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The lifestyle and culture of South Pacific Island countries have been long intertwined with oceanic resources. These countries are 
heavily dependent on tuna resources for their economies and socioeconomic livelihoods. Despite their importance, the mechanisms 
behind tuna stock trajectory patterns need to be better understood. With changing climatic and environmental conditions, it has become 
vital to understand the impact of these changes on tuna resources and if possible include them in long-term tuna harvest and manage-
ment plans. A significant portion of the stock dynamics of yellowfin tuna (Thunnus albacares), albacore tuna (Th. alalunga) and bigeye 
tuna (Th. obesus) in the South Pacific Region may possibly be explained only by the environmental factors of sea surface temperature 
(SST) and Atlantic Multidecadal Oscillation AMO. The relationship of monthly SST and AMO was investigated with time series stock 
patterns of Th. albacares, Th. alalunga and Th. obesus in the Eastern and Western Pacific Ocean for the years 1972 to 2019. Monthly 
variables that exhibited significant correlation with CPUE variables were used in the Generalised Linear Model and Generalized Addi-
tive Model to reproduce the CPUE trajectory of the three tuna species from 1972 to 2019. Results showed that a significant portion of 
stock dynamics of Th. albacares, Th. alalunga and Th. obesus can be explained well by two environmental conditions of SST and 
AMO. This shows that a large portion of tuna variation in the Eastern and Southern Pacific is related to environmental conditions. Mod-
els with single variables are evidence of the significant individual effect of SST and AMO on stock time series of each tuna species. 
Models with two variables had a better fit in comparison to models with a single variable for all tuna stocks. Possibilities of two signifi-
cantly different patterns in the trajectory of the three tuna species and environmental conditions used in the models were also observed. 
The trajectory patterns seemed to change around the 1990s and had significantly different means, indicating possible regime shifts. 
Environmental conditions play a highly significant role in structuring tuna stock trajectory in the South Pacific and need to be included 
in tuna management / harvest plans to ensure sustainability of this important resource. The importance of regime shifts should be recog-
nised and further investigated for possible inclusion in tuna sustainability plans due to their influence on long-term tuna trajectory pat-
terns.  

Keywords: albacore tuna; bigeye tuna; yellowfin tuna; Atlantic Multidecadal Oscillation; sea surface temperature; regime shift.  

Introduction  
 

The population and economies of a number of South Pacific Island 
Countries (PICs) are heavily dependent on the harvest of tuna resources 
(Bell et al., 2015; Bell et al., 2021). Tuna is harvested for sustenance of the 
socioeconomic livelihood and makes vital contribution towards food se-
curity of a significant population of PICs (Pilling et al., 2015; Johnson 
et al., 2020). Due to the limited capacity for tuna harvest, licences are 
issued to foreign nations for harvest of tuna resource in exchange for a 
licence fee. Some PICs economies are so heavily dependent on these fees 
that they are classified as tuna dependent (Bell et al., 2021). Overall, tuna 
fisheries from the Western and Central Pacific (WCP) contribute >50% of 
total global tuna supplies worth around USD$5.3 billion/year with a re-
cord catch of 2.9 million metric tonnes of tuna harvest in 2019 (World 
Bank, 2016; Seto & Hanich, 2018; Post & Squires, 2020). Tuna resources 
in the Eastern and Western South Pacific have seen a general decline over 
time and needs to be better understood in order to make effective and in-
formed long-term management plans. Yellowfin tuna (Thunnus albaca-
res) and bigeye tuna (Th. obesus) in WCP had already been assumed to 
have already reached the Maximum Sustainable Yield (MSY) limit and 
been overfished in early 2000s (Reid, 2006; Ovando et al., 2021).  

Globally, tuna harvests have increased more than 1000 fold in the 
past six decades and account for around 61% of total offshore harvests 
(Fromentin & Powers, 2005; Coulter et al., 2020). These estimates do not 
include illegal and unregulated harvests, which may indicate that actual 
estimates may be much higher. Overharvesting and unsustainable practi-

ces of fishing have been claimed to be a major factor in depletion of 
oceanic tuna resources globally (Öztürk, 2015; Christensen, 2016). 
A stronger management of tuna harvesting and better planning may help 
recover tuna stocks. This, however, must be done with caution as tuna 
stocks may be affected by numerous other factors at varying levels 
including pollution, biological interactions and the changing climate.  

