality deduced via 
PCA (Pareto chart) is 4, to confirm this, the 15 dimensional 
FS has also been analyzed using CCA. With this aim, starting 
from the dimension of 4, the dy-dx diagrams for dimensions 

3 and 5 ( 4 ; 1 , with 4 being the inferred intrinsic 
dimensionality from PCA) were also explored to check the 
input-output mapping. Figures 8a-c represents the dy-dx 
diagrams for dimensions 3-4, respectively.  
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(b) 
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(c) 

Fig. 8. Input-output mapping using CCA for: (a) Dimension 3, (b) 
Dimension 4, and (c) Dimension 5 

While in Fig. 8a (dimension of 3) the scattering of the data 
indicates a poor representation, the input-output mapping is 
well presented for dimensions 4-5 (Figs. 8b-c). This results 
from the fact that the data cloud in dimensions 4-5 (Figs. 8b-

c) lies along the bisector ( �4 = �< ), showing that the 
topology is preserved with these dimensionality values. As 
for the dimension of 3, the majority of the data cloud is not 
well aligned to the bisector.  

Thus, through these justifications, it can be concluded that 
the data manifold is linear (for dimensions 4 and 5) and the 
intrinsic dimensionality lies between the dimensions 4-5. 
Hence, for DR, the intrinsic dimensionality of 4 has been 
chosen.  

IV. CLASSIFICATION  

For the purpose of the classification, various families of 
classifiers have been trained and tested. The classification 
accuracy (test set) for all the classifiers have been calculated 
using equation (4) and are summarized in Table II. It can be 
concluded that the “shallow dense neural based classifier” 
performs better than all the others. In particular, it has a test 
accuracy of as much as 99.99%. Unlike the other 14 
classifiers (listed in Table II), the neural based classifier is 
able to output the class together with its membership 
probabilities without any further calculations. This 
information is essential when it comes to subsequent risk 
analysis. In addition, it has the lowest computational 
complexity. This results from the fact that during the recall 
phase (i.e. during the classification phase) the computational 
complexity is proportional to the numbers of samples fed to 
the network. In this study, for the shallow neural network 

classifier, the computational complexity is linear .i.e. =�1�. 
To assess the validity of the proposed shallow neural 

network based classifier, the confusion matrix in Fig. 9 has 
been plotted. It shows the correct and incorrect predictions 
where: 

 Class 1- Healthy,  
 Class 2 – 1.3% Stator fault severity,  
 Class 3 – 1.5% Stator fault severity,  
 Class 4 – 2.07% Stator fault severity.  

Also, the training, validation and test performance (using 
the cross-entropy error function) is visualized in Fig. 10 on 
the basis of different numbers of neurons in the hidden layer. 

In terms of low computational complexity and number of 
hidden layers, the best neural network has 9 neurons in its 
hidden layer. This number has been determined after 
examining the accuracy graph (Fig. 11) vs. number of 
neurons. 

 
Fig. 9. Confusion Matrix 

 
Fig. 10. Performance of the shallow dense neural network  

 
Fig. 11. Accuracy vs. number of neurons 
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V. CONCLUSIONS  

This paper explores the possibility to detect stator inter-
turn faults in SynRMs at low severity levels. From the 
developed neural and non-neural based approaches, the 
shallow dense neural network with few neurons in the 
hidden layer has shown the best performance not only for its 
lower computational complexity, but also for the ability to 
output probabilities together with the class memberships. 
The most essential step prior to classification is the 
generation of temporal features and their geometrical and 
topological analyses. In particular, the DR techniques: PCA 
and CCA are firstly used to determine whether the data 
manifold is linear or non-linear. The PCA is applied first to 
have generic idea on the intrinsic dimensionality value, and 

then it is confirmed by the CCA through its dy-dx map. The 
CCA can be also used to check other DR techniques and 
their input-output mappings. In this study, the use of CCA 
has confirmed the linearity of the data together with its 
intrinsic dimensionality value that was deduced initially by 
PCA. Thus, on this basis, the authors use PCA for DR of the 
FS and using this reduced-FS train neural and non-neural 
based classifiers. After a thorough comparison among the 
classifiers listed in Table II, the final classification accuracy 
(of the test set) using a shallow neural network was 99.99% 

with =�1� as the computational complexity. 
Future work will focus on the application of other neural 

based topologies for the detection of other faults in SynRM 
along with the corresponding sensitivity analysis. 

 

TABLE II.  CLASSIFICATION RESULTS ON THE TEST SET 

Classifier 
Classification Accuracy (%) 

Test Set 
Comments 

Shallow Dense NN 99.99 

Activation: TANH activation, 0% dropout rate, Architecture: 

>?@|BCD|>EFG,  No. Parameters = 85, Preprocessor: PCA, Ouput 

Activation: Softmax 

Fine Tree 94.46 Max. Number of Splits = 100, Split Criterion: Gini’s Diversity index 

Medium Tree 66.69 Max. Number of Splits = 20, Split Criterion: Gini’s Diversity index 

Course Tree 75.26 Max. Number of Splits = 4, Split Criterion: Gini’s Diversity index 

Linear Discriminant 82.16 Full Covariance Structure 

Quadratic Discriminant 87.28 Full Covariance Structure 

Linear SVM 88.35 Kernel Function: Linear 

Quadratic SVM 83.54 Kernel Function: Quadratic 

Cubic SVM 89.68 Kernel Function: Cubic 

Gaussian SVM 90.22 Kernel Function: Gaussian, Kernel Scale: 13.0 

Ensemble  
(Boosted Trees) 

82.91 Ensemble Method: AdaBoost, Learner: Decision Tree, Max. Splits: 
20, Number of Learners: 30, LR: 0.1 

Ensemble 
 (Bagged Trees) 

92.44 Ensemble Method: Bagging, Learner: Decision Tree, Number of 
Learners: 30 

Ensemble (Subspace 
Discriminant) 

77.74 Ensemble Method: Subspace, Learner: Discriminant, Number of 
Learners: 30, Subspace Dimension: 5 

Ensemble (Subspace kNN) 97.52 Ensemble Method: Subspace, Learner: Nearest Neighbours, Number 
of Learners: 30, Subspace Dimension: 5 

Ensemble (RUSBoost) 79.24 Ensemble Method: RUSBoost,  
Max. Splits: 20, Number of Learners: 30, LR: 0.1 
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