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A B S T R A C T

In this paper, a series of novel activation functions is presented, which is derived using the improved Riemann–
Liouville conformable fractional derivative (𝑅𝐿CFD). This study investigates the use of fractional activation
functions in Multilayer Perceptron (MLP) models and their impact on the performance of classification tasks,
verified using the IRIS, MNIST and FMNIST datasets. Fractional activation functions introduce a non-integer
power exponent, allowing for improved capturing of complex patterns and representations. The experiment
compares MLP models employing fractional activation functions, such as fractional sigmoid, hyperbolic tangent
and rectified linear units, against traditional models using standard activation functions, their improved
versions and existing fractional functions. The numerical studies have confirmed the theoretical observations
mentioned in the paper. The findings highlight the potential usage of new functions as a valuable tool in deep
learning in classification. The study suggests incorporating fractional activation functions in MLP architectures
can lead to superior accuracy and robustness.
1. Introduction

Machine learning has become a cornerstone for addressing intricate
problems across many domains. One of the primary tasks within this
field is classification, a process that categorizes input data (Zhang,
2000). The significance of neural networks (NNs) in modern data-
driven scenarios cannot be overstated, requiring continuous investi-
gation for broader and more efficient applications. Different meth-
ods, such as binary, multi-class, and hierarchical classification, can
serve many purposes. Due to their capability to understand complex
functions and relationships between inputs and outputs, NNs are a
predominant tool for classification. It has diverse applications ranging
from finance and marketing, medical diagnosis, speech recognition and
image recognition (Yıldız et al., 2019).

Several NN architectures cater to different classification tasks. These
include feed-forward neural networks (FNNs), recurrent neural net-
works (RNNs), suitable for sequential data like speech and text (Gill
and Khehra, 2022), and convolutional neural networks (CNNs), op-
timized for grid data such as images (Chen and Shi, 2021). While
these networks offer versatility, there are still several challenges that
need to be overcome. NNs black-box nature raises interpretability
concerns (Yıldız et al., 2019). Furthermore, NNs demand large datasets,
involve resource-intensive training, and are prone to overfitting, which
can degrade their predictive accuracy (Chen and Shi, 2021). Moving on,

∗ Corresponding author.
E-mail addresses: meshachkumar19@gmail.com (M. Kumar), utkal.mehta@usp.ac.fj (U. Mehta), nimzoexin59@gmail.com (G. Cirrincione).

fractional calculus extends the conventional understanding of deriva-
tives and integrals by considering non-integer orders (Wang et al.,
2017). Its application in areas like physics and engineering has been
transformative, and recently, its integration into neural networks has
gained traction (Zou et al., 2014). By bringing the unique properties
of fractional calculus into play, NNs can better account for long-
range dependencies inherent in many real-world datasets, boosting
performance in various tasks (Zhang et al., 2017; Viera-Martin et al.,
2022; Yu et al., 2012; Aguilar et al., 2020). The understanding and
implementation of fractional calculus have become critical for solving
increasingly complex and challenging problems in various applications,
and it holds significant potential for future research and innovation.

Furthermore, activation functions play a crucial role in analyzing
the stability of NNs and greatly influence their performance in inter-
preting physical phenomena. It evaluates the importance of neuron
inputs and decides if a neuron should be activated based on math-
ematical operations (Karlik and Olgac, 2011). Research on fractional
activation functions for neural networks is an emerging field. In 2018,
Ivanov (2018) introduced a method to develop fractional activation
functions by extending functions like sine, cosine, and the logistic
function using the ML function principle. Experiments were conducted
to assess the effects of these activation functions on learning and pre-
diction accuracy in NNs. Zamora Esquivel et al. (2019) later proposed
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a unique methodology that allowed NNs to autonomously optimize
the activation functions using concepts from fractional calculus. This
method, when applied to a ResNet18 architecture, yielded superior
accuracy compared to a ResNet100 on the CIFAR10 dataset. In a
subsequent study, Zamora et al. (2022) presented Fractional Adaptive
Linear Units (FALUs), which merges principles from fractional calculus
to create a wide array of activation functions, including Sigmoid, Gaus-
sian, ReLU, and more. FALUs are advantageous because it introduces
only a few additional trainable parameters without the need for special
optimization or initialization techniques. It presents an automated,
efficient solution to the problem of optimizing activation functions and
have shown promising results against traditional and modern methods.

Additionally, Job et al. (2022) studied the fractional-order versions
of the rectified linear unit activation function and its numerous vari-
ants, both linear and nonlinear. These variants were designed using
methods like the Maclaurin and Taylor expansion series. To assess the
efficiency, a simulation was carried out using MLP models to predict
power from a Texas wind turbine. The performance was gauged by
tweaking the activation function in both hidden and output layers.
In another study (Altan et al., 2020), the paper delved into the con-
formable derivative concept, which in the realm of NNs, has notable
benefits. Using this derivative method, researchers effectively employed
the sigmoid activation function. Similarly, Solís-Pérez et al. (2022)
introduced a novel activation function for NNs, combining the hyper-
bolic tangent and Khalil conformable exponential function. This new
function showcased adaptability and was tested in three scenarios:
estimating the Nusselt number in a helical double-pipe evaporator,
finding the volumetric mass transfer coefficient in an electro-chemical
reaction, and gauging the thermal efficiency of a solar parabolic trough
collector. Model performance metrics revealed correlations of 99%,
97%, and 95% with experimental data in each scenario, respectively.
Notably, the network achieved satisfactory learning with fewer neurons
in the hidden layer and effectively trained on limited experimental
data. This function was termed conformable activation function (CAF).
Another study by Altan et al. (2023) combined the sigmoid activation
function with a fractional derivative approach, using the proportional
Caputo definition. The aim was to reduce backpropagation convergence
errors and boost generalization. The study’s results confirmed that this
combination surpassed traditional derivative models in classification
accuracy for neural networks.

