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Abstract 

The purpose of this paper is to accentuate the development of multi-objective 

non-linear programming (MONLP) technique and its advantages of applying to 

numerical problems. In particular, non-linear programming model is the process 

of solving an optimization problem defined by a system of inequalities along 

with an objective function of several variables that exist in various fields. In 

certain instances, there are situations in these fields where multiple objectives 

are required to be achieved simultaneously, owing to limited timeframe and 

convenience of budget. The Multi-objective programming under non-linear 

conditions and the solution procedure on the goal programming approach is 

embedded with algorithm and the relevant technique is developed. Numerical 

examples, specifically, multi-objective quadratic programming problem and 

examples of other multi-objective non-linear programming problem are 

presented to illustrate practical use and the computational details of the 

proposed procedure. The proposed goal programming technique is then solved 

using a user-friendly optimization software LINGO. 

Keywords: Multi-objective non-linear programming, solution procedure, Goal 

programming, multi-objective quadratic programming, LINGO 

 

1. INTRODUCTION 

Real life situations consist of problems some of which are non-linear in nature. Decision 

makers may need to solve multiple dependent objectives or criteria in that decision 

makers have increased recognitions that most real-life decision problems 

characteristically consist of multiple objectives. These decision-making problems with 

multiple linear and non-linear objectives or criteria are generally known as multi-
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objective non-linear optimization or multi-objective non-linear programming 

(MONLP) problems. MONLP problem considered in this paper is a multi-objective 

programming problem that deals with more than one objective function along with if 

any one of these multiple objectives is non-linear, then the problem is considered as 

MONLP problem. The set of constraints consist of linear inequalities with nonnegative 

restrictions on the decision variables. Ascertaining the optimality criteria, a solution 

procedure on Goal Programming approach is proposed to solve MONLP that develops 

solution procedures for determining the optimum compromised solution for the 

problem. The algorithm of the proposed procedure for solving MONLP problem is 

stated in which case it considers generalized MONLPP with objectives where 

maximization objectives are converted into minimization. This is followed by certain 

numerical examples to illustrate the practical utilization and computational details of 

the proposed solution procedure. The initial example is a simple multi-objective 

quadratic programming problem (MOQPP) indicating the revenue and investment 

objective functions with constraint as budget to illustrate the computational details of 

the proposed goal programming approach for determining the compromise solution of 

the MOQPP. Non-linear programming (NLP) technique; Beale algorithm is used to 

solve the objective functions separately until an optimum basic feasible solution is 

obtained. Further, two additional MONLP problem consisting of NLP problem of two 

variables reported by Sirinivas and Deb (1994) together with Osyczka and Kundu 

(1995) is also solved to determine the compromise solution using the goal programming 

approach. The proposed goal programming procedure is then solved using a user-

friendly optimization software; LINGO. The results of the numerical examples that has 

been solved utilizing the new proposed technique is compared with solution of other 

techniques to demonstrate the strength of the proposed method. 
 

 

2.  STUDIES OF TECHNIQUE AND METHOD DEVELOPMENT 

Several attempts have been made by several authors in developing the techniques of 

solving multi-objective non-linear programming problems. Development of an 

evolutionary algorithm method was initiated by Deb (2001). Alternatively, Khan et al. 

(2010) proposed a technique of detecting an integer solution of a multi-objective 

stratified sampling using a goal programming approach. Guddat et al. (2007) proposed 

the application of path following method with jumps to multi-objective optimization 

problems for which several computational results were presented. Considerable number 

of publications have been created in the past and more recently on fuzzy logic. In 

anticipation, Sakawa and Yano (1989) illustrated an interactive fuzzy satisficing 

method for multi-objective non-linear programming problems inclusive of fuzzy 

numbers. Conversely, Sasaki and Gen (2003) proposed a multi-objective non-linear 

programming method on problems which have fuzzy multiple objective functions and 

constraints with Generalized Upper Bounding structure that is solved by proposed 

Hybridized Genetic Algorithms (HGA). Similarly, Li et al. (2008) presented a genetic 

algorithm (GA) based method to solve fuzzy multi-objective non-linear programming 