Environmental variation impacts on tuna resources can studied and 
quantified using models that incorporate environmental variables (Sam-
bah et al., 2023; Taboada et al., 2023; Wang et al., 2023). These models 
normally require environmental data over decadal timescales, which are 
not always readily available and may not be always of reliable quality. 
If reliable data is used, modelling approaches can provide reliable infor-
mation that can be used by fishery managers to develop or improve their 
stock management plans for their important but limited tuna resources. 
Effective management approaches to tuna stocks impacted through envi-
ronmental and climatic conditions would require cross country, regional 
and perhaps global management coordination across different sectors 
(Gianelli et al., 2023).  

Amongst the multitude of factors impacting tuna resources in the 
Pacific, changes in climatic and environmental conditions are expected to 
be having a vital impact on the resources affecting the livelihood and eco-
nomies of PICs (Johnson et al., 2020). The impact of environmental and 
climatic factors may have a more profound impact than is perhaps realised 
by fishery managers in the PICs and needs to be studied extensively and 
accounted for in tuna harvest plans. Wu et al. (2022) investigated the effect 
Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation 
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(AMO) and sea surface temperature (SST) on Indo-Pacific Th. albacares 
stock CPUE from 1971–2018. The results showed a strong link between 
Th. albacares and environmental factors of SST and AMO phases. Simi-
larly, a study on the East Pacific Ocean tuna catch with reference to effort 
between 1970–2018 and SST revealed a strong non-linear relation bet-
ween tuna (Th. albacares and Katsuwonus pelamis (skipjack tuna)) and 
SST trajectory (Mediodia et al., 2020). Relationship of North Pacific and 
South Atlantic albacore tuna (Th. alalunga) populations to SST has been 
shown in different works (Singh et al., 2017; Singh et al., 2018; Vayghan 
et al., 2020). Indian Ocean and Atlantic Ocean Th. obesus stocks have 
been shown to be related to SST variation in different studies (Lee et al., 
2005; Syamsuddin et al., 2016; Lan et al., 2018). Despite the importance 
of tuna in the South Pacific region, limited studies have been done on 
establishing the roles of long-term variations in climatic and environmen-
tal conditions on the stock trajectory patterns. The objective of this work 
was to determine whether the stock dynamics of Th. albacares, Th. ala-
lunga and Th. obesus in the South Pacific Region can be explained 
significantly only by the environmental factors of SST and AMO.  
 
Materials and methods  
 

Stock data. Fish stock distribution data used in this study was obtai-
ned from the Western and Central Pacific Fisheries Commission 
(WCPFC). The WCPFC compiles annual, aggregate and operational tuna 
catch and effort estimates and makes these available through their public 
domain version available online (www.wcpfc.int). Historical longline 
catch and effort data for Th. albacares, Th. alalunga and Th. obesus in the 
South Pacific Region was obtained from the WCPFC public domain data 
for the years 1972–2019. Figure 1 shows the stock distribution zone for 

the three tuna species used in this study. The stock abundance index of 
standardized catch per unit effort (CPUE) data for all three tuna species is 
represented in Figure 2. Th. alalunga CPUE shows two visually distinct 
trends of CPUE means, with a lower average pattern between 1972 and 
1991 and a higher average between 1992 and 2019. Th. obesus CPUE has 
a reducing trend from 1972 to 1981 with stock recovery between 1982 
and 1986 followed by gradual stock reduction from 1987 to 2019. 
Th. albacares CPUE shows an increasing pattern between 1972 to 1978 
followed by a gradual stock reduction between 1979 and 2019.  

  
Fig. 1. Map showing the geographical region (shaded) for Th. albacares, 

Th. alalunga and Th. obesus in the Eastern and Western South Pacific 
Region between the coordinates of 55° S to 5° S and 135° E to 135° W 

where longline fishing data within the shaded region  
for the years 1972 to 2019 was used for study  

  
Fig. 2. Stock trajectories as catch per unit effort (CPUE) for Th. alalunga (a), Th. obesus (b) and Th. albacares (c) in the Eastern and Western South  
Pacific region for the years 1972 to 2019 where CPUE is in metric tonnes per hundreds of hooks (mt/hhooks); the years are indicated in the abscissa  

Environmental data. Environmental factors used for this work inclu-
ded monthly sea surface temperature (SST) and monthly index of Atlantic 
Multidecadal Oscillation (unsmoothed version) (AMO). Monthly SST for 
the South Pacific Region was obtained on a 1° by 1° resolution for the 
years 1967 to 2019 from the public domain data available from the link 
www.metoffice.gov.uk/hadobs/hadisst. The data is compiled by the Me-
teorological Office Hadley Center, UK as Hadley Centre Sea Ice and Sea 
Surface Temperature data set (HadISST) and described in (Rayner et al., 
2003). AMO is an index of North Altantic sea temperature oscillation and 
described in (Enfield et al., 2001). The monthly AMO index was obtained 
from the Physical Sciences Division of National Oceanic and Atmosphe-
ric Administration (NOAA).  