Fractional activation functions have gained attention in the field
of neural networks and machine learning due to their potential ben-
efits. These functions can enhance accuracy by leveraging their unique
properties, leading to improved predictions and overall performance.
Furthermore, they contribute to better generalization capabilities, al-
lowing models to handle unseen data effectively and reduce overfit-
ting issues. This increased reliability makes fractional activation func-
tions valuable for real-world applications. These activation functions
offer enhanced flexibility in model configurations for various tasks.
One more important benefit is achieving higher accuracy while using
fewer parameters. This enables the creation of smaller and more effi-
cient models without compromising performance, which is crucial in
resource-limited computational environments. On the other hand, var-
ious limitations are associated with using existing fractional activation
functions. These functions can introduce computational complexity,
leading to increased computational costs compared to conventional ac-
tivation functions (Ivanov, 2018; Zamora Esquivel et al., 2019; Zamora
et al., 2022; Altan et al., 2023). Implementing these complex functions
can also pose challenges due to design issues (Altan et al., 2020).
Moreover, the output not following a zero-centric nature leads to poor
convergence (Solís-Pérez et al., 2022). Additionally, some of these
fractional activation functions may not perform well when used in the
outer layers of neural networks (Job et al., 2022). Addressing these
challenges requires a comprehensive evaluation and improvement of
11

such fractional activation functions within the field of study.
Finally, the primary objective of this paper is to propose innovative
fractional activation functions that not only leverage the benefits of-
fered by existing functions but also overcome their limitations. Consid-
ering the challenges associated with current fractional activation func-
tions, such as computational complexities and feasibility concerns, this
paper aims to introduce a simpler and more efficient version. Through
meticulous analysis of the advantages and drawbacks of established
functions, this paper strives to develop a new class of fractional acti-
vation functions that maximize performance, ease of implementation,
and achieve faster convergence.

This paper is divided into the following sections: Section 2 presents
a brief overview of various activation functions, Section 3 presents
the proposed methodology, Section 4 discusses the mathematical pre-
liminaries, Section 5 presents the proposed activation functions and
their characteristics, Section 6 summarizes the dataset and network
architecture used. A comparison of the proposed activation function
with other functions is shown in Section 7, followed by the conclusions
in Section 8 and an appendix.

2. Activation functions in deep learning: A brief overview

The advancement of activation functions in neural networks presents
an intriguing development. These functions serve a critical role in
determining the output of neurons, and throughout the course of time,
several activation functions have been suggested to enhance training
efficiency and optimize model performance. A linear function serves
as a basic activation function, producing an output of 𝑐 × 𝑥 for an
input 𝑥, where 𝑐 is a constant. While it does not introduce non-
linearity, neural networks require non-linearity to be effective. Without
it, multiple layers in a network still produce a linear output. Since real-
world data is typically not linear, non-linear layers transform data in a
more complex feature space, enhancing the network’s capabilities. This
section provides an overview of the evolution of activation functions for
deep learning.

Logistic sigmoid/tanh Unit Based Activation Functions: To introduce
non-linearity into neural networks, early approaches utilized the lo-
gistic sigmoid and tanh activation functions. The logistic sigmoid is a
widely used traditional non-linear function that restricts outputs to the
range of [0, 1]. However, this function exhibits saturation for extreme
inputs, leading to a vanishing gradient problem. Another commonly
employed activation function is the tanh, which shares similarities
with the logistic sigmoid while possessing zero centricity. With its
output in the range of [−1, 1], this squashing function also experiences
challenges related to vanishing gradients.

Rectified Linear Unit Based Activation Functions: The limitations of the
previously mentioned activation functions, such as logistic sigmoid and
tanh, include saturated output and increased complexity. The Rectified
Linear Unit (ReLU) (Nair and Hinton, 2010) is considered the best
activation function due to its simplicity and improved performance. In
fact, it was utilized in the renowned AlexNet model (Krizhevsky et al.,
2017). Researchers have also explored different variations of ReLU
to address its drawbacks, including limited non-linearity, unbounded
output, and failure to utilize negative values.

Exponential Unit Based Activation Functions: One major issue with the
rectified linear unit activation function is the inadequate utilization of
negative values, which can result in a vanishing gradient. To address
these limitations, researchers have explored exponential function-based
activation functions. The exponential linear unit (ELU) (Clevert et al.,
2015) incorporates negative values by employing the exponential func-
tion. Various variants of ELU have been proposed in academic literature
as alternative activation functions (Dubey et al., 2022).

Learning/Adaptive Activation Functions: Many commonly used acti-
vation functions such as sigmoid, tanh, ReLU, and ELU are designed
manually and may not fully utilize the complexity of the data. An
emerging trend in this field is the use of learning-based adaptive acti-

vation functions. These types of activation functions include adjustable
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Fig. 1. Formulation of the proposed approach.
parameters that can be learned during training. For instance, Adaptive
Piecewise Linear (APL) (Agostinelli et al., 2014) and Swish (Ramachan-
dran et al., 2017) are examples of adaptive activation functions with
two and one learnable parameters respectively.

Miscellaneous Activation Functions: In recent years, many other acti-
vation functions have also been investigated. These activation include
softplus units (Sun et al., 2020), probabilistic functions (Su et al., 2017),
polynomial functions (Li et al., 2019), and kernel functions (Scardapane
et al., 2019).

3. Proposed methodology

There are two methods for incorporating fractional calculus into
activation functions: explicit and implicit. In the explicit method, the
activation function remains unchanged during the forward pass, but in
the backward pass, instead of taking its first derivative, we take its frac-
tional derivative (Job et al., 2022; Altan et al., 2020, 2023). Conversely,
in the implicit method, we replace or generalize the exponential func-
tion with a family of functions that possess similar properties to the
exponential. This results in a new function that incorporates fractional
calculus properties within the existing activation function (Ivanov,
2018; Solís-Pérez et al., 2022).