(FMONLP) problem. Sakawa and Kato (2009) focused on MONLPP including block-

angular structures. More previously, Farahi and Ansari (2010) used fuzzy programming 
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to alter the multi-objective linear bi-level programming problem to a linear bi-level 

problem. Further, enlarged the k-th ideal technique to solve the final problem that was 

considered as a new approach. Moreover, Kanaya (2010) posed an algorithm method 

that was interactive cutting plane. El-Sobky and Abo-Elnaga (2013) introduced a 

numerical technique to decide on the stability set of the initial kind for fuzzy multi-

objective non-linear programming (FMONLP) problem. Most authors have addressed 

cases on bi-level programming problems. Emam (2011) proposed an interactive 

algorithm for solving a bi-level multi-objective integer non-linear programming 

(BLMINP) problem with linear or non-linear objectives. Apart from the methods 

discussed above, there are many authors who developed interactive methods pertaining 

to MONLP problem. For instance, Yano (1999) proposed an interactive algorithm to 

procure a satisfying solution efficiently from the two-level type M-Pareto optimal (2-

MPO) solution. However, Vassilev et al. (2002) presented learning-oriented interactive 

reference direction algorithm for solving multi-objective convex non-linear integer 

programming problems. Baky (2013) developed a methodology for solving multi-level 

non-linear multi-objective decision making (MLN-MODM) problems of maximization 

type by broadening the concept of the method for order of preference by similarity to 

ideal solution (TOPSIS). Literature on the development of methods and algorithms for 

MONLP have also been published in the past and recently. Masud and Zheng (1989) 

presented an algorithm for resolving multi-objective non-linear programming problem 

and termed it as direction-searching method. In contrast, Utyuzhnikov et al. (2009) 

presented a new approach set in non-linear multi-objective optimization for generating 

a well-distributed Pareto. However, Pandian and Natarajan (2009) introduced a new 

class of functions namely, second order (b,F)-type I convex functions which is the 

extension of type I, F-type I and b-type I functions. Writings have also been indicated 

on Pareto optimal outcome whereby new techniques and algorithms on multi-objective 

non-linear programming have been introduced. Hartikainen et al. (2011) introduced a 

technique, Pareto Front Interpolation for Nonlinear Multi-objective Optimization 

(PAINT). Applications of MONLP to real life situations have been studied by many 

authors. New algorithms and techniques have been presented and applied to real life 

situation considering multiple-objective nonlinear programming problems. In contrast, 

Abo-Sinna and Baky (2007) presented three-level multi-objective decision-making 

(TL-MODM) models that are non-linear function. Recently, Ozlen (2013) proposed a 

general algorithm to optimize a non-linear utility of multiple k-function of multiple 

objectives over the integer programming efficient set. Several literatures focus on 

duality approach considering multi-objective nonlinear programming problem. Huang 

and Yang (2002) introduced vector valued non-linear Lagrangian functions and non-

linear penalty functions for multi-objective constrained optimization problems. 

Moreover, Mishra and Wang (2005) formulated two pairs of second order symmetric 

duality for non-linear multi-objective mixed integer programs for arbitrary cones. 
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3. THE MULTI-OBJECTIVE NON-LINEAR PROGRAMMING (MONLP) 

PROBLEM 

A multi-objective programming is a discipline of mathematical optimization problems 

for which there exists quantitative objective functions of a system that are to be either 

minimized or maximized simultaneously. Generally, multi-objective linear 

programming is a mathematical representation of the objective in terms of a measurable 

quantity. Initially, MOLP problem has p objective functions of n  decision variables, 

out of which k  are to be maximized and p k  are to be minimized subject to m

constraints on n . 

 

Therefore, the objectives are 1 2, , , , ,k pz z z z , the number of objective functions is 

, 1, , ,p k p   the variables are 1 2, , , , ,j nx x x x  and the number of variable 

functions are , 1,2, , .n j n   

 

Maximize(or Minimize)  1 1 2 1 2( , , , ), , ( , , , )n p nf x x x f x x x                       (1.1) 

                              subject to                                                                                                                                                                                                                                                                                                                                               

                     

                        (1.2)                                                                                                       

                                       and                            0
j

x                                                 (1.3) 

 

where the functions, ( 1,2, , )ig i m  in equation (1.2) are considered as constraints of 

the problem, and 
1 2( , , , )mb b b  is a set of constants and the equation (1.3) represents 

the non-negativity restrictions on the variables ( 1, 2, , )
j

x j n . If at least one 
kf  and/ 

or 
ig  are non-linear, the problem is considered as multi-objective non-linear 

programming problem (MONLPP). In essence many real-life problems have both linear 

and non-linear objective functions. 