Correlation exploration of variables. The correlation between inde-
pendent variables of tuna CPUE in the year t (Ca,t) and dependent variab-

les of SST in the month m for the year t–i (Tm,t–i) were calculated. Here t 
denotes the year and m denotes the month, a represents the tuna species 
and i denotes the time lag in years where i = (0,1,…,5). Correlations 
between tuna CPUE in year t (Ca,t) and AMO for the month m and year t–
i (Am,t–i) were also determined. Data exploration protocols were followed 
to avoid assumption violation of statistical methods used as outlined by 
Zuur et al. (2010).  

Model formulation. The environmental variables that exhibited signi-
ficant correlation (P < 0.05) with CPUE variables were used as candidates 
independent variables to reproduce the natural logarithm of tuna CPUE 
[ln(Ct)] in year t ranging from 1972 to 2019. Model fitness with actual 
stock trajectory was determined using R2 value, Akaike Information 
Criterion (AIC) (Akaike, 1981), t-tests, F-tests and significance level based 
on the P-value of P < 0.05 for each model. Similar modelling techniques 
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have been used in previous works (Singh et al., 2015a, 2015b, 2017; 
Sakuramoto, 2021). Model formulation was restricted to two independent 
environmental variables to reduce complexity of the final models and ease 
their comprehensiveness. The interaction component of independent 
variables was also included for possibility of interaction impact on tuna 
stocks. The Generalised Linear Model was used to reproduce all three 
tuna CPUE trajectories shown in Equation 1.  

log�𝐶𝐶𝑎𝑎 ,𝑡𝑡� = log�𝛼𝛼0,𝑚𝑚 ,𝑖𝑖� + 𝛼𝛼1,𝑚𝑚 ,𝑖𝑖 × 𝑇𝑇𝑚𝑚 ,𝑡𝑡−𝑖𝑖 + 𝛼𝛼2,𝑚𝑚 ,𝑖𝑖 × 𝐴𝐴𝑚𝑚 ,𝑡𝑡−𝑖𝑖 + 𝛼𝛼3,𝑚𝑚 ,𝑖𝑖 ×

�𝑇𝑇𝑚𝑚 ,𝑡𝑡−𝑖𝑖 × 𝐴𝐴𝑚𝑚 ,𝑡𝑡−𝑖𝑖� + 𝜀𝜀                                 (Eq. 1) 
where Ca is the CPUE of tuna species a, α0 is the intercept parameter, α1, 
α2,α3 represent the parameter estimates and ε represents an unsolved 
normally distributed random variable.  

The Generalized Additive Model (GAM) was also used to model the 
CPUE of all three tuna species as shown below. GAM allowed testing of 
non-linear responses of independent environmental variables on tuna 
CPUE of each species. Polynomial functions of second and third order 
was inserted in Equation 1 to investigate whether GAM resulted in better 
fit of models. The resulting GAM is shown as Equation 2.  

log�𝐶𝐶𝑎𝑎 ,𝑡𝑡� = log�𝛽𝛽0,𝑚𝑚 ,𝑚𝑚 ,𝑖𝑖� + 𝛽𝛽1,𝑚𝑚 ,𝑚𝑚 ,𝑖𝑖 × 𝑇𝑇𝑚𝑚 ,𝑡𝑡−𝑖𝑖
𝑚𝑚 + 𝛽𝛽2,𝑚𝑚 ,𝑚𝑚 ,𝑖𝑖 × 𝐴𝐴𝑚𝑚 ,𝑡𝑡−𝑖𝑖

