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Introduction 

Identifying multivariable systems has been one of the most challenging 
tasks for control engineers. The system that is represented by two-input-to-
output (TITO) signals with cross-coupling is of great importance in process 
industries (Nordfedlt, 2005). Over the last decade, several authors have 
proposed relevant identification procedures for modelling TITO systems. 
Modelling any system, whether single-input-single-output (SISO), TITO, or 
multi-input-multi-output (MIMO) systems, has become the fundamental 
approach to determining the behaviour of the system. The plant or the 
system is a numerical representation of a mechanical, electrical, or a 
combination of the two. This numerical representation is recognized as the 
transfer function of a system with no orders, most commonly known as the 
integer order transfer function (IOTF). This transfer function is the result of 
integer order differential equations and the Laplace transform using 
classical methods. Once the IOTF is achieved, a linear controller is designed 
to compensate for the desired output in terms of settling time, steady-state 
error, and more. However, an IOTF would never be able to represent the 
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real-time data of a system exactly due to the natural order of a real-time 
system in the execution.  

A real-time model does not limit the operation to a specific integer-order 
operator (derivative). However, the real-time systems behave dynamically 
with time shifts between the input and output signals, and consequently, the 
fractional calculus techniques are highly invoked. Since fractional calculus 
allows more general descriptions of dynamical systems, it could be 
anticipated that such models can provide more accurate and precise 
descriptions of the dynamic systems compared to the classical integer 
methods (Tepljakov, 2017). 

 In recent years, fractional order calculus has attracted engineers due to 
its ability to describe the behaviour of a dynamic system in compact 
expressions and its infinite memory characteristics. The primary reason for 
not using fractional calculation in earlier times was the lack of solution 
methods for fractional differential equations. Nevertheless, currently, many 
methods of approximation of fractional derivatives and integrals are in place 
and being used as promissory tools in bioengineering, viscoelasticity, 
electronics, robotics, control theory, and signal processing (Kothari, 2019). 

In the real world, fractional-order models have proven very effective in 
describing the behaviour of viscoelastic systems, ocean fishery models, 
supercapacitors, lithium-ion batteries, virus models, smoking quitting 
behaviour, human arm dynamics, and atmospheric dynamics of carbon 
dioxide gas.  

Two major methods of fractional order model identification are 
frequency and time domains. 

 
 The time domain method typically includes the equation error 

method and output error method. Many researchers have explored 
strategies for a simplification of fractional order dynamics, strategies 
that transform fractional order systems into algebraic systems. 

 A modulating function was utilized to change the calculation of a 
signal's input/output fractional derivative. Solutions to utilize the 
polynomial functions, and Gaussian function, are different from 
integer order model identification.  

 
Nonetheless, fractional-order systems are greatly challenged by the 

discretization problem (Li and Sun, 2011). An operational matrix method 
proposed by Tang et al., (2015) converts the fractional differential or 
integral operators in an algebraic equation to a generalized operational 
matrix of block pulse functions. That method does not restrict the 
identification of fractional orders of the fractional systems to be identified. 
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As reported by Zhang et al., (2022), a block pulse function is constant 
and not sufficiently smooth, and thus, a hybrid of the Bernoulli principle 
and block pulse function was proposed. This can decrease the operational 
matrix dimensions and computational complexity. The parameter 
identification for fractional order systems was achieved by reducing the 
mean square error between the output and true system using the algebraic 
fractional order system. That was found to be a more accurate 
approximation when compared to elemental block pulse functions. On the 
contrary, the hybrid operator matrix involves a complex matrix. Hence, 
there is a need to develop methods to identify fractional-order systems with 
time delays. 

In the implementation of fractional-order derivatives and integrals, the 
most frequently utilized definitions are the left and right-sided Riemann-
Liouville (RL) integrals and the left and right-sided Caputo and Riesz 
derivatives (Bo et al., 2021, Mehta et al., 2022). However, Caputo and Riesz 
derivatives are generally inconsistent with integer-order derivatives. On the 
contrary, in most cases, fractional models for the identification of Riemann-
Liouville, Caputo, and Grunwald-Letnikov (GL) parameters have been 
used. 

