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Abstract—Early fault detection in rotating machines saves 

time, money and labor that must be spent repairing or replacing 

the machine caused by a abrupt breakdown while stopping the 

production process. Due to this reason, industries invest in 

routine maintenance, intending to diagnose faults and take 

preventive measures before the problem becomes severe. This 

paper presents a state-space model of the healthy and faulty 

induction motor. The fault considered in this study is the stator 

inter-turn fault, with the severity ranging from 0.3%-2.11% in 

a phase. This article gives an overview of the simulated model 

and shows how the healthy three-phase current signature is 

different from the faulty ones. The Principal Component 

Analysis (PCA) and Space Vector Loci (SVL), in particular, 

have been utilized to visualize and present the differences 

between the healthy and faulty current signatures. 

Furthermore, both PCA and SVL have also been instrumental 

in denoting minor fault severities. 

Keywords—Induction motor, Stator Inter-turn Fault, 

Principal Component Analysis, Space Vector Locus 

I. INTRODUCTION 

Induction Motor (IM) based applications in the industries 
nowadays are developing more complex in construction, and 
the operations are being settled more efficient, reliable and 
user-friendly. However, the increasing load variations and the 
continuous usage of modern power electronic devices have 
pushed the motors into a fault-prone environment [1]. From 
the insight provided by the works of [2], possible failures 
could lead to severe monetary repercussions such as repair 
costs, unexpected shutdowns causing mass production delays 
and other less tangible factors, especially for industries. Since 
the applications above will keep on getting sophisticated in 
every sphere of life, for the excellent longevity of IMs, early 
motor faults diagnosis has become a predominant condition to 
the consumers in the competitive market of automation and 
drives.  

Recent statistics given by [1] shows that IMs models 
contribute to approximately 80% of the component failure 
under all categories of faults, consequently generating interest 
in the importance of fault detection and monitoring of electric 
machinery over the recent years. From the study of IM faults, 
the most vulnerable parts to endure faults are bearing, stator 
windings, rotor bar and shaft. According to Karmarkar et al. 
[2], stator and rotor faults have been witnessed to occur during 
non-uniformity of air gap between stator-inner surface and 
rotor-outer surface. Moreover, IM faults are categorized into 
three categories:  

• Electrical related faults under the classifications of the 

unbalanced voltage supply, reverse phase order, inter-turn 

short-circuits and overload. 

• Mechanical related faults involving broken rotor bars, 

bearing damage, stator winding failure and air gap 

eccentricity. 

• Environmental related faults include IM's performance 

affected by ambient temperature, external moisture, and 

machine vibrations due to installation defects.

 
 
Fig. 1. IEEE and EPRI statistics on IM faults [1] 

Regarding Fig. 1, stator windings fault and bearing faults 
form at least 60% of all IM faults. Humidity, partial discharge 
and mechanical stress are common reasons for the stator inter-
turn fault (SITF). Literature [3]–[6] further discuss the factors 
behind the fault.  

Stator winding faults are a common occurrence in IMs, 
and these faults occur when the coil windings are shorted with 
each other. The significant works of [7] include the detection 
of stator winding turn to turn fault, and the study also presents 
two methods to determine the severity of the fault. These 
methods are, first, neural-based estimators and, second, multi-
agent systems (MAS). Furthermore, experimental evidence 
presented in the exact text concludes that winding faults of 
high severity are more accessible to detect than faults of low 
severity.  

The proposed method in the works of [8] is used to detect 
stator inter-turn fault (SITF) and the broken rotor bar fault 
(BRBF) using MCSA. The dataset obtained from the faulty 
machine is compared with the same of a healthy motor. The 
Curvilinear Component Analysis (CCA) is chosen for 
Dimensionality Reduction (DR), and the paper favours this as 
a suitable method for representing non-linear datasets in 
comparison with linear methods such as Principal Component 
Analysis (PCA). CCA is chosen to perform two tasks, the first 
is to identify the data topology, whilst the second is to project 
the feature set (FS) into a lower dimension space (DR). 
Shallow Convolutional Neural Networks (SCNNs) are used 
for fault classification due to their robustness and simplicity.  
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Based on the experimental evidence in [9], SCNN has 
been deemed a superior classification technique compared to 
other types of classifiers discussed in this study. On the same 
note, Multilayer Perception Neural Network (MLP NN) is 
another good classifier used for multiple fault classification. 
The results presented by [10] show the effectiveness of the 
method in FD of an IM.  

