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Abstract 10 

Multimodal transportation is being increasingly adopted by a large number of freight companies. 11 
Multimodal transportation refers to using combinations of various transportation modes to move 12 
commodities from origin to destination. In this paper, a two phase Monte Carlo simulation 13 
approach is applied to find the best route(s) in a multimodal network for given origin and 14 
destination. The Monte Carlo model developed in this paper integrates total costs, including 15 
transfer costs from one mode of transportation to another, duration of routes and the availability 16 
of each mode for each leg to generate the most preferred routes. The results of the Monte Carlo 17 
simulations are then analysed to extract the pareto optimal front solutions to offer various routes 18 
having respective advantages in terms of duration and/or costs. The proposed approach is then 19 
applied to a simple situation to demonstrate its simplicity, versatility and practicality. 20 

 21 

1 Introduction 22 

Freight companies, both global and local, have started employing multimodal transportation to 23 
optimise the movements of their goods from an origin to a destination.  Multimodal transportation 24 
is defined as the combined and collective use of different modes of transportation (rail, road, 25 
water and air) to move commodities to a destination. Compared to the ordinary single mode 26 
transportation, multimodal transportation potentially could improve efficiency, costs, safety and 27 
flexibility for the transportation industry. 28 

One of the operational problems that needs to be solved in the multimodal setting is the freight 29 
routing problem. That is, to find and/or select the best route(s) while using the best available mode 30 
to move commodities from their origins to destinations through the transportation network. 31 

This paper tackles the multimodal freight routing problem using a two phase Monte Carlo 32 
simulation (MCS) approach. The Monte Carlo model developed in this paper integrates total 33 
costs, which incorporates transfer costs from one mode of transportation to another, duration of 34 
trip and the availability of each mode for each leg to generate the most preferred routes from 35 
origin to destination. Subsequent to getting the MCS results, these are analysed to extract the 36 
pareto optimal front solutions to offer various routes having respective advantages in terms of 37 
duration and/or costs. In the presence of several pareto optimal front solutions, a known approach 38 
is tested to extract the best solution out of the ones provided. 39 
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The results of the Monte Carlo simulations can be used by freight companies to optimise their 40 
costs and/or efficiency, and also to present alternatives to clients so that they can make informed 41 
decisions on which option best suits their needs.  42 

The simplicity, versatility and practicality of the Monte Carlo simulation approach is illustrated 43 
by applying to a simple situation. 44 

2 Literature review 45 

Determining the optimal means of transporting goods from shippers to receivers is a common 46 
problem for logistics service providers. Whilst trucks are commonly used, other transport modes 47 
such as rail, air and sea can have advantages with respect to financial costs, safety, fuel 48 
consumption and emissions, but may have longer travel times and lower levels of reliability. 49 

Multimodal transport involves at least two modes being used to transport goods (Steadieseifi et 50 
al., 2014). This creates the need to develop routes that require consideration of a range of possible 51 
transport and terminal options. This can be challenging due to the number of options available. 52 

Typically, only one objective such as minimising financial cost is considered when only one 53 
mode, such as truck transportation, is available. However, other objectives such as minimising 54 
travel time are often considered when there are other modes available. Different transport modes 55 
will generally have different financial costs as well as different travel times between terminals 56 
(Sun and Lang, 2015). 57 

Multi-objective optimisation methods utilising mathematical programming and network analysis 58 
can be used to determine feasible and optimal solutions for multi-modal transport problems. 59 
Feasible solutions consist of routes comprising a path of transport modes that can be used to carry 60 
goods between terminals linking the shipper and the receiver.  61 

Multi-modal transport problems can be formulated and solved by combining the objectives within 62 
a single objective function, wherein each objective is weighted according to preferences. It is 63 
often difficult to determine the relative weighting of each objective and only a single solution is 64 
provided, where often a set of solutions is desirable in practice. 65 