𝑚𝑚 +

𝛽𝛽3,𝑚𝑚 ,𝑖𝑖 × �𝑇𝑇𝑚𝑚 ,𝑡𝑡−𝑖𝑖 × 𝐴𝐴𝑚𝑚 ,𝑡𝑡−𝑖𝑖� + 𝜀𝜀                        (Eq. 2) 

where β0 is the intercept parameter, β1, β2, β3 represent the parameter 
estimates and x = (1,2,3). Natural logarithmic transformation of the 

dependent variable and intercept parameter in Equation 1 and Equation 2 
was essential to reduce outlier and skewness effects. All possible combi-
nations of independent variables in Equation 1 and Equation 2 were tested. 
This enabled testing of both individual and combined effects of the two 
independent environmental variables. This also allowed testing of both 
linear and non-linear effects of the independent variables. Variance homo-
geneity tests were also done to ensure all variance values are <4.00 to 
ensure stability of least square estimators (Fox, 2015) to avoid selection of 
false models. Estimated tuna trajectories resulting from both one and two 
independent environmental variables were investigated and graphed 
against referred tuna trajectories. “R”, version 4.0.1 (R Core Team, 2020) 
was used for all statistical and modelling analysis in this study.  
 
Results  
 

Correlation of variables. Comparison of tuna CPUE with environ-
mental variables of SST and AMO showed highly significant correlation 
for different months and lag periods (Fig. 3). South Pacific Th. alalunga 
stock had strongest correlation with SST July in year t–3 and AMO 
November in year t–0 while South Pacific Th. obesus stock had strongest 
correlation with SST June in year t–5 and AMO October in year t–2 and 
South Pacific Th. albacares stock had strongest correlation with SST July 
in year t–1 and AMO October in year t–4.  

  
Fig. 3. Correlation scatterplot matrix for CPUE of Th. albacares, Th. alalunga and Th. obesus in the South Pacific Region against independent environ-

mental variables of sea surface temperature (SST) and Atlantic Multidecadal Oscillation (AMO): numbers represents different months (1–12); matrix also 
shows kernel density overlays, distribution, histograms and absolute correlations at different significance levels; * P < 0.05, ** P < 0.01, *** P < 0.001  

Figure 4 shows the time series dynamics of environmental variables 
over time with respective lags that resulted in the strongest correlation with 
tuna CPUE. The variable dynamics in all cases seemingly follow two 
different trend patterns over time. Tuna stock time series in Figure 2 also 
seems to have two different trend dynamics. To test this, tuna and environ-
mental variables were divided into two regimes from the points where 
stock patterns seemingly changed. Boxplots of regimes (Fig. 5) shows a 
clear representation of the regime differences. T-tests showed significant 
difference (P < 0.05) in means for all variables used for stock reproduction 
models from Figure 5.  

Results from the correlation study (Fig. 3) were used for reconstruc-
ting the CPUE stock dynamics of the three South Pacific tuna species. 
Models showing strongest relationship with tuna CPUE with reference to 
R2 values, AIC and p-values are shown in Table 1. Models with two va-
riable and single variables are shown to determine the impact of combined 
and individual variables on each of the three South Pacific tuna CPUE 
dynamics. From Figure 6 and Table 1, models with two variables have a 
better fit in comparison to models with single variable for all tuna stocks. 
When single environmental variable models are compared (Table 1), 
Th. alalunga, the single model with SST performs better than AMO. 
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For Th. obesus and Th. albacares, the single model with AMO performs 
better that SST. When the observed CPUE is compared with CPUE 
forecast from the models presented in Table 1 using linear regression, it is 
indeed observed that two different linear relationships or regimes may 
actually exist (Fig. 7).  
 
Discussion  
 

Marine ecosystems are difficult to understand and the health of any 
given species is determined via interaction of various biotic and abiotic 

factors interacting in a complex relationship. Environmental factors have 
an important influence on marine life over time and need to be seriously 
considered in harvesting plans for marine resources. Population dynamics 
of commercial fish species such as tuna are affected by a multitude of 
factors including interspecies relationships, habitat degradation, ocean 
acidification, climatic and environmental factors alterations over time and 
anthropogenic influences including pollution and harvesting levels, to 
name a few (Johnson et al., 2020). This is further compounded by the 
highly migratory nature of tuna species.  

