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Abstract 
Multimodal transportation is being increasingly adopted by a large number of freight 
companies. Multimodal transportation refers to using combinations of various transportation 
modes to move commodities from origin to destination. In this paper, a table is created to store 
the selected simulation results, which we shall refer to as a Multimodal Leg Outcome (MLO) 
table. This table is then utilized to find an optimal route in a multimodal network for given 
origin and destination. The model developed in this paper integrates total travel costs and total 
travel time of the routes subject to the availability of each mode for each leg, to generate the 
most preferred routes. Due to this model being multi-objective, where the desire is to minimise 
more than one objective function, we construct the MLO table using pareto optimal solutions. 
In our approach, Monte Carlo simulations (MCS) are used to generate random feasible routes 
and the results are analysed to extract the pareto optimal solutions (pareto front) offering 
various routes with respective advantages in terms of duration and/or costs. These pareto 
optimal solutions are then used to develop a Multimodal Leg Outcome (MLO) table. The 
proposed approach is then applied to a simple situation and the results are presented. It is shown 
that the MLO table obtained can be used not only to find an optimal route in the respective 
multimodal network, given origin and destination, but also can be utilised after altering the 
availability of random vertices and/or modes of transportation in the original network. 

1. Introduction 
Multimodal transportation is being increasingly used to transport goods from origin to 
destination by local and global freight companies. It involves using combinations of various 
transportation modes (rail, road, water and air) to move commodities from origin to destination. 
Multimodal transportation potentially could improve efficiency, costs, safety and flexibility for 
the transportation industry as compared to the ordinary single mode transportation. 

Identifying the best means of transporting goods from shippers to receivers is a common 
problem for freight forwarders. Trucks are commonly used in many regions since they have 
shorter travel times. However, other transport modes such as rail, air and sea can have a range 
of different benefits such as reduced operating costs, fuel consumption and emissions as well 
as greater levels of safety but they may have higher travel times and lower levels of reliability. 

One of the operational problems that need to be solved in the multimodal setting is the 
freight routing problem. That is, to find and/or select the best route(s) in terms of time and/or 
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costs etc, while using the best available mode to move commodities from their origins to 
destinations through the transportation network. However due to the nature of this problem, a 
multi-objective approach needs to be taken and hence no one solution may exist that 
simultaneously optimises each objective function which in this case would be, at the very least, 
the cost function and the time function. 

This paper tackles the multimodal freight routing problem by creating a table to store the 
selected simulation results, which we shall refer to as a Multimodal Leg Outcome (MLO) table. 
The Multimodal Leg Outcome (MLO) table is created from the pareto optimal solutions which 
are obtained by using Monte Carlo simulations (MCS) to generate random feasible routes. 

The model developed in this paper integrates the availability of each mode for each leg to 
calculate total costs of transportation, including transfer costs from one mode of transportation 
to another, and the duration of trip, to generate an optimal route given the origin and 
destination.  

The proposed approach is then applied to a simple situation and results presented. Also 
demonstrated is the ability to use the generated MLO table to generate an optimal route, even 
after altering the original network by changing the availability of random vertices and/or 
modes. This approach saves time and money by not having to regenerate routes all over again 
if the initially given modes and vertices are not available after simulation. We can still get the 
next best solution using the MLO table. 

2. Literature review 
Multimodal transport involves at least two modes being used to transport goods 

(Steadieseifi et al., 2014). When considering alternatives to trucks, numerous options regarding 
the choice of terminals where other transport options are available must be considered. This 
requires routes to be designed in a way that involves an examination of a range of possible 
transport modes and terminal options. This can be challenging due to the number of alternatives 
available. 

Typically, a single objective such as minimising travel time is considered when only one 
mode such as a truck is available. However, other objectives such as minimising financial costs 
are often considered when there are other modes available. Generally, different transport modes 
will have different operating costs as well as different journey times between terminals that 
will be conflicting (Sun and Lang, 2015). 

Multi-objective optimisation approaches based on mathematical programming and 
network analysis can be applied to determine the best and most practical solutions for multi-
modal transport problems. Possible solutions consisting of routes comprising of paths using 
available transport modes that can be used to carry goods between terminals linking shippers 
and receivers need to be generated. 