Numerous procedures based on genetic algorithms have been developed for identifying pareto 66 
optimal solutions, including the Vector Evaluated Genetic Algorithm (Schaffer, 1985), the Non-67 
dominated Sorting Genetic Algorithm (Srinivas and Deb, 1994), the NSGA-II (Deb et al., 2002), 68 
the Normalized Normal Constraint Method (Messac, Ismail-Yahaya and Mattson, 2003) and the 69 
bi-level multi-objective Taguchi genetic algorithm (Xiong and Wang, 2014).  70 

This paper introduces an alternative approach that used Monte-Carlo simulations to identify 71 
pareto optimal solutions for multi-modal transport networks. To the best of authors’ knowledge, 72 
there is no previously published work applying the proposed approach for multimodal network 73 
routing problem utilizing the extracted Pareto optimal solutions from the initial results of MCS 74 
and into the next set of iterations. 75 

3 Pareto optimality   76 

The origin of the term Pareto optimality goes back to the year 1906 applied in the area of 77 
economics and later on found its application in the field of Mathematics especially multi-objective 78 
optimisation (Arora, 2017). Multi-objective optimization problems (MOPs) are a branch of 79 
mathematical optimisation which involves having to optimize more than one objective 80 
function simultaneously. Usually MOPs don’t have a single optimal solution that optimises each 81 
objective function in which case Pareto optimal solutions may be used to represent the solution 82 
set.  Pareto optimal solutions are solutions that cannot be improved in any of the objectives 83 
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without degrading at least one of the other objectives. The set of Pareto optimal outcomes is often 84 
called the Pareto front or Pareto boundary. Solutions which do not lay on the Pareto front are 85 
called Pareto dominated solutions. See Fig. 1. 86 

Let 𝑋 ⊂ ℝ𝑛 be a non-empty set of feasible solutions and 𝐹 =  [𝐹𝟏 𝐹𝟐, … . , 𝐹𝒑]: ℝ𝑛 ⇢ ℝ𝑝 be 87 

a of objective functions. Feasible solution, x̂  ∈  𝑋  is called a Pareto optimal solution of the  88 

 89 

MOP:   min
x ∈ Χ

F(x) = [𝐹1(x), 𝐹2(x), … . , 𝐹𝑝(x)], 90 

 91 
if and only if there does not exist any x ∈  Χ such that 𝐹(x)  ≤ 𝐹(x̂). 92 
 93 
 94 

 95 
Fig 1: Pareto Front 96 

 97 

4 Monte Carlo simulation 98 

Monte Carlo simulation is a computerized mathematical technique that approximates solutions to 99 
quantitative problems through statistical sampling. This technique is used by professionals in 100 
fields of finance, project management, energy, manufacturing, engineering, research and 101 
development, insurance, oil & gas, transportation, and the environment, to approximate solutions 102 
in sectors including project cost estimation, project schedule estimations, risk assessments, 103 
benefit cost analysis and selecting risk response strategies, see for example (Prakash and Jokhan, 104 
2017; Prakash and Jokhan, 2016; Prakash, 2018; Prakash and Mitchell, 2015) to name a few. 105 

This method is useful for obtaining numerical solutions to problems which are too complicated 106 
to solve analytically. Monte Carlo simulation furnishes the decision-maker with a range of 107 
possible outcomes and the probabilities of the possible outcomes. Also the reason for its wide 108 
usage is its applicability and also for the simplicity in which one can construct models as 109 
compared to certain optimisation models, which would require expert knowledge. 110 

The technique was first used by scientists working on the atom bomb (Kochanski, 2005). 111 

Monte Carlo simulation involves building models of possible results by substituting all of the 112 
input values having inherent uncertainties, with probability distributions. It then calculates results 113 
repeatedly, each time using a different set of random values from the probability distributions. 114 
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The results of Monte Carlo simulation are not single values but distributions of possible outcome 115 
values (Vose, 2008). 116 