Another significant contribution seen in the work of [11] 
is the detection of harmonics using the prominence method. 
This technique returns the first nth prominent peaks of any 
frequency-based signal, and it is a more effective method in 
determining characteristic fault frequencies. Moreover, the 
prominence method has the upper hand over the maximum 
peak value measure since it can locate significant peaks 
throughout the signal spectrum rather than being inclined 
towards one side with a concentration of peaks. As such, the 
former is a better signal analysis tool. 

So far, the methods explored in works of literature [11]–
[16] have a common approach for FD of IMs.  The generalized 
idea is to develop a mathematical model of the specific IM 
being tested, obtain data from the faulty machine and use 
feature extraction methods to find filter out data retaining only 
the valuable information. After that, Machine Learning (ML) 
algorithms are applied to train and test the system. However, 
the research done by [15] has a different standpoint altogether. 
The literature argues two significant points: firstly, the data-
driven procedures require complex computations and 
mathematical modelling; secondly, these models can 
misdiagnose the faults caused by external factors such as 
motor misalignment or grid power imbalances.  

The methods discussed in the above literature have either 
a model-driven or data-driven approach and, this approach has 
its strengths and weaknesses. However, irrespective of the 
path taken, they show promising results. The downside of the 
data-driven approach is that it is error-prone due to sensor 
misreading, and a considerable amount of pre-processing is 
required to clean and sort the data. On the other hand, the 
model-driven approaches cannot account for non-singularities 
and are limited by the known parameters. However, a 
mathematical model can be easily adjusted to simulate 
specific conditions, while the data-driven approach relies on 
machine data which can be noisy. 

This paper aims to learn about the healthy and faulty 
conditions (SITF in particular) of an IM using the data 
generated by a model-based approach and how both kinds of 
conditions differ upon visualization. At first, the simulated 
data is generated by using the state-space model of a healthy 
and a faulty IM. Then, it is examined by using SVL and PCA 
techniques to detect the SITF class. The major interest lies in 
studying the SITF of very low severity (between 0.3% - 2%) 
using a linear technique, which most of the related studies 
have not presented so far. Finally, the evaluation of the SITF 
is carried out by studying the three-phase current signatures in 
3D PCA planes. Following the successful detection and 
evaluation of SITF by PCA, this paper implies that it is 
possible to isolate the SITF (of very low severities) from the 
healthy three-phase current signature. 

This paper is organized as follows: A generalized IM 
mathematical model is presented in section II, followed by the 
faulty IM model (for the SITF) in section III. Section IV 
represents the physical data of the IM used for generating data 
for SVL and PCA analysis. Section V demonstrates the 

simulated results using SVL and PCA together with 
discussions, and finally, the paper is concluded in section VI. 

II. IM Model 

The IM model consists of a squirrel cage stator with the 
symmetrical multiphase winding. This section contains the 
state space equations to realize an IM and is inspired by the 
works of [17]. These equations are realized in the synchronous 
reference frame to minimize analytical complexities when 
dealing with three-phase components. 

 Moreover, the SITF acts as an external stimulus and 
enhances the three-phase currents circulating in the IM. These 
additional currents are proportional to the severity of the fault 
and mainly influences the phase in which the shorting has 
occurred. Fig.2. shows the proposed scheme, in which the 
STIF is applied to a grid-connected three-phase squirrel cage 
induction motor. The resulting faulty three-phase currents are 
stored on a data frame from where they are accessed for PCA. 

 

Fig. 2. Proposed scheme of IM with SITF and PCA 

Representation of the Induction Motor in the mechanical 
reference frame, showing its state vector.  

