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Abstract— Hydrogen energy conversion using Fuel Cells is 

very promising for standalone power as well as transportation 

applications. Hydrogen gas production using renewable energy 

sources is possible through the use of electrolyzers in which DC-

DC converters play an important role. This paper presents an 

accurate and robust method of fault diagnosis and condition 

monitoring applied to an interleaved DC/DC buck converter 

that supplies a proton exchange membrane (PEM) electrolyzer. 

This work mainly focuses on power switch open-circuit failures. 

The study gives excellent results in the early detection of faults 

to improve the reliability of PEM electrolyzers. A suitable 

experimental test bench has been realized to obtain data under 

healthy and faulty operating conditions. A preliminary 

exploratory analysis of the data has been carried out using a 

linear approach to understand the geometry of the data and 

suggest a suitable tool for classifying the system's condition. The 

paper then proposes a shallow configuration Long Short Term 

Memory (LSTM) based neural network capable of detecting 

and localizing the fault at every time step without any pre-

processing. The experimental results presented in this paper 

show that, after a detailed comparison with other 25 neural and 

non-neural based techniques for classification, the shallow 

LSTM neural network gives the best results. 

Keywords—neural networks, fuel cell, Interleaved Buck 

Converter (IBC), diagnostics, power switch open-circuit fault, 

Long Short Term Memory (LSTM) 

I. INTRODUCTION  

Fuel Cells provide zero carbon emission with only heat 
and water as byproducts. Hydrogen is the primary fuel in a 
Fuel Cell (FC) where it is combined with oxygen to generate 
electricity. There are several methods of generating hydrogen 
from different input materials [1]. The generation of hydrogen 
from renewable energy using the electrolysis process is one of 
the few hydrogen production processes with very low carbon 
dioxide emissions [2]. A Proton Exchange Membrane (PEM) 
electrolyzer works in the opposite way to a PEM Fuel Cell. 
Distilled water is injected at the electrolyzer's anode powered 
by energy that allows splitting water into hydrogen and 

oxygen. The protons go through the membrane to the cathode 
where hydrogen is generated. Since the PEM electrolyzer 
should be supplied with a very low DC voltage (around 8 V), 
a step-down DC-DC converter is required for this application 
[3]. In DC-DC converters, the most fragile components are 
electrolytic capacitors and power switches. Power switch 
open-circuit failures (OCF) and an Interleaved DC-DC Buck 
Converter (IBC) are studied in this work. Any OCF occurring 
in the DC-DC converter will affect the electrolyzer's operation 
[4], [5]. Indeed, in IBCs, power switch OCF increases output 
current ripple (electrolyzer side) and additional current 
stresses on the healthy power switches [6]. As demonstrated 
in the literature, a high current ripple affects the electrolyzer's 
specific energy consumption, and additional current stresses 
may lead to power switch failures [7].  

In the literature, different power switch fault-diagnosis 
methods have been developed for IBC [8, 9] particularly for 
photovoltaic and FC applications. The main fault-diagnosis 
methods are based on sliding mode observers, and monitoring 
of the input or output current. However, there is a gap in the 
literature for electrolyzer applications to enhance the DC-DC 
converter's reliability supplying a PEM electrolyzer. Artificial 
Intelligence (AI) approaches have been successfully 
implemented for fault diagnosis of PEMFCs. In particular, an 
ANN model of PEMFC to control oxygen ratio in real-time 
has been developed by Damour et al [10]. In this model, the 
computational time was very low compared to other non-
linear model-based controllers. A further contribution was 
made by Kumbur et al [11] who have implemented the ANN 
to design the gas diffusion layer of the FC. In comparison, the 
combination of the ANN model with fuzzy logic have been 
presented by Justesen et al. In addition, Silva Sanchez et al 
used this kind of model for diagnostic of PEMFC [12-13]. 
Recurrent Neural Networks (RNN) can deal with time 
sequence data [14] and have been used in fault diagnostics of 
PEM Fuel Cell applications [15].  LSTM neural networks 
offer better control over the gradient flow and are designed to 
avoid long-term dependency problems, so that it is easy to 
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learn and increase accuracy. LSTM is also a possible way to 
decrease the number of the sensors to develop the efficiency 
of the PEMFC [16]. Ma et al [17] implemented the LSTM for 
degradation prediction of the PEMFC model in long and short 
periods. The results showed that the LSTM has much accurate 
results compared with traditional RNN. Fault diagnosis in 
DC-DC converters can be divided into Model-Free or Model-
Based Methods [18]. The proposed strategy does not use a 
mathematical model of the system and is therefore similar to 
a data-driven approach, which can update its parameters based 
on the network's inputs. The idea here is to detect and localize 
the power switch OCF instantaneously to avoid any 
permanent failure to the DC-DC converter and the resulting 
damage to the electrolyzer. The proposed methodology 
realizes a shallow LSTM neural network, which is very 
suitable for data already in sequence form. The proposed 
neural architecture is very simple, and due to its low time 
complexity, the network can generate classes (healthy, faulty, 
and location of the fault) quickly. Besides, unlike other neural 
and non-neural based approaches (25 classifiers are compared 
in this paper), the proposed shallow LSTM neural network 
gives probabilities for each class at every time step. This 
assists in performing subsequent risk analysis.  