 

3.1   THE PROBLEM OF MULTI-OBJECTIVE PROGRAMMING UNDER 

NON-LINEAR CONDITIONS 

Let the Multi-objective Non-linear Programming (MONLP) Problem be given as: 

Minimize       1 1 2 2 1 2 1 2, ,..., , , ,..., , ..., , ,...,n n p nf x x x f x x x f x x x    

subject to    1 2, ,..., or  or ; 1,2,...,i n ig x x x b i m     

         and             
1 2, ,..., 0nx x x                                                                           (1.4) 

1 1 2

1 2

( , , , )

( , , , )

n

m n

g x x x

g x x x

1
, or )

( , or )

(

m

b

b

 

  


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where, at least one of the functions of  1 2, ,..., ; 1,2,...,j nf x x x j p  and 

 1 2, ,..., ;i ng x x x  1,2,...,i m  is non-linear. 

 

3.2  THE SOLUTION PROCEDURE: A GOAL PROGRAMMING APPROACH 

In this section we develop a solution procedure to solve the MONLPP (1.4) using a goal 

programming technique. 

Let  * * *

1 2, ,...,j j njx x x  denote the optimum solution for the thj  objective ( 1,2,...,j p ), 

that is,   * * *

1 2, ,...,j j njx x x  is the solution to the following NLPP: 

Minimize   1 2, ,...,j nf x x x ; 1,2,...,j p  

subject to    1 2, ,..., or  or ; 1,2,...,i n ig x x x b i m    , 

         and    
1 2, ,..., 0nx x x                                                              (1.5) 

 

Let 
*

jf  be the optimum value of the objective function of (1.5) at  * * *
1 2, ,..., njj jx x x .  

 

Further, let  * * *
1 2, ,..., nx x x  be the optimum compromise solution, that is,  * * *

1 2, ,..., nx x x  

is the solution to the MONLPP (1.4) with jf  as the value of the thj  objective function. 

 

Obviously,  * * *
1 2, ,..., nx x x  incurs a loss in jf  due to not utilizing its individual optimum 

solution  * * *
1 2, ,..., njj jx x x . That is, 

*

j jf f .  

Let 
*.j j jz f f   

 

Then, the quantity 0jz  ; ( 1,2,..., )j p  denotes the maximum loss in thj  objective 

owing to the utilization of compromise solution  * * *
1 2, ,..., nx x x  instead of using its 

individual optimum solution  * * *
1 2, ,..., njj jx x x . 

 

Thus, solve the MONLP Problem (1.4) by setting the following “Goal”: 

“Find such compromise solution  * * *
1 2, ,..., nx x x  for which the loss in the value of the 

thj  objective function in MONLPP (1.4) should not exceed the quantity jz ”.  
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Therefore,  * * *

1 2, ,..., nx x x  must satisfy: 

  
*

j j jf f z  ,  

or             
*

j j jf z f                  (1.6) 

 

Introducing (1.6) as an additional constraint to each objective, a reasonable criterion to 

determine the optimum compromised solution  * * *
1 2, ,..., nx x x  to MONLPP (1.4) can be 

worked out to minimize the sum of the loss in all the p objectives. That is, 

 

  Minimize  
1

p

j
j

z

                (1.7) 

 

Therefore, incorporating the constraint in (1.6) and the objective given in (1.7), the 

equivalent problem to the MONLP problem (1.4) may be expressed as the following 

goal programming problem (GPP): 

 

Minimize  
1

p

j
j

z

  

subject to 
*

j j jf z f  , 1,2,...,j p  

     1 2, ,..., or  or ; 1,2,...,i n ig x x x b i m    , 

         and      
1 2
, ,..., 0nx x x                                            (1.8) 

 

The Goal Programming Problem in (1.8) may be solved by executing a program 

utilizing LINGO software package for solving non-linear, linear and integer 

optimization problems developed by LINDO Systems, Inc.  