Multi-modal transport problems can be formulated by combining all objectives into one 
objective function, with each individual objective weighted according to its relative 
importance. However, it is challenging to determine the weighting of individual objectives and 
only a single solution is provided as an answer, where in practice a set of good options is 
generally desirable. 

Multi-objective optimisation techniques can be employed to generate solutions that are 
better than all other feasible solutions considering multiple objectives without the need to 
specify the relative importance of each objective. Pareto optimal solutions are options that are 
not dominated by any other feasible solution where a better value for any objective is possible 
only with a poorer value of at least one other objective. 

Genetic algorithms have been widely adopted as a solution method for generating pareto 
optimal solutions for Multi-modal transport problems, including the Vector Evaluated Genetic 
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Algorithm (Schaffer, 1985), the Non-dominated Sorting Genetic Algorithm (Srinivas and Deb, 
1994), the NSGA-II (Deb et al., 2002), the Normalized Normal Constraint Method (Messac, 
Ismail-Yahaya and Mattson, 2003) and the bi-level multi-objective Taguchi genetic algorithm 
(Xiong and Wang, 2014). 

To the best of the authors’ knowledge, there is no previously published work utilising the 
proposed approach of saving and applying the MCS simulation results of the extracted Pareto 
optimal solutions, for multimodal network routing problems. 

 

3. Monte Carlo simulation (MCS) 
Monte Carlo simulation involves building models of possible results by substituting all of the 
input values having inherent uncertainties, with probability distributions. It then calculates 
results repeatedly, each time using a different set of random values from the probability 
distributions. The results of Monte Carlo simulation are not single values but distributions of 
possible outcome values (Vose, 2008). 
Generally, the following steps are involved in performing an MCS: 

• Step 1: Create one (or more) parametric model(s), 
F(x) = [𝐹!(x), 𝐹"(x), … . , 𝐹#(x)], where 𝑝 is the number of objective functions 
and input  𝐱 = 	 (𝑥!𝑥", … . . , 𝑥$), where 𝑚 is the number of possible inputs. 

• Step 2: Represent the inputs (𝑥!𝑥", … . . , 𝑥$) using probability distributions. 

• Step 3: Generate a set of random inputs(𝑥%!, 𝑥%", … . . , 𝑥%$) from the distributions 
for each iteration 𝑘, 𝑘 = 1	𝑡𝑜	𝑡. 

• Step 4: Evaluate the model using the random inputs, F(x) =
[𝐹!(x), 𝐹"(x), … . , 𝐹#(x)] for each iteration, 𝑘. 

• Step 5: Analyse the results of F(x) = [𝐹!(x), 𝐹"(x), … . , 𝐹#(x)], obtained for all the 
iterations, 𝑘 = 1	𝑡𝑜	𝑡. 

4. Pareto optimality   
The origin of the term Pareto optimality goes back to the year 1906 applied in the area of 
economics and later on found its application in the field of Mathematics especially multi-
objective optimisation (Marler and Arora, 2004). Multi-objective optimization problems 
(MOPs) are a branch of mathematical optimisation which involves having to optimize more 
than one objective function simultaneously. Usually, MOPs don’t have a single optimal 
solution that optimises each objective function in which case Pareto optimal solutions may be 
used to represent the solution set.  Pareto optimal solutions are solutions that cannot be 
improved in any of the objectives without degrading at least one of the other objectives. The 
set of Pareto optimal outcomes is often called the Pareto front or Pareto boundary. Solutions 
which do not lay on the Pareto front are called Pareto dominated solutions. See Fig. 1. 

Let 𝑋 ⊂ ℝ& be a non-empty set of feasible solutions and 𝐹 = 	 8𝐹𝟏	𝐹𝟐, … . , 𝐹𝒑9: ℝ& ⇢ ℝ# 
be a set of objective functions. Feasible solution, x; 	∈ 	𝑋  is called a Pareto optimal solution of 
the  
 

MOP:   min
*	∈	-

F(x) = 8𝐹!(x), 𝐹"(x), … . , 𝐹#(x)9, 
 

if and only if there does not exist any x	 ∈ 	Χ such that 𝐹(x) 	≤ 𝐹(x;). 
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Fig 1: Pareto Front. 