  
Fig. 4. Time series trends for selected independent environmental variables of sea surface temperature (SST) and Atlantic multidecadal oscillation 

(AMO): these variables showed highest correlation with the dependent variables and numbers represents different months (1–12); the years  
are indicated in the abscissa; all plots (a–d) seem to show a change in pattern and mean value occurring around the mid-1990s  

  
Fig. 5. Boxplots of individual variables divided into different regimes (R1, R2) for comparison: R1 and R2 means are significantly different (P < 0.05)  

in all cases; numbers next to variables represent months (1–12); SST – sea surface temperature and AMO – Atlantic multidecadal oscillation:  
(i) Th. alalunga (ALB) R1 = 1972–1992, R2 = 1993–2019; (ii) SST7 R1 = 1969–1989, R2 = 1990–2016; (iii) AMO11 R1 = 1972–1992,  

R2 = 1993–2019; (iv) Th. obesus (BET) R1 = 1972–1994, R2 = 1995–2019; (v) SST6 R1 = 1967–1989, R2 = 1990–2014;  
(vi) AMO10 R1 = 1970–1992, R2 = 1993–2017; (vii) Th. albacares (YFT) R1 = 1972–1996, R2 = 1997–2019;  

(viii) SST7 R1 = 1969–1993, R2 = 1994–2016; (ix) AMO11 R1 = 1968–1992, R2 = 1993–2015  
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Table 1  
CPUE stock reproduction models using SST and AMO variable for South Pacific Th. alalunga, Th. obesus and Th. albacares  

Th. alalunga CPUE 
Model and parameters (two variables) 

i. 𝑙𝑙𝑜𝑜𝑜𝑜(𝐶𝐶𝑡𝑡) = −13.546 + 4.744 × 10−3 × 𝑆𝑆𝑆𝑆𝑇𝑇𝑖𝑖 ,𝑡𝑡−3 + 0.330 × 𝐴𝐴𝑇𝑇𝐴𝐴𝑛𝑛 ,𝑡𝑡  t-value    
F statistic 
CC 

5.957 
35.48 
0.660 

p-value  
R2       AIC 

3.36×10–7 
0.436 
–36.55 

Models and parameters (single variables) 
ii. 𝑙𝑙𝑜𝑜𝑜𝑜(𝐶𝐶𝑡𝑡) = −4.748 + 0.535 × 𝐴𝐴𝑇𝑇𝐴𝐴𝑛𝑛 ,𝑡𝑡  t-value    

F statistic 
CC 

4.696 
22.05 
0.582 

p-value  
R2       AIC 

2.42×10–5 
0.324 
–27.91 

iii. 𝑙𝑙𝑜𝑜𝑜𝑜(𝐶𝐶𝑡𝑡) = −17.80 + 0.579 × 𝑆𝑆𝑆𝑆𝑇𝑇𝑖𝑖 ,𝑡𝑡−3 t-value    
F statistic 
CC 

4.965 
24.65 
0.579 

p-value  
R2       AIC 

9.89×10–6 
0.349 
–29.71 

Th. obesus CPUE 
Model and parameters (two variables) 

i. 𝑙𝑙𝑜𝑜𝑜𝑜(𝐶𝐶𝑡𝑡) = 7.803 − 6.412 × 10−3 × 𝑆𝑆𝑆𝑆𝑇𝑇𝑢𝑢 ,𝑡𝑡−5 − 3.363 × 10−4 ×
(𝑆𝑆𝑆𝑆𝑇𝑇𝑢𝑢 ,𝑡𝑡−5 × 𝐴𝐴𝑇𝑇𝐴𝐴𝑜𝑜 ,𝑡𝑡−2) 

t-value    
F statistic 
CC  

9.134 
83.42 
0.792 

p-value  
R2       AIC 

6.70×10–12 
0.645 
–22.32 

Models and parameters (single variables) 
ii. 𝑙𝑙𝑜𝑜𝑜𝑜(𝐶𝐶𝑡𝑡) = −4.516 − 0.884 × 𝐴𝐴𝑇𝑇𝐴𝐴𝑜𝑜 ,𝑡𝑡−2 t-value    

F statistic  
CC 

7.539 
56.84 
0.739 

p-value  
R2       AIC 

1.42×10–9 
0.553 
–11.28 

iii. 𝑙𝑙𝑜𝑜𝑜𝑜(𝐶𝐶𝑡𝑡) = 6.782 − 3.059 × 10−6 × 𝑆𝑆𝑆𝑆𝑇𝑇𝑢𝑢 ,𝑡𝑡−5
2  t-value    

F statistic 
CC  

6.007 
36.08 
0.647 

p-value  
R2       AIC 

2.83×10–7 
0.440 
–0.460 

T. albacares CPUE 
Model and parameters (two variables) 

i. 𝑙𝑙𝑜𝑜𝑜𝑜(𝐶𝐶𝑡𝑡) = 10.858 − 8.278 × 10−3 × 𝑆𝑆𝑆𝑆𝑇𝑇𝑖𝑖 ,𝑡𝑡−1 − 0.996 × 𝐴𝐴𝑇𝑇𝐴𝐴𝑜𝑜 ,𝑡𝑡−4 t-value    
F statistic 
CC  