 

3.3    THE ALGORITHM 

The algorithm of the proposed solution procedure discussed in Section 3.2 for solving 

the MONLPP given in (1.4) is summarized as follows: 

 

Step-1: Consider MONLPP with p  objectives, initial step is to transform all objective 

functions specifically of maximization   sort possibly if any, into minimization.  

Step-2: Set up p  separate to NLPP with the purpose to acquire the same set of original 
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constraints for each objective. An optimal solution 
*

jf  for all 1,2,..., .j p  

Step-3: Utilize an appropriate programming technique, specifically non-linear such as 

Wolfe’s method, Kuhn-Tucker conditions, Beale’s method, etc. or optimization 

software for instance LINGO to solve each NLPP independently with the objective jf  

constructed in Step-2. Let 
*; 1,2,...,jf j p  be assigned as the optimum value of the 

thj NLPP at its individual optimum solution  * * *

1 2, ,...,j j njx x x . 

Step-4: If the optimum compromised solution of the given MONLPP is  * * *

1 2, ,..., nx x x , 

that incurs a jz  loss to jf , then decide on the compromised solution by reforming 

MONLPP as a GPP with the objective: 

 

   Minimize  
1

p

j
j

z

  

               subject to the additional constraints 
*; 1,2,...,j j jf z f j p   . 

 

Step-5: Solve the GPP constructed in Step-4 by LINGO to determine the compromise 

optimum solution  * * *

1 2, ,..., nx x x . 

 

4     NUMERICAL EXAMPLES OF MONLP PROBLEM 

4.1    NUMERICAL EXAMPLES 

To illustrate the practical utilization and the computational details of the proposed 

solution procedure, three numerical examples are presented in Section 4. The Example 

4.1 is a non-linear multi-objective quadratic programming problem while the examples 

4.2 and 4.3 are the two MONLPPs reported in Osyczka and Kundu (1995) and Srinivas 

and Deb (1994), respectively.  

 

4.1.1 MULTI-OBJECTIVE QUADRATIC PROGRAMMING PROBLEM 

Example 4.1 

Apparently, a company is carefully considering to promote product via two media 

campaigns: television and radio. The costs for company are $2,000 per minute to 

advertise on television and $1,000 per minute to advertise on radio. The company is 

willing to spend no more than $4,000. If the company buys 
1

x  minutes of radio 

advertising and 2x  minutes of television advertising, then the company is expecting to 

earn the revenue (in thousand dollars): 
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2 2

1 1 2 1 2 1 2( , ) 4 6 3f x x x x x x     

 

with all possible investment (in thousand dollars): 

 

  
2 2

2 1 2 1 1 1 2 2( , ) 10 6 2 2 3f x x x x x x x     . 

 

With a minimum investment, how can the company maximize the revenue? 

 

This problem can be solved by formulating the above function as the following Non-

linear multi-objective quadratic programming problem (MOQPP): 

 

 Maximize  
2 2

1 1 2 1 2 1 2( , ) 4 6 3f x x x x x x        (Revenue) 

 Minimize  
2 2

2 1 2 1 1 1 2 2( , ) 10 6 2 2 3f x x x x x x x       (Investment) 

 subject to         
1 22 4x x          (Budget) 

          and      
1 2, 0x x                                                   (1.9) 

 

To demonstrate the computational details of the proposed goal programming approach 

discussed in Sections 2.2 and 2.3 for determining the optimum compromise solution of 

the MOQP problem (1.9), the following two quadratic programming problems (QPP) 

are solved separately to optimize each objective function: 

 

QPP-1: 

 Minimize        
2 2

1 1 2 1 2 1 2( , ) 4 6 3f x x x x x x        

            subject to       
1 22 4x x      

          and     
1 2, 0x x       

 

QPP-2: 

 Minimize       
2 2

2 1 2 1 1 1 2 2( , ) 10 6 2 2 3f x x x x x x x        

  subject to     
1 22 4x x      

           and    
1 2, 0x x   
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The QPP-1 and QPP-2 are then solved using Beale (1959) method as discussed below: 

Beale’s Algorithm for QPP: 

General QPP to consider: 

Minimize 
1

( )
2

f   x c x x Qx    

  subject to  , ,  or   Ax b     

  and       0x  

where nx , A  is m n , b  is 1m , c  is 1m  and Q  is n n  symmetric matrix. 