𝑥̇ = 𝐴𝑥(𝑡) + 𝐵u(t) (1) 

𝑑

𝑑𝑡
[

𝑖𝑠
𝜓′

𝑟
] = [

𝐴11 𝐴12

𝐴21 𝐴22
] [

𝑖𝑠
𝛹′

𝑟
] + [

𝐵1

0
]𝑈𝑠 (2) 

𝐽
𝑑𝑤𝑟𝑚

𝑑𝑡
+ 𝐵𝑤𝑟𝑚 = 𝑇𝑒𝑙 − 𝑇𝐿 (3) 

𝑖𝑠 = 𝐶𝑥 (4) 

where:  

𝐵 =
1

(𝜎𝐿𝑠)𝐼
= 𝑏𝐼 ,𝐶 = [𝐼 0], 𝐼 = [

1 0
0 1

] and,  𝐽 = [
0 −1
1 0

] 

𝑖𝑠 and 𝜓𝑟
′ , stator current and rotor flux are the controllable 

states, 𝐵 is the flux density on the rotor surface due to the 
stator currents, 𝐼 is the Identity matrix and 𝐽 is inertia 
coefficient matrix for the IM model. The model operates on 
Park’s transformed voltages 𝑈𝑠𝑑 and 𝑈𝑠𝑞 . 

The Inertia state matrix breakdown (A) is given by:  

𝐴11 =  − {
𝑅𝑠

𝜎𝐿𝑠 
+

1 − 𝜎

𝜎𝑇𝑟  
} 𝐼 =  𝑎11 𝐼 (5) 

𝐴12 =
𝐿𝑚

𝜎𝐿𝑠𝐿𝑟 {(
1
𝑇𝑟

) 𝐼 − 𝑤𝑟𝐽}
= 𝑎12 {(

1

𝑇𝑟
) 𝐼 − 𝑤𝑟𝐽} (6)

 

𝐴22 = − (
1

𝑇𝑟
) 𝐼 − 𝑤𝑟𝐽 = 𝑎22 {(

1

𝑇𝑟
) 𝐼 − 𝑤𝑟𝐽} (7) 

𝐴21 = {
𝐿𝑚

𝑇𝑟
} 𝐼 = 𝑎21𝐼 (8) 

Considering the direct-quadrature (DQ) axis reference 
representation matrix by using (1) and the breakdown matrices 
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of 𝐴, 𝐵, 𝐶 above, a differential stator current and flux linkage 
in the DQ axis representation is defined as follows:   

𝑑

𝑑𝑡
[
 
 
 
𝑖𝑠𝑑
𝑖𝑠𝑞
𝜓𝑠𝑑

𝜓𝑠𝑞]
 
 
 
=

[
 
 
 
 
 
 
 
 𝑎11 0

𝑎12

𝑇𝑟

𝑎12𝑤𝑟

0 𝑎11 −𝑎12𝑤𝑟

𝑎12

𝑇𝑟

𝐿𝑚

𝑇𝑟

0
1

𝑇𝑟

𝑤𝑟

0
𝐿𝑚

𝑇𝑟

−𝑤𝑟

1

𝑇𝑟 ]
 
 
 
 
 
 
 
 

[
 
 
 
𝑖𝑠𝑑
𝑖𝑠𝑞
𝜓𝑠𝑑

𝜓𝑠𝑞 ]
 
 
 
+

[
 
 
 
 
 

1

𝜎𝐿𝑠

0

0
1

𝜎𝐿𝑠

0 0
0 0 ]

 
 
 
 
 

[
𝑈𝑠𝑑

𝑈𝑠𝑞
] (9) 

Following is the IM model’s mechanical speed Equation, 
Tel is the electro-magnet torque, 𝑝 is the number of pair poles, 
B is the damping ratio in (10). 

𝑤𝑟𝑚̇ =
𝑇𝑒𝑙 − 𝑇𝐿 − 𝐵 (

𝑤𝑟𝑚

𝑝
)

𝐽
(10) 

where the electro-magnetic torque and damping ratio 
breakdown are as follows: 

𝑇𝑒𝑙 =

3
2

𝑝𝐿𝑚

𝐿𝑟
(𝑖𝑠𝑑𝜓𝑠𝑞 − 𝑖𝑠𝑞𝜓𝑠𝑑) (11) 

𝐵 =
1

𝜎𝐿𝑠

(12) 

The remainder of the variables are constants whose values 
are machine specific. These are presented in Section IV. 

II. FAULTY IM MODELLING 

The SITF is described as the shorting between turns of the 
stator winding causing the production of additional current in 
the circuit.  