The proposed method deviates from the classical approach by sub-
stituting a family of functions (M-L) for the exponential in the sigmoid
function. From this point of view, the M-L family is replaced with
the proposed fractional derivative of the exponential. It must be high-
lighted that the resulting fractional sigmoid activation function is not
the fractional derivative of 𝜎(𝑡) (no chain rule is required as in Altan
et al., 2020, 2023), but a variant of the M-L approach as shown in
Fig. 1. The objective of the proposed approach is to create a versa-
tile activation function that can be seamlessly integrated into various
neural models. Additionally, it aims to achieve quicker convergence
12

compared to current fractional activation functions and reduce training
time. Lastly, it strives for superior performance in comparison to exist-
ing activation functions. This approach aims to address these existing
limitations while also building upon and enhancing the advantages
offered by current activation functions. The main contributions of this
paper are as follows:

1. Proposal of new fractional activation functions that leverage the
benefits of existing functions while addressing their limitations.

2. The paper recognizes the computational difficulties posed by
current fractional activation functions and proposes a more com-
putationally efficient and straightforward version for implemen-
tation.

3. The paper also emphasizes the development of fractional ac-
tivation functions that not only enhance performance but also
achieve faster convergence.

4. The paper provides a meticulous analysis validating the theoret-
ical claims using MLP and three benchmark datasets.

4. Mathematical preliminaries

This section presents all the necessary mathematical definitions,
theorems, and proofs used to derive the new fractional-order activa-
tion functions. Fractional calculus is a branch of mathematics that
studies fractional or non-integer order derivatives and integrals. Vari-
ous techniques and methods are involved in fractional calculus, such
as the Grunwald–Letnikov (G-L) fractional difference operator, the
Riemann–Liouville (R-L) fractional integral and derivative, and the
Caputo fractional derivative (Mehta et al., 2022). However, this paper
uses a new definition of fractional calculus known as CFD. The form
of the definition shows that it is the most natural definition and the
most fruitful one. The definition for 0 ≤ 𝛼 < 1 coincides with the
classical definitions on polynomials (up to a constant). Further, if
𝛼 = 1, the definition coincides with the classical definition of the first

derivative (Khalil et al., 2014).
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4.1. The definition

Given a function 𝑓 ∶ [0,∞) → R, the CFD of 𝑓 of order 𝛼 is defined
by:

𝑇𝛼𝑓 (𝑡) = lim
𝜀→0

𝑓 (𝑡 + 𝜀𝑡1−𝛼) − 𝑓 (𝑡)
𝜀

(1)

for all 𝑡 > 0, 𝛼 ∈ (0, 1). In addition, if it exists at any order 𝛼, then it is
simply said 𝑓 is 𝛼-differentiable. If 𝑓 is 𝛼-differentiable ∀ 𝑡 ∈ (0, 𝑎), 𝑎 > 0
nd lim𝑡→0+𝑓 (𝛼)(𝑡) exists, then define

(𝛼)(0) = lim
𝑡→0+

𝑓 (𝛼)(𝑡) (2)

oth 𝑓 (𝛼)(𝑡) and 𝑇𝛼𝑓 (𝑡) denote the CFD of 𝑓 with order 𝛼.
Furthermore, this definition coincides with the classical definitions

f R–L and of Caputo on polynomials (up to a constant multiple).
As a consequence of the above definition, the following useful

heorems are obtained from the given analysis.

heorem 2.1.1. If a function 𝑓 ∶ [0,∞) → R is 𝛼-differentiable at 𝑡0 >
, 𝛼 ∈ (0, 1] then 𝑓 is continuous at 𝑡0, which implies that limℎ→0 𝑓 (𝑡0+ℎ) =
(𝑡0). Hence, 𝛼 is continuous at 𝑡0.

Finally, 𝑇𝛼 satisfies all the properties in the following theorem.

heorem 2.1.2. Let 𝛼 ∈ (0, 1] and 𝑓, 𝑔 be 𝛼-differentiable at a point 𝑡 > 0.
hen,

1. 𝑇𝛼(𝑎𝑓 + 𝑏𝑔) = 𝑎𝑇𝛼(𝑓 ) + 𝑏𝑇𝛼(𝑔), for all 𝑎, 𝑏 ∈ R.
2. 𝑇𝛼(𝑡𝑝) = 𝑝𝑡𝑝−𝛼 , for all 𝑝 ∈ R.
3. 𝑇𝛼(𝑓𝑔) = 𝑓𝑇𝛼(𝑔) + 𝑔𝑇𝛼(𝑓 ).
4. 𝑇𝛼(

𝑓
𝑔 ) =

𝑔𝑇𝛼 (𝑓 )−𝑓𝑇𝛼 (𝑔)
𝑔2

.
5. 𝑇𝛼(𝜆) = 0, for all constants.
6. If, in addition, 𝑓 is differentiable, then 𝑇𝛼𝑓 (𝑡) = 𝑡1−𝛼 𝑑𝑓

𝑑𝑡 (𝑡).

For 𝛼 = 1, the above properties correspond to the integer order derivative.

