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Preface

Greetings and welcome to 20th Pacific Rim International Conference on Artificial
Intelligence (PRICAI 2023). It was an honor to convene this significant event in a hybrid
format in Jakarta, Indonesia. It was indeed a privilege for the Faculty of Computer
Science at Universitas Indonesia to undertake the role of hosting these pivotal discus-
sions that reach beyond the academic realm, advancing societies and economies across
the Pacific Rim and Oceania.

This year, we received a remarkable 422 submissions: 354 for the Main track and
68 for the AI-Impact track. Every submission underwent a rigorous double-blind review
process, receiving a minimum of 3 reviews, and in some cases up to 6. Throughout the
process, the program committee (PC) members engaged in discussions, with additional
reviews sourced as needed, prior to finalizing recommendations. The program chairs
then assessed the reviews and comments, calibrating discrepancies in individual reviews
and ratings to maintain decision consistency. The collective effort of the entire program
committee, including chairs, 409 PC members, and 91 external reviewers, was monu-
mental in ensuring a fair and consistent selection process. We ultimately accepted 95
regular papers and 36 short papers for oral presentation, resulting in a 22.51% accep-
tance rate for regular papers and an overall acceptance rate of 31.04%. Additionally, a
comprehensive quality control procedure was introduced for camera-ready papers. The
aim was to prompt authors to incorporate the feedback provided by PC members and
reviewers into their final submissions. Content similarity checks were also performed to
ensure that the similarity rate did not exceed 15%.

The technical program was comprehensive and intellectually engaging, featuring
five workshops, nine tutorials, two panel discussions, and the main conference sessions.
All regular and short papers were orally presented over three days in parallel and in
topical program sessions. We were honored to have some of the brightest minds in AI
to share their insights and enrich our collective understanding: Thomas Anton Kochan
(Massachusetts Institute of Technology, USA), Hanna Kurniawati (Australian National
University, Australia), Anand Rao (Carnegie Mellon University, USA), and Geoff Webb
(Monash University, Australia).

A heartfelt thanks was expressed towards the organizing committee for their tireless
and unwavering efforts that facilitated the success of this event. A special recognition
to Adila Alfa Krisnadhi for his leadership on local arrangements. We would also like to
acknowledge our workshop and tutorial organizers, who formed the core of our technical
program. These dedicated individuals brought a diverse range of expertise that promised
to deepen our exploration of AI technologies.

We would like to thank our advisory board members for their invaluable guidance
during the planning stages. A special recognition to Abdul Sattar for his extraordinary
contribution towards planning, execution, and a conference site visit that contributed
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to the success of PRICAI 2023. Furthermore, we extend our gratitude to the PRI-
CAI Steering Committee for entrusting us with the privilege of hosting this impactful
conference.

Wewould not havebeenherewithout the support of our sponsors,whose commitment
enabled us to keep pushing boundaries. To them, as well as all participants in this event,
thank you.

As we delved into the various topics that PRICAI 2023 had to offer, let us remind
ourselves that our deliberations have a lasting impact on the future of AI in the Pacific
Rim and beyond. We genuinely hope that our time spent at PRICAI 2023 will pave the
way for innovations that are both groundbreaking and beneficial.

November 2023 Fenrong Liu
Arun Anand Sadanandan

Duc Nghia Pham
Dickson Lukose
Petrus Mursanto
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A Multi-scale Densely Connected and Feature
Aggregation Network for Hyperspectral Image

Classification
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Abstract. Convolutional neural networks have been widely used in the field of
hyperspectral image (HSI) classification due to their excellent ability to model
local regions, and have achieved good classification performance. However, HSI
classification still faces challenges such as insufficient representation of spectral-
spatial features and inadequate fusion of multi-level features. To address these
issues, we propose a Multi-scale Densely Connected and Feature Aggregation
Network (MSDC-FAN) for HSI classification. The network mainly consists of
a Spectral-Spatial Feature Extraction (SSFE) module, three Multi-scale Fea-
ture Extraction (MSFE) modules, and a Multilevel Feature Aggregation Module
(MFAM). Firstly, the SSFE module is carried out to extract more comprehensive
spectral-spatial features. Secondly, three MSFE modules are used in sequence to
extract multi-scale features and highlight significant features, thus further improv-
ing the model’s performance. Finally, theMFAM is designed to aggregate features
at different levels, enhancing the model’s feature representation ability. Experi-
mental results on two commonly used hyperspectral datasets demonstrate the
superiority of the proposed method.

Keywords: Hyperspectral image · Multi-scale feature · Dense connection

1 Introduction

Hyperspectral images (HSIs), containing abundant spectral-spatial information, have
been widely used in environmental monitoring [1], mineral exploration [2], precision
agriculture [3] and other fields. EarlyHSI classificationmethods only considered spectral
features, such as support vector machine [4], k-nearest neighbor [5], and random forest
[6], which had certain limitations. To simultaneously consider spectral-spatial infor-
mation, methods such as sparse representation [7] and Markov random field [8] were
proposed. However, spectral-spatial feature extraction and fusion still face challenges.

Convolutional neural networks (CNNs) have been widely used in HSI classifica-
tion tasks due to their excellent ability to model local regions [9, 10]. Zhong et al.
[11] designed spectral and spatial residual blocks to learn discriminative features and

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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alleviate the problem of accuracy degradation in deep networks. Song et al. [12] con-
structed a very deep network to extract more discriminative features and fused low-level,
mid-level, and high-level features by addition to improve performance. Yu et al. [13]
introduced an image-based global learning framework intoHSI classification to fully uti-
lize global information and achieved good classification results. Shi et al. [14] designed
spectral feature extraction branch and spatial feature extraction branch to fully exploit the
spectral-spatial information of HSIs and further improve the classification performance.

In addition, redundant information and noise in HSIs can interfere with model clas-
sification decisions, so it is important to extract effective information. To address this
issue, attention mechanisms have been introduced into HSI classification [15] to help the
model focus on more important features and regions. Zhu et al. [16] designed a spectral
attention module and a spatial attention module to emphasize useful bands and pixels,
achieving good classification results. In addition, the Transformer has been introduced
into HSI classification tasks due to its excellent global feature modeling ability [17]. Sun
et al. [18] introduced the Transformer for global features modeling, achieved good clas-
sification results and improved computational efficiency. Mei et al. [19] significantly
improved the HSI classification accuracy by introducing a grouped pixel embedding
module and constructing the Transformer in a hierarchical manner.