The short-circuit winding, 𝐵𝑐𝑐 , produces a stationary 
magnetic field, 𝐻𝑐𝑐 , whose orientation is aligned according to 
the faulty winding. Meanwhile, the additional short-circuit 
current, 𝑖𝑐𝑐 , is an attribute of the short-circuit flux, 𝜙𝑐𝑐. 
Correspondingly, the voltage and flux equations also change 
due to these additional parameters. The changes are well 
explained in the works of [17], [18], and their state-space 
equations are used to model the SITF. 

Theoretically, these additional currents are categorized as 
disturbances to the system, and in terms of state-space 
modelling, they are represented by the direct transition or 
feed-forward matrix.  

The following equation describes the new output due to 
the presence of these disturbances.  

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (13) 

where:  

• 𝑢(𝑡), 𝑦(𝑡) and 𝑥(𝑡) are respectively the system input, 
output and state variables. 

• 𝐶 is the output matrix of constants 

𝐶 = [
1 0 0 0
0 1 0 0

] (14) 

• 𝐷 is the direct transition matrix 

𝐷 = ∑
2𝑛𝑐𝑐𝑘

3𝑅𝑠

3

𝑘=1

 𝑃(−𝜃)𝑄(𝜃𝑐𝑐𝑘)𝑃(𝜃) (15) 

Meanwhile, the direct transition (or feedforward) matrix is 
identified by the following variables: 

• 𝑛𝑐𝑐𝑘 quantifies the SITF and is the ratio of the number of 
inter-turn short circuit winding in phase 𝑘 and the number of 
turns in a healthy phase. 

• 𝜃𝑐𝑐𝑘 is 0 for phase 𝐴, 2𝜋/3 for phase 𝐵, and 4𝜋/3 for 
phase 𝐶 

• 𝑅𝑠 is the stator resistance which is obtained from the DC 
test results 

• 𝑘 is the phase containing the short-circuit and only 
accepted values are 1, 2 and 3 (denoting each phase) 

• 𝑃(𝜃), 𝑃(−𝜃) and 𝑄(𝜃𝑐𝑐𝑘) are respectively the Park, 
inverse Park and rotational matrices, respectively (16-17). 

𝑃(𝜃) = [
cos(𝜃) − sin(𝜃)

sin(𝜃) cos(𝜃)
] (16) 

𝑄(𝜃𝑐𝑐𝑘) = [
cos(𝜃𝑐𝑐𝑘)2 cos(𝜃𝑐𝑐𝑘) sin(𝜃𝑐𝑐𝑘)

cos(𝜃𝑐𝑐𝑘) sin(𝜃𝑐𝑐𝑘) sin(𝜃𝑐𝑐𝑘)2 ] (17) 

III. IM PARAMETERS 

The parameter extraction procedure is necessary to find 
the motor specific constants for modelling purposes. 
Moreover, they are found by performing the DC test, blocked 
rotor and no-load tests on the IM.  

Table 1 lists the nameplate rating of the motor we used for 
our modelling, while table 2 details the IM parameters that 
were obtained through the tests. 

TABLE 1: NAMEPLATE RATINGS 

Rated Voltage 415V 

Rated Current 4.6A 

Frequency 50 Hz 

Rated Speed 1500 rpm 

Number Of Poles 4 

Number Of Stator Slots 28 

Number Of Rotor Slots 36 

Type B 

TABLE 2: MACHINE PARAMETERS 

Variable Description Value 

RS Stator resistance 3.14Ω 

Re Equivalent resistance 5.43Ω 

R’r Referred rotor resistance 2.28Ω 

 ZSC Short circuit impedance 10.51Ω 

X Reactance of the motor 8.99Ω 

XS Stator leakage reactance 5.39Ω 

X’r Referred rotor reactance 3.59Ω 

Vm Magnetizing voltage 230.81V 

Ii Magnetizing current 0.36A 

Ri Resistance of the iron losses 633.39Ω 

Xm Magnetizing reactance 95.38Ω 

Lm Referred magnetizing inductance 0.3H 

Lsl Stator leakage inductance 0.02H 

L’rl Referred rotor leakage inductance 0.04H 

Lss Self-inductance of the stator 0.32H 

L’rr Referred rotor self-inductance 0.22H 

Ms Stator mutual inductance -0.1H 

M’r Mutual inductance between rotor 

windings 

-0.1H 

M’sr Referred rotor-stator mutual inductance 0.2H 

Ls Stator inductance 0.41H 

L’r Rotor referred inductance 0.32H 

σ Total leakage factor 0.14 

Tr Rotor time constant 0.14 

L’s Stator transient inductance 0.06 
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IV. SIMULATION RESULTS 