Generally, the following steps are involved in performing a Monte Carlo simulation: 117 

• Step 1: Create one (or more) parametric Model(s), 𝐅(𝐱) = [𝐹𝟏(𝐱), 𝐹𝟐(𝐱), … . , 𝐹𝒑(𝐱)], 118 

where 𝑝 is the number of objective functions and, input  𝐱 =  (𝑥1𝑥2, … . . , 𝑥𝑚), where 119 
𝑚 is the number of possible inputs. 120 

• Step 2: Represent the inputs (𝑥1𝑥2, … . . , 𝑥𝑚) using probability distributions. 121 

• Step 3: Generate a set of random inputs(𝑥𝑘1, 𝑥𝑘2, … . . , 𝑥𝑘𝑚) from the distributions for 122 
each iteration 𝑘, 𝑘 = 1 𝑡𝑜 𝑡, where 𝑡 is the total number of iterations. 123 

• Step 4: Evaluate the model using the random inputs, 𝐅(𝐱) = [𝐹𝟏(𝐱), 𝐹𝟐(𝐱), … . , 𝐹𝒑(𝐱)] 124 

for each iteration, 𝑘. 125 

• Step 5: Analyse the results of 𝐅(𝐱) = [𝐹𝟏(𝐱), 𝐹𝟐(𝐱), … . , 𝐹𝒑(𝐱)], obtained for all the 126 

iterations, 𝑘 = 1 𝑡𝑜 𝑡. 127 

5 Model formulation 128 

The multimodal freight route selection problem involves choosing a combination of various 129 
routes from a selected origin to a particular destination, taking into consideration the effects of 130 
implementing these combinations such as, at the very least, travel costs, time taken, availability 131 
of routes and available modal options for each available route.  132 

Let 𝐺 = (𝑉, 𝐸, 𝑀) denote the multimodal transportation network with the set of 𝑉 vertices, a set 133 
of 𝐸 edges and a set of 𝑀 transportation modes. Let each edge, 𝑒 ∈ 𝐸, connecting two vertices 𝑢 134 

and 𝑣, be denoted by (𝑢, 𝑣) and the associated weight of the edge be denoted by 𝛿(𝑢, 𝑣).  135 

Let ∅(𝑢𝑖, 𝑣𝑗)be the transfer cost at vertex 𝑣 from mode 𝑖 to 𝑗, 𝑖, 𝑗 ∈ {1: 𝑟𝑜𝑎𝑑, 2: 𝑟𝑎𝑖𝑙, 3: 𝑤𝑎𝑡𝑒𝑟}, 136 

where 𝑖  is the mode arriving at 𝑢  and 𝑗   is the mode arriving at 𝑣   and hence the mode of 137 

transportation of (𝑢, 𝑣). Note if 𝑖 = 𝑗, then ∅(𝑢𝑖 , 𝑣𝑗) = 0, i.e. there is no cost if no mode transfer 138 

occurred. Additionally,  ∅(𝑢𝑖, 𝑣𝑗) = 0 if 𝑢 is the starting vertex. 139 

Definitions: 140 

• 𝑢 is adjacent to (or is a neighbour of) 𝑣, if (𝑢, 𝑣) ∈ 𝐸. 141 
 142 

• The set of all neighbours of 𝑢 is the neighbourhood of 𝑢 and is denoted 𝑁(𝑢). 143 
 144 

• A path is defined as an ordered set of vertices (𝑣1, … … . , 𝑣𝑡), 𝑡 > 1, such that (𝑣ℎ, 𝑣ℎ+1) ∈145 
𝐸 for ℎ = 1, … . , 𝑡 − 1, and the vertices are not repeated. 146 

 147 

To formulate the Monte Carlo simulation model, given the origin, 𝐴𝑂 and the destination, 𝐴𝐷 148 
towns, the task is to generate possible intermediate towns, from origin, until the destination is 149 
obtained using the available modal options between each town. That is: 150 