 

The iterative procedure of Beale’ method can be summarized as follows: 

 

Step-1: Convert the maximization ( )f x , if any, into that of minimization. Introduce 

slack and/or surplus variables in the inequality constraint to convert it into equality. 

Step-2: Choose arbitrarily any m  variables, so that remaining  n m  variables become 

non-basic. Let the basic and non-basic variables be denoted respectively by: 

   
1 2
, ,...,

mB B B Bx x xx  and   
1 2
, ,...,

mNB NB NB NBx x xx  

Step-3: Express each basic variable 
iBx  in terms of non-basic variables 

iNBx . 

Step-4: Express the objective function ( )f x  in terms of non-basic variables 
iNBx . 

Step-5: Evaluate the partial derivatives of ( )f x  with respect to the non-basic variables 

at 0NBx  and examine the nature of 

0

( )
0; 1,2,...,( )

k
NB

NB

f
k n m

x


 
 
 
 


  


x

x
: 

(i) If 

0

( )
0

k
NB

NB

f

x


 
 
 
 






x

x
  for each 1,2,...,( )k n m       and                 

,0 0

( )
0

NB i
iu

u

f

x
 

 
 
 
 





x

x
  for each i , where iu  is a free variable. Then, the current 

solution is optimum. 

(ii) If 

0

( )
0

NB
kNB

f

x


 
 
 
 





x

x
  for at least one 1,2,...,( )k n m  , the current solution is 

not optimum. 
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The non-basic variable corresponding to the most negative of the partial derivatives 

will enter the basis. 

Step-6: Let rx  be the entering variable identified in Step-5. Then, determine the value 

of rx  by calculating: 

(a) The value of rx  that can be attained without driving the present variable (say,
ix ) 

negative. 

(b) That the value of rx  at which 
( )

rNB

f

x





x
 vanishes or equal to zero. 

Step-7: Choose the minimum of values obtained in (a) and (b) above. 

(i) If it occurs for (a), ix  will be leave the basis. 

(ii) If it occurs for (b), none of the basic variables is removed. In such cases, we enlarge 

NBx  by introducing a new non-basic and unrestricted variable ru , called a free 

variable, defined by: 

        
1

2
r

r

f
u

x





 which becomes an additional constraint. 

Step-8: Go to Step-3 and repeat the procedure until an optimum basic feasible solution  

            is obtained after setting 0NBx   and 0iu  . 

 

Solution to QPP-1: 

Introducing a slack variable 3x  the QPP-1 can be expressed as: 

 

Minimize  
2 2

1 1 2 1 2 1 2( , ) 4 6 3f x x x x x x        

subject to         
1 2 32 4x x x       

         and               
1 2
, 0x x   

Using the Beale’s method discussed in steps 1-8, let 
3

4x  be the initial basic variable, 

Then the basic and non-basic variables are: 

 

   3B xx and   1 2,NB x xx  

 

Expressing 3x  and 1f  in terms of non-basic variables 1x  and 2x , we get: 
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3 1 24 2x x x    

  and 
2 2

1 1 2 1 2 1 2( , ) 4 6 3f x x x x x x      

 

Now, 
1 2

1
1

1 0

00 ( 4 2 ) 4

NB

x x

f
x

x


 


     


x

 

and 
1 2

1
2

2

0

0

0 ( 6 6 ) 6

NB

x x

f
x

x
 




     


x

 

Thus, the non-basic variable 2x , which is corresponded to the most negative of the 

partial derivatives, will enter the basis. To determine the leaving variable, compute the 

largest value that 2x  can assume as: 

 

(a) Since 
3 1 24 2x x x   by setting 

3 0x   and 
1 0x  , the largest possible     

            value of 
2 2x   

(b) If 
1

2

0
f

x





, then 

2 1x   

 

Since the minimum value of 
2x  occurs in (b), no basic variable will be removed. We 

introduce a new non-basic variable: 

 

   1
1 2 2

2

1 1
6 6 3 3

2 2

f
u x x

x


      


 

 

Adding the above equation as a constraint, we have the new set of basic and non-basic 

variables: 

 

   3 2,B x xx  and  11,NB x ux  

 

Repeating the steps, it is found that 1x  enters the basis and 3x  leaves from the basis. 