II. EXPERIMENTAL TEST – FAULT EMULATION  

An experimental test rig has been realized at the GREEN 
laboratory, IUT de Longwy as shown in Fig 1. The 
experimental test bench is made up of an autotransformer 
(input), a SEMISTACK IGBT from SEMIKRON Company 
to realize the 3-phase diode rectifier and the 3-phase IBC (see 
Fig 2), passive components (inductors and capacitor), and a 
PEM electrolyzer from HELIOCENTRIS Company supplied 
by a pure water tank. The technical specifications of the used 
PEM electrolyzer and the system are provided in Table I. The 
control of the IBC based on a PI controller has been realized 
in the Matlab/Simulink environment, and then it has been 
transferred into a DS1104 dSPACE controller board. Since the 
PWM gate control signals of the IBC must be shifted from 
each other by 120°, a microcontroller has been employed for 
this purpose. To simulate OCFs, a programming code has 
been implemented into the microcontroller. This code is 
linked with a push-button switch located outside the 
controller. When the push button switch is OFF, the PWM 
gate control signal from dSPACE controller board is sent to 
the IBC. In comparison, if the push button switch is ON, the 
PWM gate control signal is set to 0, simulating an OCF. The 
measured current data of the IBC are acquired by current 
clamps PAC12 from Chauvin-Arnoux Company (with a 
probing sensitivity of 10 mV/A) and are saved through the 
dSPACE Control Desk software. 

 

Fig 1. Developed experimental test bench. 
 

 
Fig 2. Wind turbine conversion system and a 3-phase interleaved buck 

converter supplying a PEM electrolyzer. 

The data has been acquired by emulating an OCF 
experimentally on the power switch located in the second and 
third phases. The obtained results are shown in Fig 3, where 
the electrolyzer and phase currents of the IBC are depicted. 
Before the appearance of the OCF (phase 2), it can be 
observed the current phase ripple. While in phases 1 and 3, the 
current ripple amplitude is similar; in phase 2 the current 
ripple is higher due to some deterioration of the inductor. 
However, this higher amplitude does not affect the obtained 
results. When generating the OCF in phase 2 (at t=2.25 s), the 
two remaining healthy power switches compensate the OCF 
by the increase of the phase current. Since the controller has 
been designed for a healthy operating mode, an unbalance of 
current between phases 1 and 3 can be noted. Thus, this 
unbalance leads to the decrease of the electrolyzer current. In 
comparison, the current in phase 2 is null, but with the 
presence of some noise. The measured current signals data is 
then used for the geometrical study of the data for the purpose 
of classification using RNNs. 

 
TABLE I.  TECHNICAL SPECIFICATIONS OF THE PEM ELECTROLYZER 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Fig 3. Experimental results (fault in the second phase), time scale: 
500ms/div. 