These networks have improved the HSI classification performance to some extent.
However, limited by the fixed size of the CNN’s convolutional kernel, the local features
it extracts are limited, resulting in insufficient spectral-spatial feature representation.
Additionally, multi-level features that are complementary and correlated have not been
fully fused and utilized, and the classification performance needs to be further improved.
To address the above issues, we propose a Multi-scale Densely Connected and Feature
Aggregation Network (MSDC-FAN) for HSI classification. The main contributions of
this paper are summarized as follows.

(1) Aspectral-spatial feature extraction (SSFE)module is devised to capture the spectral-
spatial features of HSIs more comprehensively. Firstly, features of different scales
are extracted by dilated convolution, and then concatenated and fused by skip
connections.

(2) A multi-scale feature extraction (MSFE) module is designed to fully extract HSI
features. The multi-scale branch is adopted to extract multi-scale features, and the
residual branch is carried out to make the information flow between the shallow
layer and the deep layer. Then the cross-attention module is employed to enhance
the feature fusion of the two branches, thus improving the model’s performance.

(3) A multi-level feature aggregation module (MFAM) is proposed to enhance the
model’s feature representation ability. Three MSFE modules are used in sequence
to extract multi-scale features at different levels, which are then aggregated through
the top-down channel to enhance the feature representation.

The rest of this paper is organized as follows. Section 2 provides a detailed introduc-
tion to theMSDC-FANmethod. Section 3 presents the experimental results and analysis.
Section 4 concludes the paper.
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2 Proposed Method

In this section, we will introduce in detail our proposed MSDC-FAN for HSI classifi-
cation, the overall framework of which is shown in Fig. 1. Firstly, the SSFE module is
adopted to extract features from the dimension-reduced HSI after principal component
analysis (PCA), in order to acquire the spectral-spatial information effectively. Then, the
two-dimensional (2D) convolution is used to unify the number of channels. Secondly,
multi-scale and multi-level features are extracted by stacking three MSFE modules in
sequence, and features of different levels are aggregated by theMFAMmodule to obtain
the final feature representation for classification. Finally, the aggregated features are fed
into the linear layer for classification.

Fig. 1. Overall framework of the proposed MSDC-FAN

2.1 Spectral-Spatial Feature Extraction Module

The three-dimensional (3D) convolution can move simultaneously in both spectral and
spatial dimensions, making it more effective to extract the spectral-spatial features of
HSIs. Therefore, we construct the SSFE module to capture the features in HSIs more
comprehensively, and the specific structure of the SSFE module is shown in Fig. 2.

Fig. 2. Specific structure of the SSFE module. Conv, ReLU and BN represent convolution opera-
tion, ReLU activation function and batch normalization, respectively. K = 3×3×3, 8 represents
eight convolution kernels of size 3 × 3 × 3. Rate and Concat represent the dilation rate and the
concatenation operation, respectively
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The SSFE module mainly consists of dilated convolutions and skip connections. By
increasing the dilation rate (i.e., rate in Fig. 2), the receptivefield of the convolution kernel
can be expanded while keeping the kernel size fixed, thereby improving the network
performance. Skip connections can fully utilize the multi-level features extracted by the
module, enhancing the feature representation capability of the network. Firstly, three
convolution kernels are cascaded for multi-scale feature extraction. Then, the features
extracted by each kernel are concatenated along the channel dimension through skip
connections. Finally, the channel number is unified to 16 by a convolution kernel of size
1 × 1 × 1.

2.2 Multi-scale Feature Extraction Module

Overall Structure of theMSFEModule.Using fixed receptive field, CNNs cannot cap-
ture all details and features in the HSI. To enhance the feature representation capability
of the model, multi-scale convolutions are used to extract features of different scales. In
addition, redundant and noisy information in HSI may lead to decreased classification
accuracy. The introduction of attention mechanisms can help the model focus on pixels
and spectral bands with important information, thereby improving classification accu-
racy and performance. Therefore, we propose the MSFE module to extract multi-scale
features and highlight significant features, and the specific structure of theMSFEmodule
is shown in Fig. 3.

Fig. 3. Specific structure of the MSFE module. 3 × 3, 16 represents 16 convolution kernels of
size 3 × 3, and r represents the size of dilation rate

The MSFE module consists of the multi-scale branch, the residual branch and the
cross-attention module. The multi-scale branch is constructed by dilated convolutions
and dense connections. The dilated convolutions extract features of different scales
by cascading convolution kernels with different dilation rates. The dense connections
connect the features of all previous layers to the input of the current layer, increasing
the reusability of features and avoiding information loss. The residual branch uses skip
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connections to allow shallow and deep features to complement each other, improving
the ability of the model to represent the features. The cross-attention module aims to
highlight the significant features and enhance the feature fusion of the two branches,
thereby improving the performance of the model.

As shown in Fig. 3, MSFE first uses 1 × 1 convolution kernel to unify the channel
number of the input feature xi ∈ Rs×s×c to 16, denoted as xi,0 ∈ Rs×s×16. Secondly, four
convolution kernels are cascaded and dense connections are used to extract multi-scale
features, where the size and number of the four convolution kernels are 3×3 and 16, and
the dilation rates (i.e., r in Fig. 3) are 4, 3, 2 and 1, respectively. In dense connections,
for the lth layer, it receives xi,0 and all the previously extracted features, denoted as
xi,0, xi,1, xi,2, · · · , xi,l−1, and uses them as input to calculate the output, as shown in
Eq. (1):

xi,l = BN
(
δ
(
Conv

([
xi,0, xi,1, xi,2, · · · , xi,l−1

])))
, l = 1, 2, 3, 4 (1)

whereBN and δ represent the batchnormalization andReLUactivation functions, respec-
tively. [·] represents concatenation operation, Conv represents 3× 3 convolution opera-
tion. Then, the input feature xi,0 and the output feature xi,l of each convolutional layer
are concatenated along the channel dimension, and the output is unified to have the same
channel number as xi by a 1× 1 convolution. In addition, in the residual branch, a 3× 3
convolution kernel is used to convolve the input feature xi.