The Grunwald-Letnikov derivative is widely used in applications related 
to digital control because its discretization can be simply fitted to real data 
(Kothari and Mehta, 2021). Moreover, some recent studies reveal that non-
singular fractional calculus derivatives could be used, such as the Caputo-
Fabrizio derivative and  Atangana-Baleanu derivatives (Fareed et al., 2022). 
In addition, recent applications of fractional operators to control 
applications have proven to yield promising results (Ranjan and Mehta, 
2022). In the sequel, the Riemann-Liouville derivative is applied to obtain 
a fractional model of a coupled TITO system. 

The literature sources cited above reveal that the identification method 
of multivariable systems is still a challenging problem due to the strong 
coupling between two or more cross-coupled subsystems. Such a system 
can require a multi-step approach and additional decoupling to counter-
system interactions. Also, the performance of any dynamic process is highly 
determined by an adequate model and the art of its build-up. 

This chapter provides a schematic to estimate the fractional first-order 
delay model from simple input and output data, generated from a single 
experiment. The new fractional modelling scheme does not require any 
additional sequential steps of identification or decouplers. The orthogonal 
series-based algebraic technique, namely the block-pulse operational 
matrix, is used to address real-world engineering applications involving a 
large amount of system identification data and system noise.  
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A one-step approach produces faster identification with less experimental 
time. The feasibility of engineering applications can be demonstrated by 
digitally examining the examples presented. 

Two Input Two Output (TITO) System 

Systems having two inputs and two output signals are, in general,  cross-
coupled and play significant roles in process system dynamics. TITO 
systems fall under one of the branches of MIMO systems, and when 
considering the loops separately, they resemble a SISO system. Numerous 
techniques have been developed for the identification of a TITO system and 
the design of its controller. However, it is a challenging task to identify a 
TITO system due to the interaction between loops in the system. It is 
considered to identify the system as having two single inputs and two single 
outputs, respectively. A SISO transfer function model is obtained, which 
becomes easier to implement. 

Additionally, SISO design is said to be more comfortable to use 
(Nordfedlt, 2005). Being a linear square, stable, non-singular system with 
process industries is a property in addition to being a TITO system. This is 
the case when a system's input and output signals are equal in number. The 
system is linear and is best described as a matrix form of a linear, square, 
stable, non-singular transfer function. Additionally, there are attempts to 
linearize, to some extent, systems exhibiting non-linear behaviour.  

The TITO process can generally be described as follows:  
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In such a case, the multiloop controller transfer function can be defined as  
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Where the transfer function of each loop can be identified as  
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Moreover,  I can be referred to 1 or 2 and the variables are elements of real 
numbers (ki, AI, ∝i, θi ϵ R). In the above equation, the ki is the static gain 
and AI is the time constant.  

The main goal is estimating the system parameters gain, time constant, 
and the fractional differential orders ∝I and θi respectively, applying 
measurements (data collections) of the input and output system’s signals.  

Considering a system with first order fractional dead time (FOFDT) 
model, then the  TITO matrix becomes, 
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In the identification of a TITO system, it is necessary to estimate each 

loop separately, that is, it can be described as a SISO linear time-invariant 
for a fractional-order system, as given by the modeling fractional 
differential equation (eq. (4)). This approach, requires the system to be 
decoupled or presented in a diagonal form. In general, the decoupling 
approach compensates for the high level of interactions between the loops, 
which may affect the corresponding loop output signals. 