5. Multimodal freight route selection via Multimodal Leg Outcome 
(MLO) table 
In this section, we present our approach to solving the multimodal freight route selection 
problem by creating and utilising Multimodal Leg Outcome (MLO) tables. We populate the 
MLO after analysing the results of the MCS and extracting the pareto optimal solutions. Note 
that the MLO table is based on the pareto optimal solutions and not on all the feasible solutions 
obtained. 
 

The multimodal freight route selection problem involves choosing a combination of 
various routes from a selected origin to a particular destination, taking into consideration, the 
effects of implementing these combinations, including but not limited to travel costs and time 
taken, based on the availability of routes and modal options for each possible leg of 
transportation.  

 
Step 1: Formulating the MOP: 

Let 𝐺 = (𝑉, 𝐸,𝑀)  denote the multimodal transportation network with the set of 𝑉 
vertices, a set of 𝐸 edges and a set of 𝑀	transportation modes. Let each edge, 𝑒 ∈ 𝐸, connecting 
two vertices 𝑢 and 𝑣, be denoted by (𝑢, 𝑣) and the associated weight of the edge be denoted by 
δ(u, v).  

Let ∅Mu., v/N be the transfer cost from vertex u to vertex 𝑣  from mode 𝑖	to	𝑗, 𝑖, 𝑗	 ∈
{1: 𝑟𝑜𝑎𝑑, 2: 𝑟𝑎𝑖𝑙, 3: 𝑤𝑎𝑡𝑒𝑟}, where 𝑖 is the mode arriving at 𝑢 and 𝑗  is the mode arriving at 𝑣  
and hence the mode of transportation of (𝑢, 𝑣). Note if 𝑖 = 𝑗, then ∅M𝑢0 , 𝑣1N = 0, i.e. there is 
no cost if no modal transfer occurred. Additionally, 	∅M𝑢0 , 𝑣1N = 0, if 𝑢 is the starting vertex. 

 
Definitions 

• 𝑢 is adjacent to (or is a neighbour of) 𝑣, if (𝑢, 𝑣) ∈ 𝐸. 
• The set of all neighbours of 𝑢 is the neighbourhood of 𝑢 and is denoted 𝑁(𝑢). 

Pareto 
Front 

Pareto optimal solutions 

Dominated 
solutions 

𝐹!(x) 

𝐹"(x) 
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• A path is defined as an ordered set of vertices (𝑣!, …… . , 𝑣2), 𝑡 >
1	𝑤ℎ𝑒𝑟𝑒	𝑡	𝑖𝑠	𝑎𝑛	𝑖𝑛𝑡𝑒𝑔𝑒𝑟 , such that (𝑣3 , 𝑣34!) ∈ 𝐸  for ℎ = 1,… . , 𝑡 − 1,  and the 
vertices are not repeated. 

 
Step 2: Deciding on using some strategy to act and then act accordingly  
We will use MCS, as described in Section 3, to randomly choose neighboring towns and modes 
to travel from origin until the destination town is reached. Note that a variant of this method 
called Monte Carlo Tree Search (MCTS) can also be used. 

I. Construct parametric model: F(x) = 8𝐹!(x), 𝐹"(x), … . , 𝐹#(x)9, where:  
• 8𝐹!	𝐹", … . , 𝐹#9 are various applicable objective functions such as criteria, payoff 

functions, cost functions, time and value functions; and 
• x = 	 (𝐴5 , 𝐴"$, 𝐴6$, … . . , 𝐴7$)  are the towns to be traversed to reach 

destination, 𝐴7  from the origin, 𝐴5 ;  𝑚 ∈ {1: 𝑟𝑜𝑎𝑑, 2: 𝑟𝑎𝑖𝑙, 3: 𝑤𝑎𝑡𝑒𝑟, 4: 𝑎𝑖𝑟} 
denotes the mode of transportation used to arrive at the vertex.  