Cross-Attention Module. The cross-attention module aims to combine the comple-
mentary information from two different-level features to better highlight the effective
information and enhance the feature fusion of the two branches, and the specific struc-
ture is shown in Fig. 4. It mainly consists of the spectral attention block and the spatial
attention block. The former aims to generate band weights to recalibrate the importance
of each band and adjust the correlation of each band, while the latter aims to enhance
spatial information of pixels that have the same class as the center pixel and suppress
pixels from other classes. The specific implementation of the cross-attention module is
described as follows.

The features M and N extracted by the residual and the multi-scale branches have
the shape of H ×W ×C. The feature Fspe ∈ RH×W×C is obtained by adding and fusing
the two features element-by-element and sent to the spectral attention.

In spectral attention, firstly, the input features are processed by the global average
pooling and max pooling operations in two branches, respectively, to obtain Fspe,avg and
Fspe,max, whose shapes are 1 × 1 × C. Then, they are passed through the multilayer
perceptron (MLP) to obtain features F ′

spe,avg and F ′
spe,max. Finally, the two obtained

features are added and normalized using the Softmax function to obtain the band weight
Wspe ∈ R1×1×C . The operations above are described as shown in Eqs. (2)–(4):

F ′
spe,avg = δ

(
W1 ∗ δ

(
W0 ∗ Fspe,avg

))
(2)

F ′
spe,max = δ

(
W1 ∗ δ

(
W0 ∗ Fspe,max

))
(3)

Wspe = σ
(
add

[
F ′
spe,avg,F

′
spe,max

])
(4)
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Fig. 4. Specific structure of the cross-attention module

where ∗ represents the convolution operation, add [·] represents element-wise addition,
σ and δ represent the Softmax normalization function and ReLU activation function,
respectively. W0 and W1 are the weight parameters of the two fully connected layers
sharing weights.

Then, the obtained band weights Wspe are used to recalibrate the bands of features
M and N to highlight the informative bands. Next, we additively fuse the calibrated
features to obtain the feature Fspa ∈ RH×W×C , which is fed into the spatial attention.

In spatial attention, firstly, the input features are subjected to global average pooling
and max pooling operations in the two branches, respectively, to obtain Fspa,avg and
Fspa,max, whose shapes are both H × W × 1, and they are concatenated along the
channel dimension to obtain Favg,max ∈ RH×W×2. Then, it is fed into a two-dimensional
convolution to obtain the spatial weight Wspa. The operations above are described as
shown in Eq. (5):

Wspa = σ
(
W0 ∗ cat

[
Fspa,avg,Fspa,max

])
(5)

where ∗ represents the convolution operation, cat[·] represents concatenation along the
channel dimension, σ represents the Sigmoid activation function, andW0 represents the
weight parameter of a 3 × 3 convolution kernel.

Then, the resulting spatial weightWspa is used to recalibrate the spatial information
of the features to highlight the useful information. Next, we add the original features
through the skip connections and the features passed through the attention blocks to
avoid the loss of information of features with lower weights.

2.3 Multi-level Feature Aggregation Module

In deep neural networks, shallow features contain spatial details such as edges and tex-
tures, whereas they are lacking of semantic information. Conversely, deep features have
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stronger semantic information but lose spatial details. Therefore, fusing complementary
information between features at different levels can further improve the performance of
HSI classification. In this paper, by stacking MSFE modules, features at different levels
can be extracted. To fully utilize these features, we construct the MFAM module, the
specific structure is shown in Fig. 5.

Firstly, MFAM aggregates all levels of features through a top-down channel to
enhance the feature representation, as shown in Eq. (6).

xi = δ
(
Wi ∗ add

[
xi, xi+1

])
, i = 0, 1, 2 (6)

where∗ and δ represent convolutionoperation andReLUactivation function respectively,
Wi represents the weight parameter of a 3× 3 convolution kernel, and add [·] represents
element-wise addition. Then, the enhanced features of each level are concatenated along
the channel dimension, and the 3 × 3 convolution kernel is used to unify the channel
number.

Fig. 5. Specific structure of the MFAM module

3 Experiment and Analysis

3.1 Dataset Description and Experiment Setup

Dataset Description. To evaluate the performance of the proposedmethod, two classic
datasets are selected for the experiments: Indian Pines (IP) and Pavia University (PU).
IP dataset is a hyperspectral remote sensing image with a size of 145 × 145. It contains
200 available spectral bands and 16 classes of land cover with a total of 10,249 labeled
samples. The PU dataset is a hyperspectral remote sensing image with a size of 610 ×
340. It contains 103 available spectral bands and nine classes of land cover with a total
of 42,776 labeled samples.
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EvaluationMetrics. Overall accuracy (OA), average accuracy (AA), and Kappa coef-
ficient are used as evaluation metrics. OA indicates the ratio of the number of correctly
classified samples to the total number of samples. AA represents the average of the
accuracy values with which the samples of each class are classified. Kappa coefficient
can measure the consistency of classification results.

Experiment Setup. The Pytorch deep learning framework is used to train the network
in the experiments, and epoch and batch_size are set to 100 and 32, respectively. The
learning rate is set to 0.001, and Adam is selected as the optimization method for the
experiment. Each group of experiments is performed five times independently, and the
average values are taken as the experimental results, and the standard deviations about
three metrics are also provided.

The patch sizes (Patch_Size) in IP and PU are set to 21 and 15, respectively, and
the numbers of the principal components of PCA (PCA_Components) is set to 32. The
percent of the training samples are set to 10% and 5%, respectively.

3.2 Experiment Results and Analysis

SVM [4], SSRN [11], DFFN [12], SSFTT [18] and GAHT [19] are selected as compar-
ative methods to validate the effectiveness of MSDC-FAN. The experimental results of
these methods on the IP and PU datasets are as follows.

IP Dataset. Firstly, the IP dataset is used to evaluate the performance of the proposed
model, and the experimental results are shown in Table 1. The results of the evaluation
metrics indicate that the MSDC-FAN model proposed in this paper performs the best,
achieving the highest OA, AA, and Kappa values.

As shown in Fig. 6, SSFTT and GAHT perform poorly in the “Corn-notill” (class
2, in blue) category and at the edges of the region, while MSDC-FAN generates a more
accurate classification map. This is because MSDC-FAN not only uses cross-attention
to highlight the significant features but also fully utilizes the multi-scale and multi-level
features, which leads to better feature representation ability of the model.