Phase1 of MCS 151 

Step 1: Construct parametric model: 𝐅(𝐱) = [𝐹𝟏(𝐱), 𝐹𝟐(𝐱), … . , 𝐹𝒑(𝐱)], where:  152 

• [𝐹𝟏 𝐹𝟐, … . , 𝐹𝒑]  are various applicable objective functions such as criteria, payoff 153 

functions, cost functions, time and value functions;  154 
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• 𝐱 =  (𝐴𝑂, 𝐴2
𝑚, 𝐴3

𝑚, … . . , 𝐴𝐷
𝑚) are the towns to be traversed to reach destination, 𝐴𝐷 155 

from the origin, 𝐴𝑂 ; and 𝑚 ∈ {1: 𝑟𝑜𝑎𝑑, 2: 𝑟𝑎𝑖𝑙, 3: 𝑤𝑎𝑡𝑒𝑟}  denoting the mode of 156 
transportation used to arrive at the vertex.  157 

Step 2: For each iteration (𝑘 = 1 𝑡𝑜 𝑡), starting with the town of origin, 𝐴𝑂, randomly select the 158 

next town to be traversed from range of neighboring towns (𝐴𝑒 , … , 𝐴𝑓 ) represented using 159 

probability distribution. These input distributions can be derived from the adjacency matrix for 160 
the network. After the next town is selected, also randomly select a mode from the list of available 161 
modes of transportation to this town from the preceding town. If this selected town is the desired 162 
destination town, 𝐴𝐷 then stop, otherwise select the next town visited from respective range of 163 
neighboring towns represented by appropriate probability distribution until the desired destination 164 
town, 𝐴𝐷 is reached. If the next town does not exist, that is, the current town has no neighbor, 165 

then stop and restart next iteration. The result of this step would generate, 𝒙𝒌 =166 

(𝐴𝑂, 𝐴2
𝑚, … . . , 𝐴𝐷

𝑚)𝒌,  for each iteration 𝑘.  167 

Step 3: Evaluate the model, 𝐅(𝐱) = [𝐹𝟏(𝐱), 𝐹𝟐(𝐱), … . , 𝐹𝒑(𝐱)], using the random inputs of 𝐱 , 168 

generated in step 2, for each iteration, 𝑘. 169 

Step 4: Analyse the results of 𝐅(𝐱) = [𝐹𝟏(𝐱), 𝐹𝟐(𝐱), … . , 𝐹𝒑(𝐱)], obtained for all the iterations, 170 

𝑘 = 1 𝑡𝑜 𝑡. We will analyze the results using the Pareto optimal front approach. 171 

 172 

Phase 2 of MCS 173 

Step 5: Extract the Pareto optimal front solutions of traversed towns denoted by 𝐎𝐅(𝒙̇) =174 

[𝒙̇𝟏, 𝒙̇𝟐, … . , 𝒙̇𝒒], for 𝑔 = 1 to q unique solutions and 𝒙̇𝒈 = (𝐴𝑂, … . . , 𝐴𝐷)𝑔. 175 

Step 6: For each unique extracted solution of 𝐎𝐅(𝒙̇) , regenerate random modes, 𝑚 ∈176 

{1: 𝑟𝑜𝑎𝑑, 2: 𝑟𝑎𝑖𝑙, 3: 𝑤𝑎𝑡𝑒𝑟} of traversal to obtain 𝐱̈𝒍 = (𝐴𝑂, 𝐴2
𝑚, … . . , 𝐴𝐷)𝒍 for each iteration 𝑙 =177 

1 𝑡𝑜 𝑟. 178 

Step 7: Analyse the refined results of 𝐅(𝒙̈) = [𝐹𝟏(𝒙̈), 𝐹𝟐(𝒙̈), … . , 𝐹𝒑(𝒙̈)] , obtained for all the 179 

iterations, 𝑙 = 1 𝑡𝑜 𝑟, using the Pareto optimal front approach. 180 

  181 
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The pseudocode for the two phase MCS simulation is provided below: 182 