For an effective system to be developed through an open loop transfer 
function in the TITO process, the incorporation of a decoupler is widely 
adopted in various methods. For an open loop transfer function to be 
developed between the output and the input, the corresponding loop must 
be closed. The other loop needs a controller allowing to develop an 
equivalent open loop transfer function (eft). This approach results in the 
dependence of the model on the other loop controller. The open loop transfer 
function model relates the output and the input, while the corresponding 
loop is closed through the feedback controller (say, Gc2). Assuming that the 
controller provides a perfect response (no time delay, time shift), then the 
output of the system attains a set of points with no transients (instantaneous 
reactions). Thus, the eotf for identification purposes can be written as below: 
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Hence, the equivalent model for a TITO system can be defined as  
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When a decoupler exists, the TITO system is considered to behave like two 
independent loops, which makes the identification process simpler. 
However, such a technique’s accuracy is highly dependent on the decoupler. 

Proposed Identification Technique 

To acquire only the input and output answers, this will be generated 
through a simple closed-loop feedback test. The obtained data can build a 
mathematical relationship between the input and the output response 
without knowing what is happening inside the system (a black box 
approach).  

Here, the system is modelled using four independent FOFDT transfer 
functions. The data from the input and output responses are obtained and 
provided to the algorithm, which uses the integral mean square error 
function to give the parameters. For a cross-coupled TITO system, a relation 
between each transfer function and the combination of the input and output 
responses is used to find G11, G12, G21, and G22. 

The identical structure of the TITO system has U1 and U2 inputs, and 
Y1 and Y2 outputs (see Fig.1). This structure consists of a closed-loop 
symmetrical relay that generates inputs for a system under observation. The 
only goal of relays is to produce continuous oscillations (known as limit 
cycles) thus giving ample inputs to excite the systems at desired levels. 
Although relays are used for identification experiments, it is not necessary 
to wait for convergence, as is the case with the traditional techniques for 
relay auto-tuning. Any step of input transient data or the first two cycles of 
oscillations are adequate, making identification faster without sacrificing 
overall efficiency. 

Each transfer function of a coupled TITO model can be identified using 
the following combination of input and output data  
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Figure 1: Relay feedback test to the active TITO system 

Block Pulse Operational Matrix: The real-order linear algebraic equation 
can be converted into a matrix form using the block pulse operational matrix 
(BPOM) and for the identification problem considered here, such an 
operation can significantly simplify the computation (in many cases the 
fractional-order linear differential equations are solved by an orthogonal 
approach). Through block pulse functions and operational matrix, various 
signals can be expanded for the fractional systems (Li and Sun, 2011). When 
referring to block pulse functions, is a set of orthogonal functions which can 
be defined in the time interval [0, T] as: 
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where I=1,2,…,M.  M is considered to be the number of elementary 
functions used.  

Integral functions which are absolute on the time interval [0, T] can be 
expanded into block pulse function as such: 
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From the RL definition, the block pulse basis integral functions can be 
obtained as follows 
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The vector which caters to block pulse basis functions with T transpose is 
described, as 1 2( ) [ ( ), ( ), ..., ( )]T

M Mt t t t    is the generalized operator 
matrix for fractional integration, which as such  
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This is the generalized block pulse operational matrix which enables any 
absolute integral function x (t) to be written as  
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The coefficient vector is represented as 1 2[ , , ...., ]T

Nx x x x . The main 
purpose of using a generalized operational matrix is that it reduces the 
complexity when converting the fractional integral of a function into the 
form of algebraic operations.  

Delayed BPOM functions: Introducing a time delay ( )f t  with an 
absolute integral function, will be expanded and the block pulse delay 
functions will be as follow   
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1 2[ , ,...., ]T
Mf f f f  are the coefficient vector which can be defined as: 
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The function ( )M t  is shifted by the delay ( )M t  , which is expressed 
as, ( ) ( ), and 0M Mt P t t t T        . Here, P represents the delay 



Identifying Coupled TITO Systems with Fractional-Order Model using  
Block-Pulse Operational Matrix and a Single Relay Closed-Loop Experiment 

159 

operational matrix for the BPF. This can be obtained by deriving the 
operational matrix as . 