Parameters Values 

Electrolyzer rated power, Pel 400 W 
Electrolyzer rated current, Iel 50A 

Electrolyzer current ripple, ΔiFC <1 A 
Operating voltage range Vel 7.5-8 V 

Inductor, L 400 μH 
Capacitor, C 470 µF 

Input DC bus voltage, VDC 50 V 
Switching frequency, Fs 20kHz 

Duty cycle range, D 0.23-0.26 
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III. EXPLORATORY DATA ANALYSIS RESULTS 

In order to study the behaviour of the healthy and faulty 
current signatures, a geometrical analysis with the Principal 
Component Analysis (PCA) was performed preliminarily 
[19]. From the Pareto chart (which is derived after applying 
PCA to the normalized data – Fig. 4a), only four Principal 
Components (PCs) present the totality of the whole data-set 
(Note: Pareto charts from faulted Leg 2 and Leg 3 are similar). 
This quantity is the same as the input to the PCA algorithm. 
The percentage variabilities of each PC is lower than 30% and 
are almost similar for all 4 PCs. This distributed variability 
implies that all the variables (current in all three legs and ���) 
are necessary.  

Moreover, this is also confirmed by the analysis of the 
principal or canonical angles; indeed, for any pair of flats in a 
Euclidean space of arbitrary dimension, one can define a set 
of mutual angles that are invariant under the isometric 
transformation of Euclidean space. The projected data from 
PCA has been used and the principal angles have been 
computed by using the Singular Value Decomposition (SVD) 
technique. Table II represents the principal angles between 
healthy and faulty classes, which are illustrated in terms of 
individual fault progression in legs 2 and 3 and, overall fault 
progression (both faulted legs). Up to dimensions 1-3, the 
principal angles were in between 60° − 80° while the clusters 
were nearly orthogonal in dimension 4. This means that 
regardless of their positions, the healthy and faulty clusters are 
orthogonal to each other in the 4-D space. However, the two-
class clusters appear to be excessively overlapping with each 
other according to the PCA plots.  This complexity is 
illustrated in Figs. 4b-c, which gives the projection of the data 
in its first three PCs for faults in Leg 2 and in Leg 3, 
respectively. Figure 4d shows the projection of the faulted 
data emanating from both the legs (Leg2 and Leg 3) and 
demonstrates somewhat the orientation of each class cluster 
(orthogonality). In both cases (Faults in Leg 2 and Leg 3), the 
majority of overlap between the healthy and faulty clusters is 
observed revealing that: linear techniques are not sufficient to 
explain all the data due to the presence of noise in the data, 
which makes the problem non-linear. It can be concluded that 
the separation of the class clusters through linear-based 
techniques and other standard pattern-recognition approaches 
will fail. An artificial intelligence approach is explored in the 
following section. 

 

(a) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(d) 

Fig. 4. (a) Pareto chart for data acquired under leg 2 fault & leg 3 fault (both 
faulted legs have similar Pareto charts), (b) Principal component plot for data 
acquired under leg 2 fault, (c) Principal component plot for data acquired 
under leg 3 fault, (d) Principal component plot for data acquired under leg 2 
and 3 faults 
 
TABLE II. PRINCIPAL ANGLES FOR FAULT PROGRESSION IN LEGS 2 AND 3  

Dimension 

(as per 

PCs) 

Principal 

Angle - Leg 2 

(°) 

Principal 

Angle - Leg 

3 

(°) 

Principal Angle - 

Leg 2& Leg 3 

(°) 

1 62.12 63.63 62.88 

2 71.28 74.50 72.89 
3 83.02 81.50 82.26 

4 87.41 88.62 88.02 
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IV. APPLICATION OF SHALLOW LSTM NEURAL 

NETWORK FOR POWER SWITCH OCF DIAGNOSIS  

For online fault detection and localization of time-domain 
current signals, the RNNs have been instrumental over the 
past years in the field of deep learning. The LSTM neural 
network, unlike standard feedforward neural networks, has 
feedback connections and is able to process not only single 
data points, but also entire sequences of data. Unlike 
traditional RNNs, the LSTM was developed to counter the 
problem of vanishing gradient. A comprehensive description 
of the LSTM neural network is given in [20].  