PU Dataset. We further evaluate the performance of the proposed model on the
PU dataset, and the experimental results are shown in Table 2. The PU dataset has
a large number of samples and relatively balanced sample sizes for each land cover
category, so the classification results of each method are relatively ideal. The evaluation
data shows that MSDC-FAN performs the best and has relatively uniform accuracy on
each category. As shown in Fig. 7, several comparative methods perform poorly in the
“Gravel” (class 3, in orange) category, while MSDC-FAN improves the accuracy of
“Gravel” by 6.45% and 3.38% compared to SSFTT and GAHT, respectively, achieving
99.85%. This indicates that MSDC-FAN has a better ability to represent spectral-spatial
features and can distinguish spectrally similar classes well.

3.3 Parametric Analysis

Impact of Patch_Size and PCA_Components on OA. We analyze the impact of
Patch_size and PCA_Components on classification performance on IP and PU datasets.
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Table 1 Classification results of IP dataset obtained by different methods

Class SVM SSRN DFFN SSFTT GAHT MSDC-FAN

1 38.10 98.54 93.17 99.02 98.05 96.59

2 77.84 93.21 86.40 95.22 96.17 99.47

3 70.41 86.96 92.34 96.17 93.82 99.12

4 45.79 98.97 99.25 99.53 96.43 99.15

5 90.80 98.80 95.36 98.67 97.43 99.17

6 96.19 99.82 99.21 99.79 99.12 99.06

7 76.92 87.20 84.80 99.20 99.20 100

8 96.29 99.95 99.91 100 99.49 100

9 27.78 78.89 75.56 81.11 93.33 92.22

10 71.78 94.40 92.46 95.59 98.29 98.19

11 83.67 95.82 94.34 96.99 97.90 99.10

12 68.54 86.85 90.60 90.64 94.61 97.79

13 94.05 100 88.76 100 96.54 99.78

14 93.77 99.81 97.70 99.68 99.75 100

15 56.03 88.59 93.78 91.30 94.87 99.31

16 85.71 95.71 95.71 97.62 78.81 98.10

OA 80.81
± 0.01

95.04
± 1.01

93.67
± 3.52

96.82
± 0.24

97.19
± 0.31

99.13
± 0.09

AA 73.35
± 0.01

93.97
± 1.64

92.46
± 6.50

96.28
± 0.70

95.86
± 0.32

98.57
± 0.29

Kappa 78.05
± 0.01

94.33
± 1.15

92.78
± 4.04

96.38
± 0.27

96.80
± 0.35

99.01
± 0.11

Fig. 6. Classification maps of the IP dataset. (a) Ground-true map. (b) SVM (OA = 80.81%). (c)
SSRN (OA = 95.04%). (d) DFFN (OA = 93.67%). (e) SSFTT (OA = 96.82%). (f) GAHT (OA
= 97.19%). (g) MSDC-FAN (OA = 99.13%)

Among them, the Patch_size increases in the range of [11,21], and PCA_Components
are among [32,128] and [32,112] on IP and PU datasets, respectively. It can be seen
from Fig. 8(a) that the impact of Patch_size and PCA_Components on the OA val-
ues of IP dataset fluctuates slightly, and a local maximum region can be obtained by
selecting appropriate Patch_size and PCA_Components. As can be seen from Fig. 8(b),
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Table 2 Classification results of PU dataset obtained by different methods

Class SVM SSRN DFFN SSFTT GAHT MSDC-FAN

1 93.37 97.61 98.43 99.40 99.58 99.86

2 98.04 99.58 99.96 99.89 99.95 99.96

3 72.53 86.13 97.28 93.40 96.47 99.85

4 94.40 95.29 92.17 98.83 94.59 97.36

5 98.36 99,98 99.77 100 99.66 100

6 87.02 94.31 99.94 99.65 99.98 100

7 83.23 97.58 99.92 99.70 100 99,95

8 90.82 92.64 99.21 98.92 99.37 99.43

9 99.89 99.31 86.49 99.62 90.71 96.98

OA 93.47
± 0.02

97.03
± 0.18

98.66
± 0.63

99.30
± 0.15

99.08
± 0.07

99.65
± 0.04

AA 90.85
± 0.01

95.82
± 0.36

97.02
± 0.85

98.82
± 0.24

97.81
± 0.17

99.27
± 0.04

Kappa 91.31
± 0.01

96.06
± 0.24

98.22
± 0.83

99.07
± 0.20

98.78
± 0.10

99.53
± 0.05

Fig. 7. Classification maps of the PU dataset. (a) Ground-true map. (b) SVM (OA = 93.47%).
(c) SSRN (OA = 97.03%). (d) DFFN (OA = 98.66%). (e) SSFTT (OA = 99.30%). (f) GAHT
(OA = 99.08%). (g) MSDC-FAN (OA = 99.65%)

smaller Patch_size and PCA_Components are more suitable for PU dataset. The best
classification performance is obtained when Patch_size is 15 and PCA_Components is
32.

OA of DifferentModels Using Different Percentages of Training Samples. Figure 9
shows the OA values of different models that use different percentages of training sam-
ples. From Fig. 9, it can be seen that the OA values of all methods increase as the
percentages of training samples increase. Among them, the OA values of SSFTT and



A Multi-Scale Densely Connected and Feature Aggregation Network 13

Fig. 8. Impact of Patch_Size and PCA_Components on OA. (a) IP dataset. (b) PU dataset

GAHT are close to our MSDC-FAN, demonstrating their good classification perfor-
mance. On the whole, MSDC-FAN achieves the best results in almost all cases and it
can obtain good performance even with extremely few training samples.