 183 

 184 

 185 

 186 

 187 

   188 

 189 

 190 

 191 

 192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 

 210 

 211 

  212 

Phase 1 MCS  

import network G 

construct adjacency matrix, distance matrix and mode matrix 

origin town_O 

destination town_D 

total_iterations_phase1 

total_iterations_phase2 

src = town_O 

path = src 

mode = [] 

MCS_phase1_cost = []; MCS_phase1_time = []; MCS_phase2_cost = []; MCS_phase2_time = [] 

for (counter =1 to total_iterations_phase1) 

 while (src is not town_D) 

  next_town  = randomly choose a neighbour of src using adjacency matrix 

  while loop created 

   next_town = randomly choose another neighbour of src 

   if next_town = null  

break; 

next_mode = randomly choose a mode from SRC to next_town using mode matrix 

  path = array ( path + next_town) 

mode = array( mode + next_mode) 

src = next_town 

 MCS_phase1_cost = array (MCS_phase1_cost + F1(path, mode)) 

 MCS_phase1_time = array (MCS_phase1_time + F2 (path, mode)) 

Pareto_optimal_front1 = extract Pareto optimal front solutions ( MCS_phase1_cost, MCS_phase1_time) 

Phase 2 MCS  

for each solution PO1 in Pareto_optimal_front1 

for (counter =1 to total_iterations_phase2) 

mode = randomly select a mode for each connecting towns in PO1 

 MCS_phase2_cost = array (MCS_phase2_cost + F1(PO1, mode)) 

 MCS_phase2_time = array (MCS_phase2_time + F2 (PO1, mode)) 

Pareto_optimal_front2 = extract Pareto optimal front solutions (MCS_phase2_cost, MCS_phase2_time) 

Display Pareto_optimal_front2 solutions 

Finish 
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 213 

6 Applied model 214 

In this section, an example adapted from (Xiong and Wang, 2014) is presented to demonstrate the 215 
use of the two phase Monte Carlo simulation approach for best freight route selection in a 216 
multimodal network. 217 

In this example there are 35 vertices and 136 edges as shown in Fig. 1. There are at most 3 possible 218 
modes of transportation which corresponds to A (road), B (rail) and C (water) between any 219 
vertices. Table 1 provides the edge weights which are transportation distances between vertices 220 
for various modes if available. A dash (-) denotes that there is no connection between the 221 
associated vertices for the respective mode. Table 2 provides the speed and the costs per unit load 222 
for each transportation mode while Tables 3 and 4 give the transfer costs per unit load and time 223 
per unit load for each change of mode.  224 

 225 

 226 

Fig.2 Example multimodal transport network (adapted from (Xiong and Wang, 2014)) 227 

 228 

Table 1: Vertex distances with respect to available modes 229 

  Modes   Modes 

Edge A B C Edge A B C 

(1,2) 2 3 8 (18,20) 1 – – 

(1,3) 10 16 – (19,20) 4 – – 

(1,4) 3 5 11 (19,23) 3 – – 

(2,7) 3 5 9 (19,24) 9 – – 

(2,8) 9 15 29 (20,22) 3 – – 

(3,6) 7 12 – (20,23) 8 13 24 

(3,7) 1 – – (21,22) 10 – – 

(4,5) 2 3 8 (21,27) 10 16 32 

(5,6) 9 – – (22,23) 8 – – 

(5,12) 2 4 7 (22,26) 4 6 – 

(6,11) 3 5 – (22,27) 5 – – 
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(7,10) 7 11 21 (23,25) 2 5 8 