4.2. Improved conformable fractional derivatives

4.2.1. Preliminaries
Given the R-L and Caputo definitions, for 𝛼 ∈ (𝑛−1, 𝑛], 𝑛 ∈ N, (Khalil

et al., 2014)

𝑅𝐿𝐷𝛼
𝑎𝑓 (𝑡) =

1
𝛤 (𝑛 − 𝛼)

𝑑𝑛

𝑑𝑡𝑛 ∫

𝑡

𝑎

𝑓 (𝑥)
(𝑡 − 𝑥)𝛼−𝑛+1

𝑑𝑥 (3)

𝐶𝐷𝛼
𝑎𝑓 (𝑡) =

1
𝛤 (𝑛 − 𝛼) ∫

𝑡

𝑎

𝑓 (𝑛)(𝑥)
(𝑡 − 𝑥)𝛼−𝑛+1

𝑑𝑥 (4)

onsidering the R-L and Caputo fractional derivative definitions
Kothari et al., 2019), for 𝛼 ∈ (𝑛 − 1, 𝑛], 𝑛 ∈ N, it follows

lim
→(𝑛−1)

𝑅𝐿
𝑎 𝐷𝛼𝑓 (𝑡) = 𝑓 𝑛−1(𝑡) (5)

lim
→(𝑛−1)

𝐶
𝑎 𝐷

𝛼𝑓 (𝑡) = 𝑓 (𝑛−1)(𝑡) − 𝑓 (𝑛−1)(𝑎) (6)

where 𝑓 (0)(𝑡) = 𝑓 (𝑡).

Definition 2.2.1. Given a function 𝑓 ∶ 𝑅 → 𝑅 the improved
Caputo-type CFD of 𝑓 of order 𝛼 is defined by Gao and Chi (2020):

𝐶
𝑎 𝑇𝛼(𝑡) = lim

𝜀→0

[

(1 − 𝛼)(𝑓 (𝑡) − 𝑓 (𝑎)) + 𝛼
𝑓 (𝑡 + 𝜀(𝑡 − 𝑎)1−𝛼) − 𝑓 (𝑡)

𝜀

]

(7)

here 0 ≤ 𝑎 < 𝑡 < +∞, 𝑎 is a given number.

efinition 2.2.2. Given a function 𝑓 ∶ 𝑅 → 𝑅, the improved Riemann–
iouville-type conformable fractional derivative of 𝑓 of order 𝛼 is
13
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Fig. 2. Fractional derivative of 𝑒−𝑡 of order 𝛼.

defined by Gao and Chi (2020):

𝑅𝐿
𝑎 𝑇𝛼(𝑡) = lim

𝜀→0

[

(1 − 𝛼)𝑓 (𝑡) + 𝛼
𝑓 (𝑡 + 𝜀(𝑡 − 𝑎)1−𝛼) − 𝑓 (𝑡)

𝜀

]

(8)

where 0 ≤ 𝑎 < 𝑡 < +∞ and 𝑎 is a given number.

Upon simplifying using (5) and (6), one can see

lim
𝛼→0

𝐶
𝑎 𝑇𝛼(𝑡) = lim

𝛼→0
(𝑓 (𝑡) − 𝑓 (𝑎)) = lim

𝛼→0
𝐶
𝑎 𝐷

𝛼(𝑡) (9)

lim
→0

𝑅𝐿
𝑎 𝑇𝛼(𝑡) = lim

𝛼→0
𝑓 (𝑡) = lim

𝛼→0
𝑅𝐿
𝑎 𝐷𝛼(𝑡) (10)

f 𝛼 = 1, both 𝐶
𝑎 𝑇𝛼(𝑡) and 𝑅𝐿

𝑎 𝑇𝛼(𝑡) coincide with 𝑑
𝑑𝑡𝑓 (𝑡) = 𝑓 ′(𝑡).

Remark. (8) was used to derive the proposed functions instead of (7).
The term (𝑓 (𝑡)−𝑓 (𝑎)) in (7) causes the functions to lose their symmetry
t 𝑡 = 0.

5. Derivation and analysis of fractional-order activation functions

Fractional-order activation functions generalize classical activation
functions by including fractional exponents in their equations. In this
section, the derivation of the new functions is described mathemati-
cally, along with an exploration of their properties at various fractional
orders.

5.1. Generalization of exponential function

The RL-type conformable fractional derivative is defined in (8).
Given 𝑓 (𝑡) = 𝑒−𝑡 it follows (see Appendix A)
𝐿𝑇𝛼(𝑡) = (1 − 𝛼)(𝑒−𝑡) − 𝛼𝑡1−𝛼𝑒−𝑡 (11)

Fig. 2 shows the generalized exponential function of order 𝛼, rang-
ng in (0,1]. It can be observed that while changing the 𝛼 values the
-axis crossing of the generalized exponential term also changes, thus
nabling the slope of the exponential function to change accordingly.

.2. Proposed activation functions

Consider first the classical sigmoid function as

(𝑡) = 1
1 + 𝑒−𝑡

(12)

To obtain the generalized sigmoid function, the exponential term 𝑒−𝑡

n (12) is replaced with (11), yielding the new fractional sigmoid acti-
ation function. The fractional sigmoid activation function can benefit
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Table 1
Proposed fractional sigmoid and hyperbolic tangent functions
and derivatives.
Type Function Derivative
𝑅𝐿F𝜎(𝑡) 1

1+𝑅𝐿
0 𝑇𝛼 (𝑡)

𝑅𝐿F𝜎(𝑡)(1 − 𝑅𝐿F𝜎(𝑡))
𝑅𝐿Ftanh(𝑡) 2(𝑅𝐿F𝜎(2𝑡)) − 1 1 − (𝑅𝐿Ftanh(𝑡))2

from this modification, as it increases its generalization, flexibility, and
memory efficiency without altering the shape of the original sigmoid
function. Saturation can be reached more quickly since the slope of the
fractional sigmoid function is controlled by the changes depicted with
different 𝛼 values. The model efficiency may be enhanced as a result
of the increased freedom in shaping and regulating the behavior of the
function.