In this study, a group of neural and non-neural based 
classification algorithms were trained, validated and tested. To 
begin with, the raw signals were trained and tested for the 
classifiers listed in Table III. The training, validation and test 
sets were randomized and divided into a ratio of 50:10:40 
percentages. In the case of neural-based techniques, a window 
of 20 consecutive 4-D time samples were fed to the network 
(input tensor of size 1 ×20× 4). Data was augmented by using 
a stride of 20% of the segment size from one window to the 
previous one. The total number of sequences as a result of 
signal segmentation were 754. It should be noted that the 
window size of 20 samples and mini-batch sizes stated in 
Table III were chosen after several trials, to obtain the best 
results in terms of classification accuracy. The results for five 
neural-based architectures are given in Table III where; the 
dense/fully connected architectures [21], regardless of being 
shallow or deep configurations, yielded 64% test accuracy. 

V. COMPARISON WITH NON-NEURAL 

APPROACHES  

Similarly, the LSTM based architecture was trained using 
various combinations of hyper-parameters and the results are 
presented in Table III. Overall, in terms of neural and non-
neural based techniques, the deep configuration of the LSTM 
neural network gives the highest classification accuracy 
(98.34%) of the test set. On the other hand, the shallow LSTM 
configuration also has the second-highest test set accuracy, 
slightly less than the former. Considering the number of 
trainable parameters, the shallow configuration is definitely 
superior to the deep LSTM neural network. On this basis and 
after a thorough comparison with other non-neural based 
approaches, the shallow LSTM neural network shows the best 
performance at 97.68% on the test-set classification accuracy. 
For the best LSTM architecture, the confusion chart (details 
about the confusion chart are given in [22]) is shown in Fig. 5, 
which represents the performance of the classifier on a class 
basis. The true positives and true negatives are represented 
diagonally in blue while the others (false positives and false 
negatives) are represented in a lighter shade. For clarity, Table 
III accuracy values are normalized and converted into 
percentages. 

For comparison with the non-neural based techniques, a 
similar data partitioning scheme was adopted and appropriate 
pre-processing of the input data for each classifier was made. 
The Tree, Support Vector Machines (SVMs), Discriminant, k 
Nearest Neighbors (kNNs) and Ensemble based classifiers 
performed poorly on the raw data despite adopting an 
optimization criterion for enhancing the system accuracies. 
Their test accuracies ranged from 38-74% for the 40% test set. 
It should be noted that the shallow LSTM neural network not 
only presents the best classifier, but also has the capability to 
output probabilities without any further calculations. Also, the 

proposed network not only classifies an oncoming sequence, 
but gives outputs instantaneously at every time step, as 
depicted in Fig. 6. It is worth mentioning that the data is 
labelled in such a way that after a single training, the fault can 
be detected and simultaneously the location of the fault can be 
deduced. A clear interpretation of this aspect in real-time is 
illustrated in Fig. 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Confusion Chart for the Shallow LSTM Neural Network  

 

 

 

 

 

 

 
Fig. 6. Prediction using Shallow LSTM Neural Network (includes also 
classes of faulted legs for fault localization)  

VI. CONCLUSION 

In this study, an LSTM neural network has been designed 
to address the problem of power switch OCF in converters, 
which are usually used for electrolyzer applications. Studying 
this aspect of the fault when it comes to the protection of 
electrolyzers is essential. Early detection of faults would help 
avoid permanent damage to the electrolyzers, avoid 
degradation of the converters and increase their remaining 
useful lifetime. The proposed shallow LSTM architecture is 
able to detect the faulty sequence and deduce in which leg the 
power switch OCF has occurred. The diagnosis was 
performed on experimental data, and after training the 
network, the outputs were generated on a real-time basis. A 
thorough comparison within several neural based techniques 
and with non-neural based approaches reveals that the RNN's 
performances are much superior with low time complexity 
under the recall phase under this application. The best 
classification model is a shallow LSTM neural network with 
1263 trainable parameters unlike the deeper configuration of 
LSTM neural network, which had a higher number of 
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learnable parameters i.e. 313,163. Based on these conclusions, 
the effectiveness of the developed network presents a 
classification accuracy of 97.68% on the test set. Future work 
will involve more in-depth exploratory analysis of the data and 
include feature calculation steps for comparison with raw data 

classification. Emerging techniques in Deep Learning will 
also be applied to the same dataset for comparison.  