11.809 
139.40 
0.831 

p-value  
R2       AIC 

1.59×10–15 
0.752 
–11.67 

Models and parameters (single variables) 
ii. 𝑙𝑙𝑜𝑜𝑜𝑜(𝐶𝐶𝑡𝑡) = −4.496 − 0.771 × 𝐴𝐴𝑇𝑇𝐴𝐴𝑜𝑜 ,𝑡𝑡−4 t-value    

F statistic  
CC 

9.57 
91.59 
0.771 

p-value  
R2       AIC 

1.61×10–12 
0.665 
2.660 

iii. 𝑙𝑙𝑜𝑜𝑜𝑜(𝐶𝐶𝑡𝑡) = 25.812 − 1.633 × 10−2 × 𝑆𝑆𝑆𝑆𝑇𝑇𝑖𝑖 ,𝑡𝑡−1 t-value    
F statistic 
CC  

7.182 
51.58 
0.715 

p-value  
R2       AIC 

4.86×10–9 
0.529 
19.153 

Notes: different model parameters are also shown; model uses independent variable from Figure 3 and 4; two variable and single variable models are included; models shown 
have highest significance with reference to P-value, Akaike information criterion (AIC), regression coefficient (R2) values, correlation coefficient (CC), t-value and F statistic; 
model subscripts refer to the respective months and lag period; j – July, n – November, u – June, o – October; Ct – CPUE for year t; SST – sea surface temperature; AMO – 
Atlantic multidecadal oscillation.  

  

Fig. 6. Model fit showing observed CPUE in black and model reconstructed CPUE in red for South Pacific Th. alalunga, Th. obesus and Th. albacores: 
models with highest correlation are shown for single and combined variables from Table 1; tuna species and independent variable(s) are shown  

for each graph; dashed lines represent 95% confidence interval for the models in red; the years are indicated in the abscissa  
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Fig. 7. Regression graphs for CPUE against CPUE forecast from Table 1: data points are divided in two regime periods with regime 1  

in blue and regime 2 in red; tuna species and independent variable(s) are shown for each graph; the regression lines  
for the regimes differ significantly from each other in all cases at P < 0.05  

This work shows that a significant portion of stock dynamics of South 
Pacific Th. alalunga, Th. obesus and Th. albacares can be explained well 
by two environmental conditions of SST and AMO. This shows that a lar-
ge portion of tuna variation in the Eastern and Southern Pacific is related 
to environmental conditions. Only two variables were sufficient to create 
good models. However it should be noted that this does not mean that 
these models are the best possible. If a larger number of long term envi-
ronmental, ecological and biological variables are made available, then far 
more reasonable models can be constructed to explain even larger propor-
tions of the stock patterns of the three tuna species studies here. Most 
developing island countries in the South Pacific do not have reliable long 
term data, which makes it very difficult to understand multivariate impacts 
on tuna resources over long time series (Chambers et al., 2017; Varea 
et al., 2020; Mori et al., 2023). This work shows that it is possible to con-
struct sufficiently acceptable models with limited environmental variables. 
The models show that the stock pattern of Th. alalunga, Th. obesus and 
Th. albacares in the South Pacific can be mostly explained by the two en-
vironmental conditions. The stock dynamics can be said to be not density-
dependent. This indicates that biological interactions, pollution and harves-
ting have much lower possible impacts on these tuna resources. Tuna ma-
nagement approaches and planning in the South Pacific Island Countries 
need to move away from systems that mostly include fishing intensity and 
density-dependent effects such as maximum sustainable yield (MSY) to-
wards more modern approaches that are density-independent and more 
inclusive of environmental factors.  