Using (11), one can obtain

𝑅𝐿Fσ(𝑡) = 1
1 + 𝑅𝐿

0 𝑇𝛼(𝑡)
(13)

Similarly 𝑅𝐿Ftanh(𝑡) can be expressed in terms of (13) as below (see
Appendix B)
𝑅𝐿Ftanh(𝑡) = 2(𝑅𝐿Fσ(2𝑡)) − 1. (14)

Table 1 portrays the equations of the proposed activation functions
and its derivatives. The characteristics of each of the proposed functions
are presented in Fig. 3 together with its variable order 𝛼 ∈ (0, 1]
derivatives. Fig. 3(a) shows the characteristics of the 𝑅𝐿Fσ(𝑡) with
ifferent values of 𝛼. It can be observed, that for smaller values of 𝛼, the
lope gradually becomes steeper, and for 𝛼 = 1, the traditional sigmoid
ctivation function is achieved. Likewise, the derivative of 𝑅𝐿Fσ(𝑡) in
ig. 3(b) shows that the amplitude of the curve is determined by the
alue of 𝛼. The behavior of the derivative of the sigmoid function
14
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Table 2
Fractional rectified linear units.

Type Function Derivative

𝑅𝐿F𝑅𝑒𝐿𝑈 output =
{

𝑡, 𝑡 ⩾ 0

0, 𝑡 < 0
output =

{

𝑡1−𝛼 , 𝑡 ⩾ 0

0, 𝑡 < 0

𝑅𝐿F𝐿𝑅𝑒𝐿𝑈 output =
{

𝑡, 𝑡 ⩾ 0

0.01𝑡, 𝑡 < 0
output =

{

𝑡1−𝛼 , 𝑡 ⩾ 0

0.01𝑡1−𝛼 , 𝑡 < 0

as 𝑡 approaches positive and negative infinity is that it approaches
zero in both cases. This means that the slope of the 𝑅𝐿Fσ(𝑡) becomes
ery small at large positive and negative values of 𝑡, indicating that
he function becomes almost horizontal. Similarly, Fig. 3(c) shows the
haracteristics of the 𝑅𝐿Ftanh(𝑡) with varying 𝛼. It can be observed
hat for smaller values of 𝛼, the slope gradually becomes steeper, and
or 𝛼 = 1, the traditional tanh activation function is achieved. The
erivative of 𝑅𝐿Ftanh(𝑡) in Fig. 3(d) shows that the steepness of the
urve is determined by the value of 𝛼. The graph has an inflection point
t 𝑡 = 0, where it changes sign from positive to negative. The graph of
he derivative starts at one at 𝑡 = 0, decreases to zero as 𝑡 approaches
∞, and likewise as 𝑡 approaches −∞.

Table 2 presents the proposed fractional rectified linear units. Un-
ike the implicit approach, these functions have used the explicit ap-
roach to incorporate fractional calculus. Therefore, (1) can be di-
ectly applied to the classical rectified linear units. During forward
ropagation, the activation function remains unchanged. However,
uring backpropagation, instead of computing the first derivative, the
erivative has been calculated using 𝛼 ∈ (0, 1].

Fig. 4 shows the characteristics of the 𝑅𝐿FReLU(left) and
𝐿FLReLU(right). It can be observed that for 𝛼 = 0, the classical
unctions are obtained, which are used for forward propagation and
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Fig. 4. Characteristics of new fractional rectified linear units.
Table 3
Comparison of activation functions.
Activation function Diminishing

gradients
Better gener-
alization

Lack of
adaptability

Computational
efficiency

Faster
convergence

𝑅𝐿F𝜎 No Yes No No Yes
𝑅𝐿Ftanh No Yes No No Yes
𝑅𝐿F𝑅𝑒𝐿𝑈 No Yes No Yes Yes
𝑅𝐿F𝐿𝑅𝑒𝐿𝑈 No Yes No Yes Yes

𝜎 (Dubey et al., 2022) Yes No No No No
tanh (Dubey et al., 2022) Yes No Yes No No
ReLU (Dubey et al., 2022) Yes No Yes Yes No
LReLU (Dubey et al., 2022) Partial No No Yes No

Swish (Ramachandran et al., 2017) No No No No No
LiHST (Roy et al., 2022) No No No No No
ABReLU (Dubey and Chakraborty, 2021) No No No Yes No
𝑃𝐶𝜎 (Altan et al., 2023) No Yes Yes No No
𝛹 𝜁 (Solís-Pérez et al., 2022) No Yes Yes No No
FReLU (Job et al., 2022) No Yes No No No
FLReLU (Job et al., 2022) No Yes No No No
Table 4
Properties of proposed activation functions.
Type Parametric Monotonic Smooth Differentiable Bounded
𝑅𝐿F𝜎 Yes Yes Yes Yes Yes [0,1]
𝑅𝐿Ftanh Yes Yes Yes Yes Yes [−1,1]
𝑅𝐿F𝑅𝑒𝐿𝑈 Yes Yes No 𝑡 > 0 For negative values
𝑅𝐿F𝐿𝑅𝑒𝐿𝑈 Yes Yes No −𝑡 < 0 < 𝑡 No
6
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for 0 < 𝛼 < 1 depicts the fractional derivatives, and finally, for 𝛼 = 1,
he first derivative is obtained.