 
II. For each iteration (𝑘 = 1	𝑡𝑜	𝑡), starting with the town of origin, 𝐴5 ,	randomly select the 

next town to be traversed from range of neighboring towns (𝐴8 , … , 𝐴9) represented 
using probability distribution. These input distributions can be derived from the 
adjacency matrix for the network. After the next town is selected, also randomly select 
an available mode from the list of available modes of transportation to this town from 
the preceding town. If this selected town is the desired destination town, 𝐴7, then stop 
otherwise select the next town visited from respective range of neighboring towns 
represented by appropriate probability distribution until desired destination town, 𝐴7 is 
reached. If the next town does not exist, that is, the current town has no neighbor, then 
stop and restart the next iteration. The result of this step would generate, 𝒙𝒌 =
(𝐴5 , 𝐴"$, … . . , 𝐴7$)𝒌,		for each iteration	𝑘. 

  
III.  Evaluate the model, F(x) = 8𝐹!(x), 𝐹"(x), … . , 𝐹#(x)9,	using the random inputs of 𝐱, 

generated in step 2, for each iteration, 𝑘 

Step 3: Populate the Multimodal Leg Outcome (MLO) table 

IV. Analyse the results of 𝐅(𝐱) = 8𝐹𝟏(𝐱), 𝐹𝟐(𝐱), … . , 𝐹𝒑(𝐱)9, obtained for all the iterations, 
𝑘 = 1	𝑡𝑜	𝑡 using the Pareto optimal approach. Section 5 describes Pareto optimality and 
the principle behind it. 

 
V. Extract the Pareto optimal solutions (i.e. Pareto front) of traversed towns denoted by 

𝐎𝐅(𝒙̇) = 8𝒙̇𝟏, 𝒙̇𝟐, … , 𝒙̇𝒈, . . . , 𝒙̇𝒒9 , for 𝑔 = 1	to	q  unique solutions and 𝒙̇𝒈 =
(𝐴5 , … . . , 𝐴7)=. 

 
VI. For each unique extracted solution of 𝐎𝐅(𝒙̇) , regenerate random modes, 𝑚 ∈

{1: 𝑟𝑜𝑎𝑑, 2: 𝑟𝑎𝑖𝑙, 3: 𝑤𝑎𝑡𝑒𝑟, 4: 𝑎𝑖𝑟} of traversal to obtain 𝐱̈𝒍  = (𝐴5 , 𝐴"$, … . . , 𝐴7)𝒍  for 
each iteration 𝑙 = 1	𝑡𝑜	𝑟. This step can be classed as a refinement step to ensure that 
the 𝒙̇𝒈 = (𝐴5 , … . . , 𝐴7)=  obtained in step V has sufficiently traversed the optimal 
combination of towns via the available modes thus improving our results. 

 
VII. Analyse the refined results, 𝐅(𝒙̈) = 8𝐹𝟏(𝒙̈), 𝐹𝟐(𝒙̈), … . , 𝐹𝒑(𝒙̈)9 , obtained for all the 

iterations, 𝑙 = 1	𝑡𝑜	𝑟, using the Pareto optimal front approach. 
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VIII. Create an empty MLO Table (3-Dimensional), [# of vertices by # of vertices by # of 

modes].  
 

IX. Populate the MLO Table according to the Pareto optimal solutions obtained in step VII. 
The pseudocode for the MLO Table approach is provided as appendix 1.1: 

 

6. Applied model 
In this section, an example adapted from (Xiong and Wang, 2014) is presented to demonstrate 
MLO Table approach for best freight route selection in a multimodal network. 
In this example there are 35 vertices and 136 edges as shown in Fig. 2 and the task is to go 
from vertex 1 to vertex 35. There are at most 3 possible modes of transportation which 
corresponds to A (road), B (rail) and C (water) between any vertices (Note, for the purposes 
of numerical table input we also refer to Road, Rail and Water as modes 1, 2 and 3 
respectively). Appendix 1.2 provides the edge weights which are transportation distances 
between vertices for various modes if available. A dash (-) denotes that there is no connection 
between the associated vertices for the respective mode. Table 1 provides the speed and costs 
per unit load for each transportation mode while Tables 2 and 3 give the transfer costs per 
unit load and time per unit load for each change of mode. 

 
Fig.2 Example multimodal transport network (adapted from (Xiong and Wang, 2014)). 