Fig. 9. OA of different models using different percentages of training samples. (a) IP dataset. (b)
PU dataset

3.4 Ablation Experiments

We conduct ablation experiments about SSFE and MFAM modules on the IP and PU
datasets. Three variants of MSDC-FAN are compared with MSDC-FAN, among which
Base represents the network constructed only by MSFE. The experimental results are
shown in Fig. 10. The Base network has the worst classification performance on IP and
PU datasets. When SSFE or MFAM is added, there is a significant improvement in clas-
sification performance compared to the Base network, which verifies the effectiveness
of SSFE and MFAM. The MSDC-FAN network has the best classification performance,
which reflects that using twomodules at the same time can not only fully extract spectral-
spatial features, but also make full use of multi-level features, which further enhances
the ability of the network to represent the features, thus contributing to the improvement
of classification performance.
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Fig. 10. Ablation experiments on IP and PU datasets. (a) IP dataset. (b) PU dataset

4 Conclusion

In this paper, we propose a Multi-scale Densely Connected and Feature Aggregation
Network (MSDC-FAN) to improve the performance of hyperspectral image (HSI) clas-
sification. The experimental results show that the proposedMSDC-FAN performs better
than several state-of-the-art methods in almost all cases, because MSDC-FAN has better
ability of spectral-spatial feature representation by fully utilizing multi-scale and multi-
level features. MSDC-FAN is able to perform well even with extremely few training
samples. In the future,wewill investigate how to improveHSI classification performance
further with limited samples.

Acknowledgements. This work was supported by the National Natural Science Foundation of
China (Nos. 62077038, 61672405, 62176196 and 62271374).
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Abstract. Generative adversarial networks (GANs) have recently made
great progress in blind image super-resolution (SR) with their superior-
ity in learning mappings between manifolds, which benefits the recon-
struction of image’s textural details. Recent works have largely focused
on designing more realistic degradation models, or constructing a more
powerful generator structure but neglected the ability of discriminators in
improving visual performances. In this paper, we present A-ESRGAN,
a GAN model for blind SR tasks featuring an attention U-Net based,
multi-scale discriminator that can be seamlessly integrated with other
generators. To our knowledge, this is the first work to introduce attention
U-Net structure as the discriminator of GAN to solve blind SR problems.
And the paper also gives an interpretation of the mechanism behind
multi-scale attention U-Net that brings performance breakthrough to
the model. Experimental results demonstrate the superiority of our A-
ESRGAN over state-of-the-art level performance in terms of quantitative
metrics and visual quality. The code can be find in https://github.com/
stroking-fishes-ml-corp/A-ESRGAN.

Keywords: Blind Super Resolution · Generative adversarial
networks · attention mechanism · Multi-scale · U-Net

1 Introduction and Motivation

Image super-resolution (SR) is a low-level computer vision problem aiming to
reconstruct a high-resolution (HR) image from a distorted low-resolution (LR)
image. Blind super-resolution, specifically, refers to the idea of restoring LR
images suffering from unknown and complex degradation, as opposed to the
traditional assumption of ideal bicubic degradation.

By the competition of generator and discriminator, the networks are encour-
aged to favor solutions that look more like natural images. The state-of-the-art
methods using generative adversarial network includes ESRGAN, RealSR, Real-
ESRGAN and BSRGAN [6,20,22,25].
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Recent works in super-resolution GANs have largely focused on simulating a
more complex and realistic degradation process [20] or building a better genera-
tor [22], with little work trying to improve the performance of the discriminator.
However, the importance of a discriminator can not be ignored since it pro-
vides the generator with the direction to generate better images, similar to a
loss function. In this work, we construct a new discriminator network structure:
Multi-scale Attention U-Net Discriminator and incorporate it with the
existing RRDB based generator [22] to form our GAN model A-ESRGAN. Our
model shows superiority over the state-of-the-art real-ESRGAN model in sharp-
ness and details (see 7b). According to our ablation study, this result owes to
the combination of attention mechanism and U-Net structure in our proposed
discriminator. The U-Net structure in discriminator can offer per-pixel feedback
to the generator [17], which can help the generator to generate more detailed
features, such as texture or brushstroke. Meanwhile, the attention layer can not
only distinguish the outline of the subject area to maintain the global coherence
but strengthen the lines and edges of the image to avoid the blurring effect (this
is demonstrated in the attention map analysis section in our paper). Therefore,
the combination of U-Net and Attention is very promising. Besides, to increase
the perception field of our discriminator, We use two attention U-Net discrim-
inators that have an identical network structure but operate at different image
scales as our final discriminator, which is called multi-scale discriminator. Exten-
sive experiments show that our model outperforms most existing GAN models
both in quantitative NIQE performance metric and qualitative image perceptual
feelings.

In summary, the contributions of our work are:

1. We propose a new multi-scale attention U-Net discriminator network. To the
best of our knowledge, it is the first work to adopt attention U-Net structure as
a discriminator in the field of generative adversarial networks. This modular
discriminator structure can be easily ported to future work.

2. We incorporate our designed discriminator with the existing RRDB based
generator to form our generative adversarial network model A-ESRGAN.
Experiments show that our model outperforms most state-of-the-art mod-
els in image super-resolution tasks.

3. Through detailed analysis and visualization about different layers of our net-
work, we provide convincing reasons why a multi-scale attention U-Net dis-
criminator works better than existing ones in image super-resolution tasks.

2 Related Work

2.1 GANs-Based Blind SR Methods

GANs-based SR methods have better perceptual results than CNN-based SR
methods, because GANs are more competitive in learning mapping between
manifolds, which benefits in reconstructing local textures [10]. Recent state of
the art methods have raised a perceptual-driven perspective to improve GANs by
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better modeling the perceptual loss between images [9,22]. The ESRGAN [22], as
a representative work, proposed a practical perceptual loss function as well as a
residual-in-residual block(RRDB) generator network, and produces synthesized
HR images with convincing visual quality. Another perspective is to solve the
intrinsic problem of blind SR that the LR images used for training are synthe-
sized from HR images in the dataset. Most existing methods are based on bicu-
bic downsampling [3,8,16] and traditional degradations [24,26], while real-world
degradations are far more complicated. To produce more photo-realistic results,
the real-ESRGAN [20] proposed a practical high-order degradation model
and achieved visually impressive results as well as state-of-the-art NIQE [12]
performance.