Table 3 provides a concise overview of different activation functions
ommonly used in neural networks giving insight into their key char-
cteristics. These characteristics include the presence of diminishing
radients, the ability to promote better generalization, adaptability
o different network configurations, computational efficiency, and the
peed of convergence during training. Similarly, Table 4 highlights
he properties of proposed fractional activation functions. All functions
re parametric, meaning they can be adjusted based on certain pa-
ameters, potentially offering more flexibility in modeling. They are
onotonic, smooth, and differentiable, which are desirable properties

or activation functions as they ensure a smooth gradient flow, aiding
n the optimization process. The tables provide a clear comparison and
roperties of standard and fractional activation functions, highlighting
15

he advantages and limitations of each. u
. Dataset description and neural model design

For experimental analysis, three well-known and frequently em-
loyed datasets are used to assess the performance and capabilities
f the proposed activation functions. These datasets include the Iris
ataset, the Fashion-MNIST dataset, and the MNIST dataset. Employing
hese diverse datasets will showcase the versatility and applicability of
he proposed activation functions while highlighting their performance
cross various domains and problem types. Moving on, the Iris dataset
s a well-known dataset in machine learning and statistics. It includes
easurements of four attributes (sepal length, sepal width, petal length,

nd petal width) from three types of iris flowers (setosa, versicolor, and
irginica), with 50 samples for each species, totaling 150 data points.
t is often used as a starting point for those learning classification
echniques. The primary goal is to accurately classify iris flowers into
heir respective species, it is widely employed for learning and im-
lementing classification algorithms. Fashion-MNIST is another widely
sed dataset in the field of machine learning and computer vision.
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Fig. 5. Dataset samples for training and testing.
It serves as a benchmark for image classification tasks and is often
considered a modern replacement for the traditional MNIST dataset.
Fashion-MNIST consists of 60,000 training images and 10,000 testing
images, each of which is a grayscale image (28 × 28 pixels) of a fashion
item or accessory, such as shoes, shirts, dresses, or bags. These images
are categorized into ten classes, making it a multi-class classification
problem. Finally, the MNIST dataset, short for the Modified National
Institute of Standards and Technology database, is a widely recognized
and commonly used dataset in the field of machine learning and com-
puter vision. It consists of a collection of 28 × 28 pixel grayscale images
of handwritten digits (0 through 9), along with their corresponding
labels indicating the digit they represent. The dataset is divided into
two main parts: a training set containing 60,000 images and a testing
set containing 10,000 images. MNIST is often used as a benchmark
for developing and testing various machine learning and deep learning
algorithms, especially those related to image classification and digit
recognition. Fig. 5 portrays the data samples of MNIST and FMNIST
datasets.

6.1. Data preprocessing

Preprocessing was a vital step when working with image datasets
like MNIST and Fashion MNIST. It involved transforming and cleaning
the data to make it compatible with MLP. This process typically in-
cluded normalizing pixel values to a range between 0 and 1 to enhance
training efficiency, flattening 2D image arrays (28 × 28) into 1D
vectors (1 × 784) to accommodate the model’s input requirements, and
optionally applying data augmentation techniques to increase training
data diversity. For these datasets, label encoding was typically not
needed as labels were already in the correct format. By implementing
these preprocessing steps, the data was prepared in a manner that
was conducive to training MLP models, ultimately improving their
performance and accuracy.

6.2. MLP architecture

In this classification example, the MLP neural network is comprised
of one input layer, one or more hidden layers, and one output layer.
The MLP is highly flexible as it supports different types of activation
functions, network architectures and optimization strategies, allowing
practitioners to tailor their models to suit their needs. Fig. 6 shows
16
Table 5
Network hyper-parameters for training and validation.

IRIS MNIST FMNIST

Loss −
𝑁
∑

𝑖=1

𝑐
∑

𝑗=1
𝑦𝑗 log(𝜎𝑗 ) −

𝑁
∑

𝑖=1

𝑐
∑

𝑗=1
𝑦𝑗 log(𝜎𝑗 ) −

𝑁
∑

𝑖=1

𝑐
∑

𝑗=1
𝑦𝑗 log(𝜎𝑗 )

Hidden layers 𝐿 = 1 𝐿 = 2 𝐿 = 2
Neurons 𝑛 = 32 per layer 𝑛 = 100 per layer 𝑛 = 100 per layer
Learning rate 𝜂 = 0.01 𝜂 = 0.1 𝜂 = 0.5
Batch size 𝑚 = 10 𝑚 = 50 𝑚 = 100
Fractional order 𝛼 = 0.1 𝛼 = 0.9 𝛼 = 0.8

the MLP architecture and Table 5 presents the model hyper-parameters
used to train and test for the given three separate datasets. The model
hyper-parameters are chosen based on thoroughly reviewing literature
which uses MLP for MNIST classification (Karlik and Olgac, 2011;
Alcantara, 2017; Pedamonti, 2018; Lau and Lim, 2018). Similar hyper-
parameter values were used in pre-experiment examples and the best
values were chosen based on experimenting baseline values. As for
selecting the hyper-parameter fractional order, currently, each 𝛼 is
chosen between 0 and 1, and the network is evaluated. Finally, the 𝛼
value at which the highest accuracy is achieved is used for all activation
functions. Fig. 7 shows a sample of accuracies achieved at different
values of 𝛼 for different datasets.

7. Experimental evaluation

This section presents a comparative analysis of using MLP neu-
ral networks for classification. The proposed activation functions are
compared with their classical counterparts, improved versions of the
classical functions, which are the most recent and existing fractional
activation functions. For each experiment, only the hidden layer acti-
vation functions are changed, and the output layer activation function
(softmax) remains the same throughout. The evaluation is performed
on the IRIS, MNIST and FMNIST datasets. The proposed analysis is
focused on two key metrics: loss and accuracy. The performance of
the MLP models is assessed in terms of their maximum accuracy. The
effectiveness of the proposed functions is also assessed in terms of their
influence on convergence rate, adaptability, and training time required
to achieve maximum accuracy. The experiments have been conducted
on an Anaconda platform, utilizing the Jupyter Notebook environment,
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Fig. 6. MLP architecture.
Fig. 7. Fractional order selection for each training dataset.
with a computer system featuring an i7 8th generation 4.0 GHz CPU
and 16 GB RAM.