 
Table 1: Speed (unit distance per unit time) and Costs ($ per unit load) with respect to 

transportation modes 

 Road Rail Water 
Speed 4.5 3 1 
Costs 6 3 1 
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(Transfer rate of time                                              
as provided in Table 3) 

(Transfer rate of cost as 
provided in Table 2) 

Table 2: Transfer cost rates ($ per unit load) when changing transportation modes 

 Road Rail Water 
Road 0 4 7 
Rail 4 0 7 
Water 7 7 0 

 
Table 3: Transfer time rate (unit time per unit load) when changing transportation modes 

 Road Rail Water 
Road 0 0.0067 0.0113 
Rail 0.0067 0 0.0113 
Water 0.0113 0.0113 0 

 
The task at hand is to find the best route(s) to from town/vertex 1 to town/vertex 35 carrying 
𝜇 = 20  units, utilising available modes such that the objective functions 𝐅(𝐱) =
[𝐹𝟏(𝐱), 𝐹𝟐(𝐱)],	 are minimized, where: 

Cost function: 𝐹𝟏(𝐱) = 	𝜇 ∗ ∑ [𝛿M𝐴30 , 𝐴34!1N2?!
3@! ∗ 𝛼1 	+		∅(𝐴30 , 𝐴34!1)];  

and 

Time function: 𝐹𝟐(𝐱) = 	∑ [𝛿M𝐴30 , 𝐴34!1N2?!
3@! /𝜗1 	+	𝜇 ∗ 	𝜃(𝐴30 , 𝐴34!1)];  

and: 

• 𝐱 = 	 (𝐴5 , 𝐴"$, … . . , 𝐴7$) are the towns to be traversed to reach destination, 𝐴7 = 35 
from the origin, 𝐴5 = 1; and 𝑚 ∈ {1: 𝑟𝑜𝑎𝑑, 2: 𝑟𝑎𝑖𝑙, 3: 𝑤𝑎𝑡𝑒𝑟} 
 

• t >0 is number of traversed town and  𝐴! = 1	and 𝐴2 = 35; 
 

• 𝑖	, 𝑗	 = 	 {1: 𝑟𝑜𝑎𝑑, 2: 𝑟𝑎𝑖𝑙, 3: 𝑤𝑎𝑡𝑒𝑟} are the modes of transportation	 used arriving at 
respective vertices; 

 
• 𝛿M𝑢0 , 𝑣1N is the distance of two towns 𝑢 and 𝑣 traversed using mode 𝑗; 

 

• ∅M𝑢0 , 𝑣1N = 	 v
0; 					𝑖 = 𝑗																																																								
4; 				𝑖 = 1	𝑎𝑛𝑑	𝑗 = 2	𝑜𝑟	𝑖 = 2	𝑎𝑛𝑑	𝑗 = 1
7; 			𝑖 = 1	𝑎𝑛𝑑	𝑗 = 3	𝑜𝑟	𝑖 = 2	𝑎𝑛𝑑	𝑗 = 3

											 

 
 

• 𝜃M𝑢0 , 𝑣1N = v
0; 												𝑖 = 𝑗																																																								
0.0067; 	𝑖 = 1	𝑎𝑛𝑑	𝑗 = 2	𝑜𝑟	𝑖 = 2	𝑎𝑛𝑑	𝑗 = 1
0.0113; 	𝑖 = 1	𝑎𝑛𝑑	𝑗 = 3	𝑜𝑟	𝑖 = 2	𝑎𝑛𝑑	𝑗 = 3

;   

 
	                                                                            

• 𝜗1 = v
4.5; 			𝑗 = 1
3; 				𝑗 = 2
1; 				𝑗 = 3

								(as provided in Table 1). 
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• 𝛼1 = v
6; 			𝑗 = 1
3; 			𝑗 = 2
1; 			𝑗 = 3

         (as provided in Table 1). 