2.2 Discriminator Models

Some remarkable attempts have been made to improve the discriminator model
[15,17,19]. To synthesize photo-realistic HR images, two major challenges are
presented: the discriminator needs a large receptive field to differentiate the syn-
thesized image and the ground truth(GT), requiring either deep network or large
convolution kernel [19]. Besides, it’s difficult for one discriminator to give precise
feedback on both global and local features, leading to possible incoherence in the
synthesized image such as twisted textures on a building wall [20]. To resolve
these issues, Wang et al. [19] proposed a novel multiple discriminator architec-
ture. By using several discriminators taking different scale down-sampled synthe-
sized images as input, the new discriminator can learn from different receptive
fields. Another pioneer work [17] introduces U-Net based discriminator archi-
tecture into GANs-based blind SR tasks. The U-Net discriminator model can
provide per-pixel feedback to the generator while maintaining the global coher-
ence of synthesized images.

3 Method

The overall architecture of A-ESRGAN is shown in Fig. 1, which contains a
Generator composed of residual-in-residual dense blocks (RRDBs) [22] and a
multi-scale attention U-net discriminator.

Attention U-Net Discriminator. Inspired by [14,17], we propose the atten-
tion U-Net discriminator structure, which is shown in Fig. 2. It is composed of a
down-sampling encoding module, an up-sampling decoding module and several
attention blocks. The structure of the attention block in Fig. 3 is modified from
attention gate, which is used by [14] in 3D medical graphs. By utilizing attention
blocks, we want the generator to put more emphasis on important regions during
super resolution, which also conforms to how people evaluate a graph as they
would focus more on the region where their attention locates. A detailed analy-
sis of how the attention mechanism works is carried out during the experiment.
In order to stabilize the training process, we also apply spectral normalization
regularization [13] to the attention U-net.
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Fig. 1. The overall architecture of the A-ESRGAN. The generator of A-ESRGAN is
using RRDB and the discriminator of A-ESRGAN is a multi-scale attention U-net
structure.

Fig. 2. The architecture of a singe attention U-Net Discriminator. F, W, H represents
output channel number of the first convolution layer, height of the image and width of
the image respectively.

Fig. 3. The architecture of the attention block (AB). Here xl is the input features from
the U-Net and g is the gating signal. Fint is a super parameter denoting the output
channels of the one by one convolution in the AB. In the AB, xl is scaled by attention
coefficient α.
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For a single U-net discriminator, we construct the loss of the discriminator
as:

LD(G,D) =
W∑

w=1

H∑

h=1

(−Exr
[log(D(xr)[w, h])])

− Exi
[log(1 − D(G(xi))[w, h])])

(1)

where D(x) = σ(C(x)) is the discriminator’s output on the paired data x =
(xr, G(xi)) after normalization by the sigmoid function; [w, h] denotes the value
of matrix D on the w-th row and h− th column; xr is the real (SR) image; G(xi)
is the generator output based on the corresponding LR image xi. It is worth
noting that the discriminator will give us pixel-wise loss C(x), whic means C(x)
is a W × H matrix with the same size as the G(xi).

Similarly we can derive the adversarial Generator Loss as:

LG(G,D) =
W∑

w=1

H∑

h=1

(−Exi
[log(D(G(xi))[w, h])]) (2)

Multi-scale Discriminator. A-ESRGAN adopts a multiple discriminator
architecture that has two identical attention U-Nets as the discriminator.One
discriminator D1 takes an original scale image as input and the other discrim-
inator D2 takes a 2× downsampled image as input. Thus, the overall objective
function of the multiscale discriminator is the weighted average of the loss of
sub-discriminators:

LDmulti
= λ1LD(G,D1) + λ2LD(G,D2) (3)

where λ1 and λ2 are the weight coefficients which denote how much each dis-
criminator contributes to the overall loss.

Likely the overall generator loss is

LGmulti
= λ1LG(G,D1) + λ2LG(G,D2) (4)

In the later experiments, we find this setting helps acquire complementary knowl-
edge, which helps generate clearer textures and outlines.

Improved Generator Loss. Following previous GAN-based SR methods, we
also add L1 loss and perceptual loss [7] to better tune the generator.

Thus, our finally loss function for generator is:

LGTotal
= Lprecep + ηL1 + λLGmulti

(5)

where λ, η are the weight coefficients for each loss.
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Overall Objective. With the above discussions, our full objective is to solve
the following task:

(D1,D2), G = arg min
D1,D2

LDmulti
, arg min

G
LGTotal

(6)

where D1,D2 and G are trained simultaneously.

4 Experiments

4.1 Implementation Details

To compare the functionality of multi-scale mechanism, we build two A-
ESRGAN models: A-ESRGAN-single and A-ESRGAN-multi. The difference is
that A-ESRGAN-single features one single attention U-Net discriminator, while
A-ESRGAN-multi features multi-scale network, i.e. two identical attention U-
Net discriminator operating at different image scale.

We trained with our A-ESRGAN on DIV2K [1] dataset. For better compari-
son with Real-ESRGAN, we follow the setting of generating degradation images
of Real-ESRGAN [20] and load the pre-trained Real-ESRNET to the generator
of both networks. The training HR patch size is 256. We train our models with
one NVIDIA A100 and three NVIDIA A40 with a total batch size of 48 by using
Adam optimizer.

The A-ESRGAN-Single is trained with a single attention U-Net discrimi-
nator for 400K iterations under 10−4 rate. The A-ESRGAN-Multi is trained
for 200K iterations under 10−4 learning rate. For both A-ESRGAN-Single and
A-ESRGAN-Multi, the weight for L1loss, perceptual loss and GAN loss are
{1, 1, 0.1}. In A-ESRGAN-Multi, the weight for GAN loss of D1 and D2 is {1, 1}.

4.2 Testsets and Experiment Settings

In prior works, blind image super-resolution tasks are usually tested on syn-
thesized LR images from HR images. However, the human simulated degraded
images can hardly reflect the low-resolution image coming from degradation in
real world, which usually features complicate combinations of different degra-
dation processes. Besides, there is no real dataset which provides real-world LR
images. Therefore, we choose to use real-world images directly as our test dataset
and see their performance.

In this paper, we use the real-world images in the seven standard bench-
mark datasets, Set5 [2], Set14 [23], BSD100 [11], Sun-Hays80 [18], Urban100
[5], OST300 [21] and General100 [4]. These seven datasets contain images from
manifold groups, such as portraits, scenery and buildings. We argue that a good
general super resolution model should achieve good performance on the overall
seven datasets.
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4.3 Comparing with the State-of-the-Arts

We compare the proposed A-ESRGAN-Single and ESRGAN-Multi with several
state-of-the-art(SOTA) generative based methods, i.e. ESRGAN [22], RealSR [6],
BSRGAN [25], Real-ESRGAN [20] . Note that the architecture of the generators
of ESRGAN, RealSR, BSRGAN and Real-ESRGAN are the same as ours, which
can help verify the effectiveness of our designed discriminator.