Table 6 summarizes all the training and testing accuracies achieved
by each of the functions for the three datasets. Values in bold represent
the maximum accuracies of the proposed functions, which are greater
than all other functions. After performing these evaluations, some key
findings observed are that all proposed functions achieve maximum
accuracy in fewer epochs than compared to other functions. The pro-
posed functions are trained for 70 epochs for the IRIS dataset, whereas
other functions are trained for 100 epochs. For the MNIST dataset, the
proposed functions are trained for 25 epochs and other functions are
trained for 100 epochs. Finally, for the FMNIST dataset, the proposed
functions are trained for 100 epochs, and other functions are trained
for 200 epochs. This shows the superiority of the proposed functions
as they can achieve higher accuracies even though they are trained for
fewer epochs. Another important observation made was based on exist-
ing fractional activation functions, namely 𝑃𝐶σ and 𝛹 𝜁 . These functions
are not feasible to implement in more than one layer network as it
17
tends to suffer from overflow in gradient values, and the network stops
learning. To obtain results for comparative analysis, models with 𝑃𝐶σ
and 𝛹 𝜁 are trained with one hidden layer only but with 500 neurons.
In general, the suggested functions retained the benefits supplied by
existing functions. They offered additional benefits, such as superior
performance in all circumstances and more generalization capabilities
than all other functions. Compared to existing fractional activation
functions, the suggested functions were more computationally efficient,
and adaptive and eliminated the implementation limitation in deep
architectures.

Figs. 8–19 present the comparative convergence curves of all func-
tions in terms of loss and accuracy. Key observations made from these
graphs are that for all the evaluations the proposed functions are far
superior in terms of convergence rate. It can be seen that for all cases,
the models with proposed functions has not only a faster convergence
but also achieves higher accuracies right from epoch 1. When compared
to different dataset evaluations, for IRIS the training convergence is
reduced by 30% when using proposed functions, for MNIST the training
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Fig. 8. Convergence curve of logistic sigmoid based activation functions for MNIST.

Fig. 9. Convergence curve of tanh based activation functions for MNIST.

Fig. 10. Convergence curve of rectified linear unit based activation functions for MNIST.

Fig. 11. Convergence curve of rectified linear unit based activation functions for MNIST.
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Fig. 12. Convergence curve of logistic sigmoid based activation functions for FMNIST.

Fig. 13. Convergence curve of tanh based activation functions for FMNIST.

Fig. 14. Convergence curve of rectified linear unit based activation functions for FMNIST.

Fig. 15. Convergence curve of rectified linear unit based activation functions for FMNIST.
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Fig. 16. Convergence curve of logistic sigmoid based activation functions for IRIS.

Fig. 17. Convergence curve of tanh based activation functions for IRIS.

Fig. 18. Convergence curve of rectified linear unit based activation functions for IRIS.

Fig. 19. Convergence curve of rectified linear unit based activation functions for IRIS.
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Table 6
Performance comparisons on IRIS, MNIST and Fashion-MNIST datasets.
Activation
function

IRIS MNIST Fashion-MNIST

Training Testing Training Testing Training Testing
𝑅𝐿F𝜎 98.81% 100.00% 99.81% 97.53% 98.45% 96.04%
sigmoid (Dubey et al., 2022) 96.43% 95.56% 99.32% 95.82% 91.18% 86.03%
Swish (Ramachandran et al., 2017) 97.33% 97.75% 97.99% 96.25% 79.42% 76.23%
𝑃𝐶𝜎 (Altan et al., 2023) 91.67% 91.11% 91.92% 92.16% 77.42% 75.87%
𝑅𝐿Ftanh 100.00% 97.78% 99.66% 97.23% 98.43% 95.20%
tanh (Dubey et al., 2022) 96.32% 95.24% 99.57% 94.95% 89.01% 77.92%
LiSHT (Roy et al., 2022) 97.59% 96.88% 85.51% 83.38% 45.42% 43.85%
𝛹 𝜁 (Solís-Pérez et al., 2022) 95.25% 90.48% 90.26% 90.37% 78.24% 78.35%
𝑅𝐿F𝑅𝑒𝐿𝑈 100.00% 97.65% 99.58% 97.53% 91.75% 87.27%
ReLU (Dubey et al., 2022) 98.57% 95.78% 88.05% 86.71% 78.85% 76.64%
ABReLU (Dubey and Chakraborty, 2021) 98.11% 97.01% 86.24% 84.77% 79.58% 76.67%
FReLU (Job et al., 2022) 95.14% 95.33% 96.59% 95.70% 80.21% 77.16%
𝑅𝐿F𝐿𝑅𝑒𝐿𝑈 100.00% 97.62% 99.59% 97.50% 98.30% 96.22%
LReLU (Dubey et al., 2022) 97.62% 95.84% 88.52% 86.86% 67.49% 66.07%
FLReLU (Job et al., 2022) 95.39% 94.92% 86.93% 85.74% 62.75% 59.98%
Table 7
Training time to achieve maximum accuracy.

Activation function Dataset

MNIST FMNIST
𝑅𝐿F𝜎 00:02:21 00:07:24
sigmoid (Dubey et al., 2022) 00:07:02 00:13:16
Swish (Ramachandran et al., 2017) 00:06:46 00:13:28
𝑃𝐶𝜎 (Altan et al., 2023) 00:027:17 00:26:37
𝑅𝐿Ftanh 00:02:11 00:06:15
tanh (Dubey et al., 2022) 00:07:56 00:12:14
LiSHT (Roy et al., 2022) 00:07:33 00:11:51
𝛹 𝜁 (Solís-Pérez et al., 2022) 00:025:46 00:24:48
𝑅𝐿F𝑅𝑒𝐿𝑈 00:02:09 00:06:01
ReLU (Dubey et al., 2022) 00:08:07 00:11:56
ABReLU (Dubey and Chakraborty, 2021) 00:06:16 00:12:34
FReLU (Job et al., 2022) 00:06:50 00:11:06
𝑅𝐿F𝐿𝑅𝑒𝐿𝑈 00:01:58 00:05:25
LReLU (Dubey et al., 2022) 00:07:23 00:12:03
FLReLU (Job et al., 2022) 00:07:03 00:11:30

convergence is reduced by 75% when using proposed functions and
for FMNIST the training convergence is reduced by 50% when using
proposed functions. Also, it can be seen that the proposed functions
obtain much lower loss values right from epoch 1. The functions
which suffered the most were the improved versions of the classical
functions namely the swish, LiHST, ABReLU and the fractional activa-
tion functions which suffered were the FReLU and FLReLU. Overall,
the proposed functions outperformed all other functions in terms of
faster convergence rate, better generalization and efficiently finding
the shortest path to global minimum while training which all the other
functions lack in evaluation.