 

7. Results and Discussion 
The Pareto optimal solution (pareto front) routes obtained after step 3: parts IV-V, as described 
in section 5, are: 

• 1-4-5-12-16-21-27-28-35 
• 1-4-5-12-16-21-17-22-26-29-33-35 
• 1-2-7-11-15-17-22-26-29-33-35 
• 1-4-5-12-16-21-22-27-28-35 

These routes were then used to run step 3: parts VI-VII, as described in section 5, where now 
only the modes are randomly chosen for these fixed routes. The Pareto optimal solutions of 
these results are provided in Appendix 1.3 and shown in Fig 3. The red straight lines in Fig. 3 
contain the pareto front which represent all the pareto optimal solutions as described in Section 
5. 

 
Fig.3 Pareto optimal solutions (pareto front). 

 
After obtaining the pareto optimal results, the MLO table is created with dimensions of (35 x 
35 x 3) representing the vertices and the available modes. This MLO table is then populated 
according to the results of all the solutions on the pareto front as shown below: 
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𝑁𝑒𝑤	𝑄(𝑢, 𝑣,𝑚) = 𝑄(𝑢, 𝑣,𝑚) + 𝑅; 

where: 𝑄(𝑢, 𝑣,𝑚)  represents a path (𝑢, 𝑣)  traversed using mode 𝑚 =
	{1: 𝑟𝑜𝑎𝑑, 2: 𝑟𝑎𝑖𝑙, 3: 𝑤𝑎𝑡𝑒𝑟} and 𝑅 being the reward if it is traversed. 
For instance, for solution #6 in Appendix 1.3, rewards would be awarded as follows assuming 
a standard reward,	𝑅 of 1: 
For  

# Route Modes 
6 1-4-5-12-16-21-27-28-35 B-B-A-A-C-C-C-C 

 

𝑁𝑒𝑤	𝑄(1,4,2) = 𝑄(1,4,2) + 1 

𝑁𝑒𝑤	𝑄(4,5,2) = 𝑄(4,5,2) + 1 

𝑁𝑒𝑤	𝑄(5,12,1) = 𝑄(5,12,1) + 1; and so on. 

 
Now that MLO table is created, the last step would be to use the MLO table to generate an 
optimal path from town 1 to town 35.  
Hence starting from vertex (town) 1, using the MLO table to decide on the next town to traverse 
and via which mode. Firstly, the neighboring vertex which has the highest reward is chosen 
and then the mode that has the highest reward for that vertex is chosen as the transportation 
mode. 
For instance, the best action from vertex 1, as provided by the MLO table is to go to vertex 4 
via rail. This is because MLO table entry appearing for vertex 1 is: 

𝑄(1,4,1) = 12 - [implying from vertex 1 to 4 via mode 1 (road)] 

𝑄(1,4,2) = 15 - [implying from vertex 1 to 4 via mode 1 (rail)] 

𝑄(1,4,3) = 4  - [implying from vertex 1 to 4 via mode 1 (water)]. 
Similarly, the route from vertex 1 is mapped using the MLO table until the destination vertex 
(#35) is reached. The resulting path provided is provided in Table 4. 

Table 4: Solution from MLO table using the pareto optimal solutions 

Route Modes Cost Time 
1-4-5-12-16-21-27-28-35 B-B-A-A-A-C-C-C 3600 90.25 

 
Note that this solution is actually one of the pareto optimal solution (#11) provided in Appendix 
1.3 hence the obtained solution cannot be improved for one objective without degrading the 
other. The path of the solution via MLO table is given in Fig 4. This solution is also presented 
while superimposed onto the pareto optimal solutions in Fig 5. 
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Fig.4 Generated path using MLO. 

 
Fig 5. Solution from MLO table superimposed (shown as red diamond) on the extracted pareto 
optimal solution. 
In reality, the transportation problem could be affected at any time because either the vertex is 
not available for traversing, or a particular mode is not available for transportation to/from that 
vertex.  We carry out the test as follows to test the MLO table in the event that the original 
network is varied. 



ATRF 2021 Proceedings 

 

   

Assume that from original network (Fig 2), the water route from vertex 21 to 27 is not available. 
This implies that our generated solution in Table 4 and Fig 4 cannot be used since it traverses 
vertex/town 27. As such, we update our MLO table to 𝑄(21,27,3) = 0, indicating that the 
reward from vertex 21 to 27 via water is zero. Restarting the process, to find the optimal route 
of transportation with this updated MLO table, provides us with an alternative route as provided 
in Table 5 and shown in Fig 6. 