A. Analysis of the IM speed and torque responses under 

healthy and faulty scenarios 

The rotational speed is the rate at which the rotor shaft 
rotates under voltage excitation. The following figure shows 
the speed response of the two models in rad/s. The settling 
time of the response is inversely proportional to the value of 
motor inertia (J), which is taken to be 0.02𝑘𝑔/𝑚2 for the 
healthy and faulty models, respectively. 

In Fig. 3, the speed of the IM can be observed with no 
mechanical loading from 0 to 1.5 seconds. Both the models 
are subjected to 50% load from time equals 1.5 to 3 seconds. 
The healthy IM model’s speed response settles within half a 
second with the IM’s rated speed of 157.045 rad/s.  

Similarly, the faulty IM model’s speed with different 
severities approximately peaks to the same speed value as the 
healthy, but its settling time is slightly extensive than that of 
the healthy model’s. It takes approximately 1 second for the 
faulty model to settle at the stable condition of 𝑤𝑚. For the 
corresponding Torque versus Time plots extracted at 50% 
load condition, the torque amplitude for healthy IM at 
simulation time of 2.3 seconds is 3.5 Nm, for the 0.7% faulty 
model at the same instance has a torque value of 3.64 Nm and 
3.93 Nm for the 2.11% SITF model, respectively.  

It should be noted that the torque responses for the faulty 
IMs at different severities generate large amounts of ripples. 
This is due to the harmonics generated electromagnetic torque 
due to non-idealities or faults in the electromagnetic fields 
produced by the stator interactions. 

 

Fig. 3. Healthy and Faulty IM Speed Torque response plots 

Following the above plots, the Speed-Torque curves of the 
IM can differentiate the healthy and faulty classes (Fig. 4). 
Even the smallest severity of SITF causes ripples in the torque 
signature when viewing from the x-axis. It can be noted that 
the increase of the fault severity increments the oscillation 
diameter in the plot (looking at the 0.3% to 2.11% fault 
severities). For the speed characteristics, its behaviour appears 
to be similar as in Fig. 3’s response, i.e., the faults do not affect 
the IM speed response other than increasing the settling time. 

B. Three-phase current analysis 

The three-phase currents are visualized to understand the 
electrical impact of the SITF. As a result, it can be deduced 
that the severity of the fault is directly proportional to the 
amplitude of the three-phase current. Thus, this confirms that 

the faulty phase should receive a higher current than its other 
two counterparts. This is because the SITF phenomenon 
lowers the resistance in the affected phase, causing unbalance, 
increasing the current value. 

 

Fig. 4. IM Speed versus Torque Plot at 3.75 Nm Load 

Fig. 5 shows the plots of the healthy IM model, faulty IM 
model with 0.7% severity (3-shorted turns) and 2.11% 
severity (6 shorted turns) accordingly. The three-phase current 
plot was extracted during the IM's 100% load (7 Nm) 
operation (using the IM model). The plots in Fig.2 are zoomed 
from 3.1 to 3.14 seconds. For the healthy three-phase current 
scenario, the peak values were measured to be 3.69A 
portraying a regular IM operation. The SITF was induced in 
phase A of the IM for the faulty model, where the generated 
abnormalities were detected from the other two phases—
observing the Figs. 3-4. The three-phase currents of the faulty 
model have a visible spike in its phase A current signature 
compared to the current signatures of phases B and C.  