Table 1. The NIQE results of different methods on Set5, Set14, BSD100, Sun Hays80,
Urban 100, OST300 and General100 (The lower, the better). The best and second best
results are high lighted in red and blue, respectively.

Fig. 4. Visual comparison of our method with other ×4 super resolution methods.
Zoom in for the best view.

Since there is no ground-truth for the real-world images of the dataset, so we
adopt the no-reference image quality assessment metrics NIQE [12] for quanti-
tative evaluation. NIQE indicates the perceptual quality of the image. A lower
NIQE value indicates better perceptual quality. As can be seen from the Table 1,
our method outperforms most of the SOTA methods in NIQE metrics. Mean-
while, we can find it is more robust and has stronger generalization ability, since
it achieves high score in all kinds of datasets. From visual comparison (some
examples are shown in Fig. 4), we observe our methods can recover sharper
edges and restore better texture details.

4.4 Attention Block Analysis

To verify the effectiveness of attention gate in our discriminator, We visualize
the attention weights in the attention layer from test images during our training
process. An example is shown in Fig. 5. Initially, the attention weights are uni-
formly distributed in all locations of the images. As the training process goes on,
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Fig. 5. The figure shows the weight in the third attention layer across the training
process from iteration 5000 to 285000 at an interval of 20000. The example image is
picked from Urban100 [5]. It clearly shows at first the attention is uniformly distributed.
Then the attention is gradually updated and begins to focus on the edges. Zoom in for
the best view.

we can observe that the attention weight is gradually updated and begin to focus
on “particular regions”, which are the edges where color changes abruptly. Mean-
while, by visualizing attention map at different layers, we argue that different
attention layers recognize the images at different granularity. The lower atten-
tion layers that are coarse-grained and give rough edges of the patches while the
upper attention layers are fine-grained and focus on details such as lines and dots.

4.5 Multi-scale Discriminator Analysis

We study the output image generated by the two attention discriminators pro-
pose that the two discriminators play different roles in identifying the properties
of the images. The normal discriminator, which is also used in the single ver-
sion, emphasizes more on lines. In contrast, the downsampled inputs with blurred
edges force the other discriminator to focus more on larger patches. As shown
in Fig. 6, the output image of the normal discriminator judges the edges while
the dowsampled discriminator judges thicker blocks, such as textures on the
branches of the tree.

Fig. 6. The figure shows Unet output of the two discriminators. The example image
is picked from BSD100 [11]. The example shows the normal discriminator(first) would
focus on lines in the image while the discriminator that parse the downsampled input
will focus on patches. The brighter a pixel is, the more likely it is a real picture.
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4.6 Ablation Study

Effectiveness of Attention U-Net Discriminator. The key factor of A-
ESRGAN surpassing the existing models is our designed attention U-Net dis-
criminator. In the ablation study, we compare the results of Real-ESRGAN
model with A-ESRGAN-Single model. The only difference between these two
networks is that Real-ESRGAN uses a plain U-Net as discriminator, while A-
ESRGAN applies an attention U-Net discriminator.

As shown in Table 1, A-ESRGAN-Single achieves better NIQE in all tested
datasets. By taking a close look at the result, we could find since plain U-Net
uniformly gives weight to each pixel, it can’t distinguish between the subject area
and background of images. However, as shown in Sect. 4.4, the attention U-Net is
able to put more efforts on the edges than on ordinary pixels. We believe this will
bring at least two benefits. First, the result image will give sharper and clearer
details as shown in 7a. Second, when up-sampling process is based on the main
edges of the image, there will be less probability of distortion (like shown in 7b).

Fig. 7. Ablation on the discriminator design.

Effectiveness of Multi-scale Discriminator. The multi-scale discriminator
enables our model to focus not only on the edges but also on more detailed
parts such as textures. In the ablation study, we compare the results of the A-
ESRGAN-single and the A-ESRGAN-multi. The latter has the same generator
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as the former while it possesses two discriminators, which are a normal one and
a downsampled one.

As shown in Table 1, the A-ESRGAN-multi surpasses the performance of A-
ESRGAN-single in all dataset except Set14. By analyzing the output images of
the two models, we conclude that the A-ESRGAN-multi does much better in
showing the texture of items than A-ESRGAN-single. Like the images shown
in Fig. 8, the A-ESRGAN-single poorly performs on rebuilding the texture of
the branches and the sea creature. In contrast, because the downsampled dis-
criminator focuses on patches, it can rebuild the texture and give shaper edge
details.

Fig. 8. Ablation on the multi-scale design.

5 Conclusions

In this paper, a multi-scale attention U-Net discriminator is proposed to train a
deep blind super-resolution model. Based on the new discriminator, we trained a
deep blind super-resolution model and compared it with other SOTA generative
methods by directly upscaling real images in seven benchmark datasets. Our
model outperforms them in both NIQE metrics and visual performance. By
systematically analyzing how the attention coefficient changes across time and
space during the training process, we give a convincing interpretation of how
the attention layer and multi-scale mechanism contribute to the progress in SR
problems. We fully believe that other super-resolution models can benefit from
our work.
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Abstract. The management of prostate cancer, a prevalent source of mortality
in men, calls for meticulous delineation of the prostate in transrectal ultrasound
(TRUS) images for effective treatment planning. This paper introduces a hybrid
artificial intelligence approach for prostate delineation, leveraging prior informa-
tion from experts, a machine learning model, and a quantum-inspired evolution-
ary network to augment the accuracy of prostate segmentation. The approach
incorporates three novel elements: 1) limited prior information from expert and
adaptive polygon tracking (APT) module for initial segmentation; 2) a novel his-
torical storage-based quantum-inspired evolutionary network (HQIE) mechanism
to search for the optimal neural network and enhancing solution diversity and
capacity to address unimodal and multimodal challenges, and 3) a unique mathe-
matical formulation denoted by parameters of the neural network is used to achieve
smooth prostate periphery. The method was evaluated across various noise condi-
tions and against several state-of-the-art methods using a multi-center dataset. In
addition, an ablation study was performed to evaluate the efficacy of each compo-
nent. The results demonstrated the superior performance of the hybrid AI method
(Dice index: 96.4 ± 2.4%) against state-of-the-art deep learning methods (e.g.,
UTNet, Dice index: 90.1± 5.7%). The hybrid method also showed higher robust-
ness to image noise than traditional methods. This study suggests new insights and
technical approaches in the field of prostate segmentation using hybrid artificial
intelligence methods.