 
Table 5: Alternate solution from using the MLO table after varying the original network. 

Route Modes 
     
Cost      Time 

1-4-5-12-16-21-17-22-26-29-33-35 
B-B-A-A-A-A-B-B-B-B-
B 4300 18.38 

 
Fig.6 Generated alternate path using MLO. 

The alternate path generated after MLO table modification is presented in Fig 6. As shown in 
Fig 7, this solution is also one of the extracted Pareto optimal solutions hence proving that the 
resulting solution after adjusting the MLO table due to changes in the original network is just 
as good as the original solution obtained in Table 4 since it is one of the Pareto optimal 
solutions. 



ATRF 2021 Proceedings 

 

    

 
Fig 7. Alternate solution after adjusting the MLO table due to changes in the original network 
superimposed (shown as red diamond) on the extracted pareto optimal solutions. 

8. Conclusion 
In this paper, we solved the multimodal freight route selection problem by creating and utilising 
a Multimodal Leg Outcome (MLO) table. We used Monte Carlo simulation method to obtain 
many possible routes using the available modes of transportation and then extracted the pareto 
optimal solutions from these obtained routes.  With the pareto optimal solutions in hand, a 
MLO table was constructed using these values which can be used to generate an optimal route 
for the given network. We applied our approach to an example problem and presented the 
results. We also demonstrated that the MLO table obtained can be used not only to find an 
optimal route in the respective multimodal network, given origin and destination, but is also 
applicable after altering the availability of random vertices and/or modes of transportation in 
the original network. This approach would enable users to use the created MLO table even if 
some of the nodes and/or modes are not available after the simulation, hence there is no need 
to redo the simulation. 
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10. Appendix 
Appendix 1.1: Pseudocode for MLO table approach 

MCS phase 

import network G 
construct adjacency matrix, distance matrix and mode matrix 
origin town_O 
destination town_D 
total_iterations_phase1 
total_iterations_phase2 
src = town_O 
path = src 
mode = [] 
MCS_phase1_cost = [] 
MCS_phase1_time = [] 
MCS_phase2_cost = [] 
MCS_phase2_time = [] 
for (counter =1 to total_iterations_phase1) 
while (src is not town_D) 
next_town  = randomly choose a neighbour of src using adjacency matrix 
while loop created 
next_town = randomly choose another neighbour of src 
if next_town = null 

break; 
next_mode = randomly choose a mode from SRC to next_town using mode matrix 

path = array ( path + next_town) 
mode = array( mode + next_mode) 
src = next_town 

MCS_phase1_cost = array (MCS_phase1_cost + F1(path, mode)) 
MCS_phase1_time = array (MCS_phase1_time + F2 (path, mode)) 
Pareto optimal solution extraction and rewarding 
Pareto_optimal_front1 = extract Pareto optimal front solutions ( MCS_phase1_cost, MCS_phase1_time) 
for each solution PO1 in Pareto_optimal_front1 

for (counter =1 to total_iterations_phase2) 
mode = randomly select a mode for each connecting towns in PO1 