The sets of basic and non-basic variables are: 
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   1 2,B x xx  and  3 1,NB x ux  

 

Expressing 
1x , 

2x  and 1f  in terms of non-basic variables 
3x  and 

1u , we get: 

 

   
1 3 1

2
2

3
x x u   , 

   
2 1

1
1

3
x u  , 

 and 2 2
1 1 2 3 1 1 3

4 4
( , ) 7

9 3
f x x x u u x      

For the above 
1f  it can be seen that 

  

3 1

1

3 0

0

x u

f

x
 





 and 

3 1

1

1 0

0

x u

f

u
 





 

 

Hence, the optimum solution to the QPP-1 is obtained as: 

 

*

1
2x  and 

2

*
1x   with minimum 

*

1 7f    by setting non-basic variables u  and 3x  to 

zeros. 

 

Solution to QPP-2: 

In a similar manner, the optimum solution to the QPP-2 is obtained as: 

 

  *
1

9

5
x   and *

2

3

5
x   with minimum *

2

23

5
f   

 

Solution to MOQPP (1.9): 

To solve the MOQPP in (1.9), the GPP is formulated as follows: 

 

 Minimize  
1 2z z  

 subject to            
2 2

1 2 1 2 14 6 3 7x x x x z        

        2 2
1 1 1 2 2 2

23
10 6 2 2 3

5
x x x x x z              

                     
1 22 4x x      

         and                                
1 2
, 0x x     
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Then, the optimum compromise solution  * *
1 2,x x  to the above GPP and hence the 

MONLPP (1.9) is obtained using LINGO (see LINGO code in Appendix A) as shown 

below: 

  
*

1
1.941176x   and 

*

2
0.8235294x   with 

*

2 0.8235294z   

 

With this solution, the optimum of the two objective functions is obtained as: 

 

1
6.9031141f   and 2

4.7266435f   

 

4.1.2 OTHER MULTI-OBJECTIVE NON-LINEAR PROGRAMMING 

PROBLEM 

Example 4.2:  

Th Non-linear Programming problem of two variables is considered, as reported by 

Srinivas and Deb (1994) who acquired from Chankong and Haimes (1983), with Non-

linear objective functions and linear/non-linear constraints: 

 

Minimize    
2 2

1 1 2 1 2( , ) 2 ( 2) ( 1) ,f x x x x           and 

Minimize         
2

2 1 2 1 2( , ) 9 ( 1)f x x x x    

subject to     
2 2

1 2 225x x   

         

1 2

1

1

2

2 (1.10)

3 10 0

20

20

20

20

x x

x

x

x

x

  

 



 



 

 

In order to formulate the compromise solution to (1.10) utilizing the goal programming 

approach as discussed in Section 1.6, the two NLPPs as stated in (1.10) is solved for 

each individual objective ,jf   and .1 2j   

 

The program coded in LINGO (see Appendix B) is executed and the individual 

optimum solutions to the two NLPPs for the problem (1.10) are found to be: 
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For NLPP-1:    * *
1 2, 1.1, 3.7x x   with minimum 

*

1 10.1f  . 

For NLPP-2:    * *
1 2, 0, 15x x   with minimum 

*

2 196.0f   . 

 

Then, the GPP for MONLP problem in (1.10) can be expressed to determine the 

compromise solution as: 

 

Minimize   
1 2z z  

subject to    
2 2

1 2 12 ( 2) ( 1) 10.1x x z       

2

1 2 29 ( 1) 196.0x x z      

     
2 2

1 2 225x x   

1 2

1

1

2

2and

3 10 0

20

20

20

20

x x

x

x

x

x

  

 



 



 

 

Solving the above GPP using LINGO, coded in Appendix B, the optimum compromise 

solution to the given MONLPP (1.10) is obtained as: 

 * *
1 2

10

3
, 0,x x

 
 
 

  with * 191.9z   

 

Example 4.3:  