Let us take the sample time, 1i i
T t zl T

M M


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Thus, P(MXM) can be represented as  
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To choose an integer N, the following can be done 
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Then the intervals will differ 
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Note that in (19) we have N T   and therefore M can be selected as  
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This means that P can be computed by (19) as well as when performing 
Riemann-Liouville fractional integration and manipulating the equation 
written in a matrix form. Then, we have 
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Output from the fractional order transfer function: Now, consider the 
identification of a system described by a single pole fractional-order model. 
This needs several steps to obtain the fractional order transfer function. 
Now, using G11(s) from (4) allows one to write     
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With the help of the inverse Laplace transformation and the Riemann-
Liouville integral definition, we get 
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Now, the integral can be substituted by F  taking into account that this step 
generates the algebraic terms in the matrix and therefore affects the 
transposes of both the input and output. The transpose of ( )Y t  is taken and 
this leads to 
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Then, concerning Y we get   
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This is the initial estimate of the parameter. The estimated system output 
using the operational matrices can be defined as  
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To obtain the optimal system parameters, an objective function defining the 
error as a difference between the initial estimate and the estimated output of 
the system is required (see eq.29). In this context, the initial estimation data 
is the input and the output response of the Simulink model which is utilized 
as commented next. 
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The function (29) can be solved using Matlab: the fsolve function was used 
to obtain the optimized parameters. Moreover, for providing optimizing 
options, optimset function was employed to create (a structure or modify) a 
parameter structure for the optimizing parameters.  

Numerical verifications 

Two TITO systems were studied to verify the proposed identification 
scheme. After activating the plant with a relay feedback test, the input and 
output data were exported to the matrix laboratory’s workspace with a 
sampling time of 512. Note that we need only one cycle of data, having the 
same number of samples as per a block pulse function. In the case of step 
input, one can choose 512 lengths of data of amplitude unity. The transfer 
function for a TITO system applied below has been widely used in the 
literature.  
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Example 1 
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As it follows from Example 1, the TITO-coupled system has a time 

delay. For this type of system, a delay matrix is essential to identify the input 
delay and plot the response of a single pole fractional order model. From 
the delay matrix and by ( )y t and ( )y t

 it is possible to identify the delay (time 
shift) in the single pole fractional order transfer function. The delay matrix 
is a square matrix of 492 elements and a diagonal within the middle of it is 
defined by the padarray command; the response of a coupled TITO system 
is very complex and unstable.  

Controlling the coupled tank requires a better-identified model to 
acquire a robust controller design. The single pole fractional order transfer 
function allows proving the design of an accurate and robust controller. 
Using the data set (Y1, Y2) and (U1, U2), the model was estimated using the 
proposed delayed block pulse technique. The optimal values were used to 
generate the single pole fractional order transfer function. As it is shown in 
Figure 2, the identified and true model responses for each transfer function 
(the fractional-order model related to example 1 is given by eq. (32)) are too 
close to each other. 
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Figure 2: Estimated Model for Example 1 
 

In the case of example 2, a non-minimum phase TITO plant is studied 
for verification purposes. Applying single input-output data measurements, 
and the proposed method, the lower order fractional transfer function for 
example 2 was obtained. The identified and the true model responses for 
each transfer function are shown in Figure 3. The fractional-order model for 
example 2 is given in eq. (33). The method can obtain an accurate model for 
the TITO-coupled plant.  
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Figure 10.3: Estimated Model for Example 2 

Conclusions 

The R-L integral derivative was successfully used with the block pulse 
operational matrix to identify the TITO system. Using the delays matrix, the 
delay in the system was also identified with the delay matrix in the 
numerator of the identified response. Identification can be done simply 
through the input and output data of the complex system. Using the delays 
matrix, the delay in the system was also identified with the delay matrix in 
the numerator of the identified response. This method may be very useful 
for identifying a much more complex system with multiple loops or a 
complex physical structure. Identification can be done simply through the 
input and output data of the complex system. It is worth exploring in the 
future the verification of a technique with corrupted output data. 
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