MCS_phase2_cost = array (MCS_phase2_cost + F1(PO1, mode)) 
MCS_phase2_time = array (MCS_phase2_time + F2 (PO1, mode)) 
Pareto_optimal_front2 = extract Pareto optimal front solutions (MCS_phase2_cost, MCS_phase2_time) 
Create a MLO table and use  Pareto_optimal_front2 solutions to populate 
Use the MLO table to generate an optimal route for the multimodal freight route selection problem. 
Finish 
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Appendix 1.2: Vertex distances (units) with respect to available modes 
  Modes   Modes 
Edge A B C Edge A B C 
(1,2) 2 3 8 (18,20) 1 – – 
(1,3) 10 16 – (19,20) 4 – – 
(1,4) 3 5 11 (19,23) 3 – – 
(2,7) 3 5 9 (19,24) 9 – – 
(2,8) 9 15 29 (20,22) 3 – – 
(3,6) 7 12 – (20,23) 8 13 24 
(3,7) 1 – – (21,22) 10 – – 
(4,5) 2 3 8 (21,27) 10 16 32 
(5,6) 9 – – (22,23) 8 – – 
(5,12) 2 4 7 (22,26) 4 6 – 
(6,11) 3 5 – (22,27) 5 – – 
(7,10) 7 11 21 (23,25) 2 5 8 
(7,11) 3 – – (24,25) 6 11 – 
(8,9) 5 9 16 (24,30) 3 – – 
(8,10) 1 – – (24,31) 10 15 31 
(9,13) 10 16 31 (25,26) 7 12 – 
(9,14) 6 10 19 (25,29) – 6 – 
(10,11) 4 – – (25,30) 7 12 22 
(10,14) 5 9 16 (26,27) 3 – 9 
(11,12) 3 – – (26,29) 4 7 – 
(11,15) 4 8 – (27,28) 9 15 27 
(12,16) 2 4 8 (28,29) 7 – – 
(13,18) 6 – – (28,33) 2 3 – 
(13,19) 8 – – (28,35) 8 14 26 
(13,24) 5 8 16 (29,30) 6 – – 
(14,15) 6 11 19 (29,32) 1 – – 
(14,17) 2 – – (29,33) 2 4 – 
(14,18) 4 – – (30,31) 6 – – 
(14,20) 8 12 25 (30,32) 6 10 – 
(15,16) 7 11 22 (31,32) 4 6 13 
(15,17) 5 8 – (32,34) 6 9 19 
(16,21) 6 10 20 (33,34) 5 8 – 
(17,20) 8 – – (33,35) 8 13 – 
(17,21) 1 – – (34,35) 6 – – 
(17,22) − 9 –         
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Appendix 1.3: Pareto optimal front solutions 
 

# Route Modes 
     
Cost      Time 

1 1-4-5-12-16-21-27-28-35 C-C-C-C-C-C-C-C 2780 139.00 
2   B-C-C-C-C-C-C-C 3000 129.89 
3   B-B-C-C-C-C-C-C 3020 122.89 
4   B-B-B-C-C-C-C-C 3120 117.23 
5   B-B-B-B-C-C-C-C 3200 110.56 
6   B-B-A-A-C-C-C-C 3280 108.92 
7   A-A-A-A-C-C-C-C 3320 107.23 
8   B-B-B-B-B-C-C-C 3400 93.89 
9   A-B-B-B-B-C-C-C 3540 93.03 
10   B-B-A-A-B-C-C-C 3560 92.38 
11   B-B-A-A-A-C-C-C 3600 90.25 
12   A-A-A-A-A-C-C-C 3640 88.56 
13   B-B-B-B-B-B-C-C 3720 67.23 
14   A-B-B-B-B-B-C-C 3860 66.36 
15   B-B-A-A-B-B-C-C 3880 65.72 
16   A-A-A-A-B-B-C-C 3920 64.03 
17   B-B-B-B-B-B-B-C 4080 45.23 
18   A-A-A-A-A-A-A-A 5040 9.33 

19 1-4-5-12-16-21-17-22-26-29-33-35 B-C-C-C-C-A-B-B-B-B-B 3980 58.47 
20   B-B-C-C-C-A-B-B-B-B-B 4000 51.47 
21   C-C-C-C-B-A-B-B-B-B-B 4040 51.05 
22   C-C-C-B-B-A-B-B-B-B-B 4120 44.38 

23   
C-C-C-A-A-A-B-B-B-B-
B 4160 41.36 

24   B-B-B-B-B-A-B-B-B-B-B 4180 22.16 

25   
B-B-A-A-A-A-B-B-B-B-
B 4300 18.38 

26   
A-A-A-A-A-A-B-B-B-B-
B 4340 16.69 

27   
A-A-A-A-A-A-B-B-B-A-
B 4500 16.07 

28   
A-A-A-A-A-A-B-B-A-A-
B 4560 14.62 

29   
A-A-A-A-A-A-B-B-B-A-
A 4600 13.38 

30   
A-A-A-A-A-A-B-B-A-A-
A 4660 11.93 

31   
A-A-A-A-A-A-B-A-A-A-
A 4780 10.82 

 