Consider the following NLPP with two objective functions and six variables as reported 

in Osyczka and Kundu (1995): 

 

Minimize  
2 2 2 2 2

1 1 2 6 1 2 3 4 5( , ,..., ) [25( 2) ( 2) ( 1) ( 4) ( 1) ],f x x x x x x x x            and 

Minimize 
2 2 2 2 2 2

2 1 2 6 1 2 3 4 5 6( , ,..., )f x x x x x x x x x       

subject to 1 2 2 0x x    
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1 2

1 2

1 2

3 3 4

5 5 6

1 2 6 3 5 3 5 4

1 2 4 6

6 0

2 0

2 3 0

4 ( 3)( 3) 0

( 3)( 3) 4 0

10, 10, 10, 1, 1, 5, 5, 6

, , , 0 (1.11)

x x

x x

x x

x x x

x x x

x x x x x x x x

x x x x

  

  

  

    

    

       



       To formulate and calculate compromise solution to (1.11) using the proposed goal 

programming approach, the two NLPPs as stated in (1.5) is solved for each individual 

objective jf . 

 

Using LINGO program (see LINGO code in Appendix C), the individual optimum 

solution for    j = 1 and 2 are found to be: 

 

For NLPP-1:    * * *
1 2 6, ,..., 0,2,1,0,1,0x x x   with minimum 

*

1 116.0f   . 

For NLPP-2:    * * *
1 2 6, ,..., 1,1,1,0,1,0x x x   with minimum 

*

2 4.0f  . 

 

Then, the GPP for MONLPP in (1.11) can be expressed as: 

 

Minimize       1 2z z  

subject to 
2 2 2 2 2

1 2 3 4 5 1[25( 2) ( 2) ( 1) ( 4) ( 1) ] 116x x x x x z              

                                    
2 2 2 2 2 2

1 2 3 4 5 6 2 4x x x x x x z        
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1 2

1 2

1 2

1 2

3 3 4

5 5 6

1 2 6 3 5 3 5 4

1 2 4 6

2 0

6 0

2 0

2 3 0

4 ( 3)( 3) 0

( 3)( 3) 4 0

10, 10, 10, 1, 1, 5, 5, 6

, , , 0

x x

x x

x x

x x

x x x

x x x

x x x x x x x x

x x x x

  

  

  

  

    

    

       



 

By solving the above GPP using LINGO as coded in Appendix C, the optimum 

compromise solution to the given MONLPP (1.11) is obtained as: 

   * * *
1 2 6, ,..., 0,2,1,0,1,0x x x   with * 2.0z   

 

5 CONCLUSION 

Multi-objective optimization is a crucial topic in non-linear programming problems. 

This technique is widely utilized in many real-life problems as the decision makers 

often encounter the optimizing simultaneously several functions. There are several 

techniques available in writing which deal with multi-objective non-linear 

programming problem. Fuzzy goal programming and  -constraint method are also 

useful multi-objective optimization techniques as there are various possibilities for 

measuring the fuzziness around the target goals, each of which leads to a different fuzzy 

membership function. Furthermore, the membership function requires transformation 

into membership goals by assigning the highest degree as the aspirational level and 

introducing under- and over- deviational variables. This approach is lengthy process 

and has a major drawback owing to additional over- and under- deviational variables. 

Alternatively, the  -constraint method is developed for general multi-objective 

problems. The solution procured largely depends on the chosen   vector. Furthermore, 

the   vector must lie within and the solution procedure is more strenuous to implement. 

The major setback in applying some of these methods is that if the number of objective 

functions is large then the computational effort required to generate an efficient set of 

solutions is prohibitive. Moreover, there is no guarantee of detecting optimal solution 

in a certain amount of time. Another drawback is that the population tends to converge 

to solutions that are superior in one objective function but not in the other objective 

functions. A solution procedure utilizing goal programming approach is developed for 

solving MONLPP in this article. This new technique is based on the condition which 

does not allow an increase in the value of thj objective (minimize) function more than 

a quantity ( jz ), where jz
 
is the maximum increase that may occur due to utilization 

of compromised solution, instead of using its individual optimum solution. This new 
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technique is based on the condition which does not allow to increase in the value of 