Models with single variables are evidence of significant individual ef-
fect of SST and AMO on stock time series of each tuna species. Although 
models with a single variable resulted in significant fitness, models with 
two variables had a better fit in comparison to models with a single variab-
le for all tuna stocks. Adding more environmental variables may likely 
lead to models with higher statistical significance, however models with 
more than two variables will be difficult to explain biologically. Due to 
this, models with two variables are better suited to explain the stock trajec-
tory of the three tuna species in this work. Lag periods of environmental 
variables indicate their impact at different life stages of the respective tuna 
stock. The lag period depends on the tuna species and stock studied and 
the respective environmental variable. The relationship of environmental 

variables with tuna in Eastern and Western Pacific can be represented by 
equation 3 shown below,  

log(𝐶𝐶𝑡𝑡) = log(𝑙𝑙) + 𝑖𝑖�𝑦𝑦𝑖𝑖 ,𝑡𝑡−𝑛𝑛� + 𝜀𝜀                             (3) 
where l is a parameter estimate and f(yi,t–n) is a function that incorporates 
the influence of environmental variables in with lag period of t–n. yi is 
various variables that impact the stock trajectory of the three species of 
tuna. Since the models presented here do not fully explain tuna variability 
over time and tuna, like most marine organisms, are influenced by 
multiple variables with complex interactions, yi represents all variables 
affecting tuna time series variability with i = (1,2,…, k), where k represents 
environmental, biotic, ecological and anthropogenic variables. Due to its 
complexity, factors and interactions affecting tuna stock may never be 
completely understood. To account for this, the term ε is included to 
represent a normally distributed random variable(s).  

A recent work similarly showed a strong relationship between long-
term Th. albacares CPUE in the Indo-Pacific region with SST and AMO 
(Wu et al., 2022). Wu et al. (2020) showed significant negative correlation 
of Eastern and Western Pacific Th. albacares and AMO with lag periods 
of 1–5 years, which is similar to the results presented in this work. Medio-
dia et al. (2020) also established a strong non-linear relationship between 
the Th. albacares catch with reference to effort and SST in East Pacific 
Ocean. Singh et al. (2017) used SST to develop stock reproduction mo-
dels which explained a significant portion of stock variation of North Paci-
fic Th. alalunga. Th. alalunga distribution from 2000 to 2016 has been 
shown to be affected by SST in the Indian Ocean (Mondal et al., 2022). 
Th. obesus distribution and stock pattern in the Indian Ocean area off Java 
and Atlantic Ocean Th. obesus stocks has been shown to be related to SST 
variation in different studies (Lee et al., 2005; Syamsuddin et al., 2016; 
Lan et al., 2018). A recent work on long-term variability of K. pelamis 
CPUE in the North West Pacific showed this to be significantly related to 
AMO and SST (Hou et al., 2022).  

There seem to be two significantly different patterns in the trajectory 
of the three tuna species and environmental conditions used to model 
them. Both tuna and environmental conditions show significantly different 
regimes differing around the 1990s. When actual CPUE and forecast 
CPUE were separated into two regimes and compared, two significantly 
different linear relationships were observed. This indicates a good chance 
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for regime shifts to exist in tuna stock related to or driven via environmen-
tal variables or SST and AMO in the Eastern and Western South Pacific. 
Regimes shifts in fish stock dynamics and environmental conditions were 
shown in Singh et al. 2018 for Th. alalunga and other species in different 
works (Oh et al., 2005; Sakuramoto, 2005; Sakuramoto, 2012; Singh 
et al., 2014). Hou et al. (2022) studied the long-term trajectory pattern of 
Skipjack tuna variability in the North West Pacific from 1972–2019 and 
determined the non-stationarity pattern in the dynamics affected by AMO 
transitioning in the early 1990s. This is similar to the findings of the pre-
sent study. These mentioned works have established regime shifts in fish 
stock time series related to environmental conditions. Regime shifts for 
South Pacific tuna stock need to be further studied and included in long 
term tuna sustainability plans as they have a significant influence on struc-
turing the stock trajectory patterns of these important commercial species.  
 
Conclusion  
 

The results presented here show that environmental conditions play a 
highly significant role in structuring tuna stock trajectory in the South Pa-
cific and need to be included in tuna management/harvest plans to ensure 
sustainability of this important resource. A likely regime shift in tuna po-
pulation may exist in the South Pacific region related to environmental 
conditions. The importance of regime shifts should be recognised and 
further investigated to be possibly included in tuna sustainability plans due 
to their influence on long term tuna trajectory patterns.  
 

The author would like to thank all the researchers and individuals involved in collec-
tion and compilation of tuna data at the Western and Central Pacific Fisheries Com-
mission (WCPFC) and environmental and climatic data at the Meteorological Office 
Hadley Centre.  
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