(7,11) 3 – – (24,25) 6 11 – 

(8,9) 5 9 16 (24,30) 3 – – 

(8,10) 1 – – (24,31) 10 15 31 

(9,13) 10 16 31 (25,26) 7 12 – 

(9,14) 6 10 19 (25,29) – 6 – 

(10,11) 4 – – (25,30) 7 12 22 

(10,14) 5 9 16 (26,27) 3 – 9 

(11,12) 3 – – (26,29) 4 7 – 

(11,15) 4 8 – (27,28) 9 15 27 

(12,16) 2 4 8 (28,29) 7 – – 

(13,18) 6 – – (28,33) 2 3 – 

(13,19) 8 – – (28,35) 8 14 26 

(13,24) 5 8 16 (29,30) 6 – – 

(14,15) 6 11 19 (29,32) 1 – – 

(14,17) 2 – – (29,33) 2 4 – 

(14,18) 4 – – (30,31) 6 – – 

(14,20) 8 12 25 (30,32) 6 10 – 

(15,16) 7 11 22 (31,32) 4 6 13 

(15,17) 5 8 – (32,34) 6 9 19 

(16,21) 6 10 20 (33,34) 5 8 – 

(17,20) 8 – – (33,35) 8 13 – 

(17,21) 1 – – (34,35) 6 – – 

(17,22) − 9 –         

 230 

Table 2: Speed (distance per unit time) and Costs (cost per unit load) with respect to transportation modes 231 

  Road Rail Water 

Speed 4.5 3 1 

Costs 6 3 1 

 232 

Table 3: Transfer cost rates (per unit load) when changing transportation modes 233 

  Road Rail Water 

Road 0 4 7 

Rail 4 0 7 

Water 7 7 0 

 234 

Table 4: Transfer time rate (per unit load) when changing transportation modes 235 

  Road Rail Water 

Road 0 0.0067 0.0113 

Rail 0.0067 0 0.0113 

Water 0.0113 0.0113 0 

 236 

 237 
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(Transfer rate of time                                              
as provided in Table 4) 

(Transfer rate of cost as 
provided in Table 3) 

The task at hand is to find the best route(s) from town 1 to town 35 carrying 𝜇 = 20 units, utilising 238 
available modes such that the objective functions 𝐅(𝐱) = [𝐹𝟏(𝐱), 𝐹𝟐(𝐱)],  are minimized: 239 

Cost function: 𝐹𝟏(𝐱) =  𝜇 ∗ ∑ [𝛿(𝐴ℎ
𝑖 , 𝐴ℎ+1

𝑗)𝑡−1
ℎ=1 ∗ 𝛼𝑗  +  ∅(𝐴ℎ

𝑖, 𝐴ℎ+1
𝑗)];  240 

and 241 

Time function: 𝐹𝟐(𝐱) =  ∑ [𝛿(𝐴ℎ
𝑖 , 𝐴ℎ+1

𝑗)𝑡−1
ℎ=1 /𝜗𝑗  + 𝜇 ∗  𝜃(𝐴ℎ

𝑖 , 𝐴ℎ+1
𝑗)];  242 

where: 243 

• 𝐱 =  (𝐴𝑂, 𝐴2
𝑚, … . . , 𝐴𝐷

𝑚) are the towns to be traversed to reach destination, 𝐴𝐷 = 35 244 
from the origin, 𝐴𝑂 = 1; and 𝑚 ∈ {1: 𝑟𝑜𝑎𝑑, 2: 𝑟𝑎𝑖𝑙, 3: 𝑤𝑎𝑡𝑒𝑟} 245 
 246 

• t >0 is number of traversed town and  𝐴1 = 1 and 𝐴𝑡 = 35; 247 
 248 

• 𝑖 , 𝑗 =  {1: 𝑟𝑜𝑎𝑑, 2: 𝑟𝑎𝑖𝑙, 3: 𝑤𝑎𝑡𝑒𝑟} are the modes of transportation used arriving at 249 
respective vertices; 250 