 

Fig. 5. Healthy and Faulty Induction Motor 3-Phase current response plots 

Likewise, Fig. 6 clearly shows the separation between the 
healthy and faulty peak values of the current. In healthy phase 
A, the peak current is 3.67A, while for the SITF at 0.7% and 
2.11%, the peak currents are 4.86A and 5.13A, respectively.  
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Fig. 6. Healthy and Faulty Induction Motor Phase A plots 

C. DQ axis space-vector representation (SVL) 

The space-vector representation (Fig. 7) shows the 
relationship between the direct and quadrature axis current at 
three scenarios: No Load, 50% Load (3.5Nm) and 100% Load 
(7Nm). Evaluating the DQ plot, firstly, the mechanical 
loadings variations on IM show the normal DQ current 
response as the system requires more current to anticipate the 
loadings, as portrayed in Fig. 7. This means that as the load 
increases, the radius of the SVL also increases.  

The second observation is the shape of the SVL at different 
SITF severity levels. It can be deduced from Fig. 7 that as the 
fault severity increases, the respective SVL appear more 
distinctly elliptical and distanced from the healthy SVL. In the 
ideal case (which is for this simulation study), the healthy SVL 
is a perfect circle while the SITF SVL is elliptical as the 
severity increases.  

 

Fig. 7. Park’s Current Vector for Healthy and Faulty IM Models  

D. Principal component analysis of the faulty and healthy 

IM datasets  

PCA is used as a measure of reducing the number of 
dimensions present in our dataset.  Furthermore, the reduced 
dataset provides better insight in the data and the underlying 
relationship between them. 

Figs. 8-9 illustrate the 2-dimensional and 3-dimensional 
views of the PCA plots. In the 2D PCA plot, the IM model 

with the healthy and faulty scenarios shows the plot being 
shrunk and the data points clustered more on top of each other 
when the mechanical loading increases, retaining the similar 
elliptical shape seen in Fig. 7 (concerning healthy versus 
faulty case).  

 

Fig. 8. Two Dimensional PC Plot of the Healthy and Faulty IM models at 
different loadings 

As for the 3D view (Fig. 9), new observations can be 
made. All the five sets (healthy data and data with four 
different fault severities) of data points are elliptical when 
visualizing the PC1 (first PC) versus PC2 (second PC) axes. 
On the other hand, for PC1 and PC3 (third PC) axes, the 
healthy elliptical plot is approximately 30° from the PC3’s 
positive axis. This angle increases even further as the models 
are subjected to higher loads. On the other hand, the faulty 
model’s elliptical plots concerning the healthy plots seem to 
tilt closer to the PC3’s positive axis. The faulty plot’s angle in 
the PC3’s negative axis seems to move further away. The 
main point noted from both the 2D and 3D PCA analyses is 
that the data points of a faulty model rotate in a clockwise 
direction about the PC2’s axis as the SITF severity is 
incremented. Thus, this implies that PCA plots can distinguish 
the healthy signatures from faulty ones and can denote the 
changes in the fault severity. Compared with the SVL, which 
transforms the three-phase currents into DQ currents, PCA 
can also demonstrate the “elliptical” shape when it comes to 
the SITF. The PCA plot can also reflect the load change, but 
it can also reveal SITF severity variation through 3D plots. 

 

Fig. 9. Three Dimensional PC Plot of the Healthy and Faulty IM models at 
different loadings 
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V. CONCLUSION 

This study has demonstrated that PCA, a linear 
dimensionality reduction technique, can also be used to detect 
and evaluate faults related to IMs. In particular, the study of 
SITFs for IMs and a state-space model was derived for a 
healthy and faulty IM. Using the simulated data, the objective 
of this study was to analyze the SITFs with very low 
severities. Thus, it comes to light that both SVL and PCA 
techniques can detect and follow the evolution of the SITF 
upon visualization. However, the latter is superior to the 
former and is instrumental in clearly identifying the SITF and 
its corresponding severity.  

In addition, this study has also shown evaluation of the 
SITF at very low severities (0.3%-2.11%), which many 
studies have failed to highlight. The only drawback is that 
PCA is an unsupervised technique, whereby continuous 
monitoring of the motor operation and its corresponding 
analysis (PCA) is a factor. As a result, it is necessary to add 
an extra “classification” component to the current scheme to 
automate the alerting of the condition of the IM. Thus, this 
study serves the purpose of pre-processing the raw data via a 
linear-based technique, which, in the future, will be coupled 
with classical and state-of-the-art techniques to detect and 
evaluate the SITF severity in real time. 
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