thj objective (minimize) function more than a quantity jz
 

where the maximum 

increase may occur due to the use of compromise solution, instead of using its 

individual optimum solution. The optimum compromised solution is worked out by 

formulating the problem as an MONLP that seeks minimization of the sum of the 

increase in the objective function of all the objectives. The formulated MONLPP is 

solved by LINGO. Numerical examples illustrate the computational details. The 

benefits of the developed techniques are that they will be applicable and can be utilized 

to nearly all real-life situations, even with non-linear multi-criteria conditions. Beale’s 

algorithm is stated with the solution method for multi-objective quadratic programming 

problems. Other MONLP problems are also stated to work out the compromise solution 

using the goal programming approach. Some of the limitations are that real-life 

practical interests have hundreds of variables with decimal as quantitative variables. 

Thus, formulation of the problem may become difficult, therefore, computation of the 

values will have to be done utilizing mathematical software. Reasonable goals and 

targets of the MOLP and MONLP problems cannot be specified without reference to 

underlying decision-maker preferences and thus makes the formulation of the problems 

difficult. 
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9    APPENDIX  

Appendix A:  

LINGO Code for Example 4.1 

min=z1+z2; 

-4*x1-6*x2+x1^2+3*x2^2-z1<=-7; 

10-6*x1+2*x1^2-2*x1*x2+3*x2^2-z2<=4; 

x1+2*x2<=4; 
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Appendix B:  

LINGO Code for Example 4.2 

For NLPP-1: 

Min=2+(x1-2)^2+(x2-1)^2; 

x1^2+x2^2<=225; 

x1-3*x2+10<=0; 

x1>=-20; 

x1<=20; 

x2>=-20; 

x2<=20; 

 

For NLPP-2: 

Min=9*x1-(x2-1)^2; 

x1^2+x2^2<=225; 

x1-3*x2+10<=0; 

x1>=-20; 

x1<=20; 

x2>=-20; 

x2<=20; 

 

For GPP: 

Min=z1+z2; 

2+(x1-2)^2+(x2-1)^2-z1<=10.1; 

9*x1-(x2-1)^2-z2<=-196; 

x1^2+x2^2<=225; 

x1-3*x2+10<=0; 

x1>=-20; 

x1<=20; 

x2>=-20; 

x2<=20; 

 

Appendix C:  
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LINGO Code for Example 4.3 

 

 

For NLPP-1: 

Min=-(25*(x1-2)^2+(x2-2)^2+(x3-1)^2+(x4-4)^2+(x5-1)^2); 

x1+x2-2>=0; 

6-x1-x2>=0; 

2-x2+x1>=0; 

2-x1+3*x2>=0; 

4-(x3-3)^2-x4>=0; 

(x5-3)^2+x6-4>=0; 

x1>=0;x2>=0;x6>=0; 

x1<=10;x2<=10;x6<=10; 

x3>=1;x5>=1;x3<=5;x5<=5; 

x4>=0;x4<=6; 

 

 

For NLPP-2: 

Min=x1^2+x2^2+x3^2+x4^2+x5^2+x6^2; 

x1+x2-2>=0; 

6-x1-x2>=0; 

2-x2+x1>=0; 

2-x1+3*x2>=0; 

4-(x3-3)^2-x4>=0; 

(x5-3)^2+x6-4>=0; 

x1>=0;x2>=0;x6>=0; 

x1<=10;x2<=10;x6<=10; 

x3>=1;x5>=1;x3<=5;x5<=5; 

x4>=0;x4<=6; 

 

 

For GPP: 
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Min=z1+z2; 

-(25*(x1-2)^2+(x2-2)^2+(x3-1)^2+(x4-4)^2+(x5-1)^2)-z1<=-116; 

x1^2+x2^2+x3^2+x4^2+x5^2+x6^2-z2<=4; 

x1+x2-2>=0; 

6-x1-x2>=0; 

2-x2+x1>=0; 

2-x1+3*x2>=0; 

4-(x3-3)^2-x4>=0; 

(x5-3)^2+x6-4>=0; 

x1>=0;x2>=0;x6>=0; 

x1<=10;x2<=10;x6<=10; 

x3>=1;x5>=1;x3<=5;x5<=5; 

x4>=0;x4<=6; 