 251 

• 𝛿(𝑢𝑖 , 𝑣𝑗) is the distance of two towns 𝑢 and 𝑣 traversed using mode 𝑗; 252 

 253 

• ∅(𝑢𝑖 , 𝑣𝑗) =  {

0;      𝑖 = 𝑗                                                        
4;     𝑖 = 1 𝑎𝑛𝑑 𝑗 = 2 𝑜𝑟 𝑖 = 2 𝑎𝑛𝑑 𝑗 = 1
7;    𝑖 = 1 𝑎𝑛𝑑 𝑗 = 3 𝑜𝑟 𝑖 = 2 𝑎𝑛𝑑 𝑗 = 3

            254 

 255 
 256 

• 𝜃(𝑢𝑖 , 𝑣𝑗) = {

0;             𝑖 = 𝑗                                                        
0.0067;  𝑖 = 1 𝑎𝑛𝑑 𝑗 = 2 𝑜𝑟 𝑖 = 2 𝑎𝑛𝑑 𝑗 = 1
0.0113;  𝑖 = 1 𝑎𝑛𝑑 𝑗 = 3 𝑜𝑟 𝑖 = 2 𝑎𝑛𝑑 𝑗 = 3

;   257 

 258 
                                                                             259 

• 𝜗𝑗 = {

4.5;    𝑗 = 1
3;     𝑗 = 2
1;     𝑗 = 3

        (as provided in Table 2). 260 

 261 

• 𝛼𝑗 = {

6;    𝑗 = 1
3;    𝑗 = 2
1;    𝑗 = 3

         (as provided in Table 2). 262 

                                                                                      263 

7 Results and Discussion 264 

The Pareto optimal front solution routes obtained after phase 1 of MCS, as described in section 265 
4, were: 266 

• 1-4-5-12-16-21-27-28-35 267 

• 1-4-5-12-16-21-17-22-26-29-33-35 268 

• 1-2-7-11-15-17-22-26-29-33-35 269 

• 1-4-5-12-16-21-22-27-28-35 270 

These routes were then used to run phase 2 of MCS, as described in section 4, where now only 271 
the modes are randomly chosen for these fixed vertices. 272 

The Pareto optimal front solution of phase 2 MCS is provided in Table 5 and shown in Fig 3. 273 



ATRF 2021 Proceedings 

   10 

 274 

Table 5: Pareto optimal front solution after using the obtained results of phase 1 MCS with phase 2 MCS 275 

# Route Modes 

     