Table 7 presents the training time to reach the highest accuracy
utilizing all activation functions for MNIST and FMNIST. The values
were not recorded for the IRIS dataset due to being below 20 s training
time. The proposed functions, in all cases, reduce training time by a
significant amount due to their faster convergence properties. Com-
pared with classical functions, the training time is reduced by 71.61%
on average for MNIST and 49.31% on average for FMNIST. When
compared with improved versions of classical functions, the training
time is reduced by 67.78% on average for MNIST and 50.28% on
average for FMNIST. When compared with existing fractional functions,
the training time is reduced by 87.08% on average for MNIST and
66.11% on average for FMNIST.

8. Conclusions

The proposed new family of fractional activation functions has
several potential benefits. It is a viable choice for rapid training because
21
it can lead to faster convergence and shorter time frames. Another
significant advantage is the enhanced adaptability, which is crucial
when working with complex data. In addition to boosting general-
ization during training, the proposed activation functions can reduce
training costs, enabling larger and more complex neural networks to
be trained. Because of its enhanced ability to pick up on subtleties
and nuanced patterns, it can better adapt to complex data sets, which
can be challenging for traditional activation functions. Overfitting,
where a neural network becomes overly complex while fitting the
training data too closely, is also mitigated. Also, the proposed func-
tions show considerable benefits over more complex fractional learning
algorithms, making them an attractive candidate for practical use due
to their simplicity and ease of implementation. Finally, compared to
existing fractional activation functions, the proposed functions are
more computationally efficient and can be integrated with many neural
architectures. Also, the presented functions can reduce training time
drastically, as seen from numerical assessments. Our functions can be
feasible with more than one layer network, while previous fractional
activation functions would fail to perform. The suggested fractional
activation function for neural network training has the potential to
improve training performance and efficiency even more.

Future work will deal with the automatic selection of the best
fractional order in the activation function by considering it as a weight
to be estimated by backpropagation during training. In this sense, it can
be said that the data determine the fractional order. The next possible
study is to verify the functions for deep network architectures.
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Appendix A

Proof of Eq. (11). The RL-type conformable fractional derivative is
defined in (6). Given 𝑓 (𝑡) = 𝑒−𝑡

𝑅𝐿
0 𝑇𝛼(𝑓 (𝑡)) = lim

𝜀→0

[

(1 − 𝛼)(𝑒−𝑡) + 𝛼 𝑒
−(𝑡+𝜀(𝑡−𝛼)1−𝛼 ) − 𝑒−𝑡

𝜀

]

= lim
𝜀→0

[

(1 − 𝛼)(𝑒−𝑡)
]

+ 𝛼 lim
𝜀→0

[

𝑒−(𝑡+𝜀(𝑡−𝛼)1−𝛼 ) − 𝑒−𝑡

𝜀

]

= (1 − 𝛼)(𝑒−𝑡) + 𝛼 lim

[

𝑒−(𝑡+𝜀(𝑡−𝛼)1−𝛼 ) − 𝑒−𝑡
]

𝜀→0 𝜀
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= (1 − 𝛼)(𝑒−𝑡) + 𝛼 lim
𝜀→0

𝑑
𝑑𝜀

[

𝑒−(𝑡+𝜀𝑡1−𝛼 )
]

− 𝑑
𝑑𝜀

[

𝑒−𝑡
]

𝑑
𝑑𝜀 𝜀

= (1 − 𝛼)(𝑒−𝑡) + 𝛼 lim
𝜀→0

−𝑡1−𝛼𝑒−(𝑡+𝜀𝑡1−𝛼 ) − 0
1

= (1 − 𝛼)(𝑒−𝑡) − 𝛼𝑡1−𝛼𝑒−𝑡

ppendix B

roof of Eq. (14). Since the sigmoid function is symmetric around the
rigin and returns a value in the range [0, 1], the following relationship
an be written:

𝜎(−𝑡) = 1 − 𝜎(𝑡)
1

1 + 𝑒𝑡
= 1 + 𝑒𝑡 − 𝑒𝑡

1 + 𝑒𝑡

= 1 − 𝑒𝑡

1 + 𝑒𝑡

= 1 − 1
1 + 𝑒−𝑡

Now, to see the relationship between tanh and 𝜎, let us rearrange
the tanh function into a similar form by

tanh(𝑡) = 𝑒𝑡 − 𝑒−𝑡

𝑒𝑡 + 𝑒−𝑡

= 𝑒𝑡 − 𝑒−𝑡 − 2𝑒−𝑡
𝑒𝑡 + 𝑒−𝑡

= 1 + −2𝑒−𝑡
𝑒𝑡 + 𝑒−𝑡

= 1 − 2
𝑒2𝑡 + 1

Now, from the logistic sigmoid’s perspective, it follows:

anh(𝑡) = 1 − 2
𝑒2𝑡 + 1

= 1 − 2𝜎(−2𝑡)

= 1 − 2(1 − 𝜎(2𝑡))

= 1 − 2 + 2𝜎(2𝑡)

= 2𝜎(2𝑡) − 1

Hence, it can be concluded that the tanh function is just a rescaled
version of the logistic sigmoid function.
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