 

 

TABLE III. CLASSIFICATION RESULTS FOR TEST SET 

Classifier 
Classification Accuracy (%) 

Test Set 
Comments 

Shallow LSTM Neural 

Network 
97.68 

LR = 0.001, Batch size =10, 0% dropout rate, State Activation Function: 
Hyperbolic Tangent , Gate Activation Function: Sigmoid, Input Weight 
Initializer: Xavier initializer, Recurrent Weights Initializer: Orthogonal 
Initialization, Output Layer: softmax 

Architecture: (�� × �)���������������|����,  

Total no. Parameters =  1263, HU – Hidden Units 

Deep LSTM Neural 

Network 
98.34 

LR = 0.001, Batch size = 20, 0% dropout rate, State Activation Function: 
Hyperbolic Tangent , Gate Activation Function: Sigmoid, Input Weight 
Initializer: Xavier initializer, Recurrent Weights Initializer: Orthogonal 
Initialization, Output Layer: softmax 

Architecture: (�� × �)������������� ���� �������� ��|����,  

Total no. Parameters =  313,163, HU – Hidden Units 

Shallow Dense NN 59.14 

LR = 0.001, Batch size = 20, State Activation Function: Hyperbolic Tangent, 
20% dropout rate (after 1st fully connected (FC) layer), Output Layer: 
softmax 
Architecture: (�� × �)��|! ��|"#$%$&'�.�|���|�)*+,  Total no. Parameters = 
547 

Deep Dense NN  
(TANH Activation) 

63.06 LR = 0.001, Batch size = 20, State Activation Function: Hyperbolic Tangent, 
20% dropout rate (after every fully connected (FC) layer), Output Layer: 
softmax 
Architecture: (�� × �)��|����|�� ��|����|���|���� , No. Parameters = 
8611 

Deep Dense NN  
(ReLU Activation) 

64.34 LR = 0.001, Batch size = 20, State Activation Function: ReLU, 20% dropout 
rate (after every fully connected (FC) layer), Output Layer: softmax 
Architecture: (�� × �)��|����|�� ��|����|���|���� , No. Parameters = 
8611 

Fine Tree 43.71 Max. Number of Splits = 100, Split Criterion: Gini’s Diversity index 
Coarse Tree 42.72 Max. Number of Splits = 20, Split Criterion: Gini’s Diversity index 

Medium Tree 43.71 Max. Number of Splits = 4, Split Criterion: Gini’s Diversity index 
Linear Discriminant 67.88 Full Covariance Structure 

Quadratic Discriminant 67.88 Full Covariance Structure 
Linear SVM 74.17 Kernel Function: Linear 
Cubic SVM 66.89 Kernel Function: Cubic 

Fine Gaussian SVM 38.08 Kernel Function: Gaussian, Kernel Scale: 0.79 
Medium Gaussian SVM 38.08 Kernel Function: Gaussian, Kernel Scale: 3.2 
Coarse Gaussian SVM 38.08 Kernel Function: Gaussian, Kernel Scale: 13.0 

Fine kNN 68.54 k = 1, Distance Metric: Euclidean 
Medium kNN 57.95 k = 10, Distance Metric: Euclidean 
Coarse kNN 52.98 k = 100, Distance Metric = Euclidean 
Cosine kNN 65.23 k = 10, Distance Metric: Cosine 
Cubic kNN 59.27 k = 10, Distance Metric: Minkowski 

Weighted kNN 
61.26 

k = 10, Distance Metric: Euclidean 
Distance weight: squared inverse 

Ensemble  
(Boosted Trees) 57.28 

Ensemble Method: AdaBoost, Learner: Decision Tree, Max. Splits: 20, 
Number of Learners: 30, LR: 0.1 

Ensemble 
 (Bagged Trees) 53.64 

Ensemble Method: Bagging, Learner: Decision Tree, Number of Learners: 
30 

Ensemble (Subspace 
Discriminant) 71.19 

Ensemble Method: Subspace, Learner: Discriminant, Number of Learners: 
30, Subspace Dimension: 5 

Ensemble (Subspace 
kNN) 62.25 

Ensemble Method: Subspace, Learner: Nearest Neighbors, Number of 
Learners: 30, Subspace Dimension: 5 

Ensemble (RUSBoost) 
 54.64 

Ensemble Method: RUSBoost,  
Max. Splits: 20, Number of Learners: 30, LR: 0.1 
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