Cost      Time 

1 1-4-5-12-16-21-27-28-35 C-C-C-C-C-C-C-C 2780 139.00 

2   B-C-C-C-C-C-C-C 3000 129.89 

3   B-B-C-C-C-C-C-C 3020 122.89 

4   B-B-B-C-C-C-C-C 3120 117.23 

5   B-B-B-B-C-C-C-C 3200 110.56 

6   B-B-A-A-C-C-C-C 3280 108.92 

7   A-A-A-A-C-C-C-C 3320 107.23 

8   B-B-B-B-B-C-C-C 3400 93.89 

9   A-B-B-B-B-C-C-C 3540 93.03 

10   B-B-A-A-B-C-C-C 3560 92.38 

11   B-B-A-A-A-C-C-C 3600 90.25 

12   A-A-A-A-A-C-C-C 3640 88.56 

13   B-B-B-B-B-B-C-C 3720 67.23 

14   A-B-B-B-B-B-C-C 3860 66.36 

15   B-B-A-A-B-B-C-C 3880 65.72 

16   A-A-A-A-B-B-C-C 3920 64.03 

17   B-B-B-B-B-B-B-C 4080 45.23 

18   A-A-A-A-A-A-A-A 5040 9.33 

19 

1-4-5-12-16-21-17-22-26-29-33-

35 

B-C-C-C-C-A-B-B-B-

B-B 3980 58.47 

20   

B-B-C-C-C-A-B-B-B-

B-B 4000 51.47 

21   

C-C-C-C-B-A-B-B-B-

B-B 4040 51.05 

22   

C-C-C-B-B-A-B-B-B-

B-B 4120 44.38 

23   

C-C-C-A-A-A-B-B-B-

B-B 4160 41.36 

24   

B-B-B-B-B-A-B-B-B-

B-B 4180 22.16 

25   

B-B-A-A-A-A-B-B-B-

B-B 4300 18.38 

26   

A-A-A-A-A-A-B-B-B-

B-B 4340 16.69 

27   

A-A-A-A-A-A-B-B-B-

A-B 4500 16.07 

28   

A-A-A-A-A-A-B-B-A-

A-B 4560 14.62 

29   

A-A-A-A-A-A-B-B-B-

A-A 4600 13.38 

30   

A-A-A-A-A-A-B-B-A-

A-A 4660 11.93 

31   

A-A-A-A-A-A-B-A-A-

A-A 4780 10.82 
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Fig.3 MCS phase 2 results showing Pareto optimal front.  278 

Note that out of the 4 prominent routes obtained after phase 1 MCS, only two routes as shown in 279 
Table 5 form solutions on the Pareto optimal front solution set of phase 2 MCS. These solutions 280 
can be presented to the decision makers including the freight company or the client to choose 281 
which suits them the best.  282 

If, in some circumstances, it is difficult to give a dollar value to time and hence decide on the best 283 
combination of cost and time, the approach below can be used to choose one route and mode 284 
combination from the Pareto optimal front solution set. The approach described below is called 285 
normalization and according to  (Marler and Arora, 2004), this is the most robust approach to 286 
transforming to non-dimensional objective functions. The transformation is obtained by: 287 

𝐹𝑖(𝒙)𝑡𝑟𝑎𝑛𝑠 =  
𝐹𝑖(𝑥) − 𝐹𝑖

𝑚𝑖𝑛

𝐹𝑖
𝑚𝑎𝑥 − 𝐹𝑖

𝑚𝑖𝑛
 288 

where 𝐹𝑖
𝑚𝑖𝑛 =  min

𝑥
{𝐹𝑖(𝑥)|𝑥 ∈ 𝑋}  and 𝐹𝑖

𝑚𝑎𝑥 =  max
𝑥

{𝐹𝑖(𝑥)|𝑥 ∈ 𝑋}. 289 

For the purposes of this paper, the Pareto optimal front solution set of phase 2 MCS (Table 5) 290 
were normalized using the approach above and the route and mode which gave a minimum of the 291 
sum of normalized Cost function was selected: 𝐹𝟏(𝐱) and Time function: 𝐹𝟐(𝐱). The solution thus 292 
obtained was solution # 24, which is route:  293 
1-4-5-12-16-21-17-22-26-29-33-35 using modes B-B-B-B-B-A-B-B-B-B-B. This combination 294 
yielded a cost of 4180 units and time of 22.16 units as shown below. 295 
 296 
 297 
 298 
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# Route Mode 

     

Cost      Time 

24  1-4-5-12-16-21-17-22-26-29-33-35 B-B-B-B-B-A-B-B-B-B-B 4180 22.16 

 299 

8 Conclusion 300 

In this paper, a two phase Monte Carlo method was developed to effectively extract the best routes 301 
of travel from an origin to a destination in a multimodal transportation network.  To generate 302 
preferred routes, this method integrates total costs (including costs associated with transferring 303 
between modes of transportation), duration of routes and the availability of respective modes in 304 
respective legs of a route.  The two phase Monte Carlo method was demonstrated in an example 305 
situation, which showed its efficient, practical and versatile nature.  The results of this were then 306 
analysed to present Pareto optimal solutions from which a choice can be made. 307 

 308 

 309 

 310 

 311 

 312 

 313 

 314 

  315 
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