Keywords: segmentation · hybrid artificial intelligence (AI) method · deep
learning · ultrasound · medical image

1 Introduction

Prostate cancer, a significant health concern for men, is a prominent source of death
related to cancer [1]. Optimal management of this disease relies heavily on accu-
rately extracting prostate contours frommedical images, including transrectal ultrasound
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(TRUS) images. The segmentation process is crucial for both the cancer diagnosis pro-
cess of insertion of biopsy needles [2] and the cancer treatment process of image-guided
radiotherapy. However, accurate and robust delineation of the prostate in ultrasound
images is a challenging task. The difficulties primarily stem from the intrinsic nature
of ultrasound images, where the boundaries of organ-of-interest (e.g., prostate) and
surrounding tissues may not be apparent or affected by image artifacts. In addition, sig-
nificant differences in patient anatomy have made automated prostate contouring more
difficult. Therefore, it calls for more accurate and robust ultrasound prostate segmenta-
tion methods. The performance of state-of-the-art ultrasound image automatic prostate
segmentation techniques is around 0.9 in the Dice index (DI) [3, 4]. To enhance the
model’s performance, this study presents a novel hybrid artificial intelligence strategy
for prostate segmentation in TRUS images.

1.1 Contributions

Our work incorporates several innovative components to achieve the aim, summarized
as follows:

• A model was designed to combine the inherent advantages of the principal curve
in finding the initial boundary and the AI model’s advantage in minimizing model
deviation.

• Different from current Closed Polygon Tracking (CPT) model [5], an Adaptive Poly-
gon Tracking (APT) model was introduced to automatically determine the principal
curve’s segment number, and data radius. Additionally, we integrated a normalization
scheme to deal with the medical data more effectively.

• In pursuit of an optimal neural network, a Historical Storage-basedQuantum-inspired
Evolutionary Network (HQIE) was developed. This system integrates a historical
storage-based quantum evolution mechanism and a Cuckoo Search (CS) module [6],
coupled with the fusion of a new mutation technique. This not only preserves the
solution diversity within the population but also enhances the ability to address both
unimodal and multimodal problems. The HQIE model was adopted to hunt for the
initialization of the optimal neural network.

• An interpretable mathematical model which is embodied by the parameters of the
neural network was developed. This function is used to enhance the smoothness of
initial segmentation of prostate.

1.2 Related Work

In the realm of clinical applications, the demand for completely automated segmenta-
tion from TRUS prostate images is on the rise. A deep learning architecture for prostate
TRUS image segmentation was formulated by Vesal et al. [7], tackling transfer learning
problems by integrating a distillation loss function. The robustness of the model could
be augmented further through data augmentation tactics. Meanwhile, Orlando et al. [3]
modified the U-Net segmentation model, employing transpose convolution to replace
conventional convolution and improve model prediction. Yet, the method may suffer
from the lack of multi-expert calibration and varied radiologist evaluations. He et al.
[8] established a cooperative learning framework that capitalized on image-based and
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voxel-metric segmentation sub-networks to refine segmentation and feature space. Sim-
ilarly, Zavala-Romero et al. [9] sought to advance the U-net model by integrating batch
normalization and a 20%dropout rate post-convolution, though themodel’s performance
may vary depending on the dataset’s diversity. On the other hand, semi-automaticmodels
utilize radiologist expertise during the segmentation processes. Xu et al. [10] developed
a shadow-consistent learning model that harnessed both fully annotated and unlabeled
data to augment model training. A worthy direction for future studies could be the effect
of annotated and unlabeled data ratios on the model’s performance. Zhou et al. [11]
proposed a UNet + + for medical image segmentation, while combing the multiscale
features to assist the prediction. To boost the useful features while decreasing the atten-
tion to the useless features, Gao et al. [12] developed the Transformer-based UTNet
method for medical image segmentation. Considering the influence of improving the
segmentation accuracy of region of interest (ROI) during the brachytherapy, Peng et al.
[13] designed a hybrid method, named H-SegMed, which integrated the principal curve
and neural network for achieving the high-accuracy ROI contour. Zeng et al. [14] used a
statistical shape method to gather magnetic resonance imaging priors, though the model
could benefit from the evaluation of segmentation discrepancy based on surrounding
tissue landmarks. A similar approach by Godley et al. [15] made use of contours from
previous days for accurate prostate segmentation, although the amount of available data
may restrict the model. Finally, Karimi et al. [16] used prior shape details to handle
uncertainties during training, but the model’s generalizability could be challenging due
to the sourcing of images from single ultrasound system.

2 Methodology

2.1 Workflow

Our approach of high-performance prostate segmentation is composed of three funda-
mental phases, which summarize with three stages:

(1) Principal curve-based stage: In the initial stage, the APTmodel is employed to yield
a prostate boundary constituted of segments, with sequence-ordered vertices. This
is assisted by a limited number of prior points to assist accurate ROI identification
(Sect. 3.2).

(2) Evolution-based stage: The subsequent stage involves the utilization of the HQIE
model to procure the ideal initialmodel of the adaptive learning-rate backpropagation
neural network (ABNN), helping avoid local minima during the training process
(Sect. 3.3).

(3) Mapping stage: In the final stage, the aim is to discover a suitable mapping function
(articulated through parameters of theABNNmodel) that reflects a smooth boundary
(Sect. 3.4). The comprehensive structure of our model is demonstrated in Fig. 1.

2.2 Adaptive Polygon Tracking (APT) Model

The pioneering concept of the principal curve was first introduced by Hastie et al. [17],
succeeded by the development of the PT model by Kégl et al. [18, 19] in pursuit of
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Fig. 1. Workflow of our hybrid model

the K-segment principal curve. To enhance the efficiency of the PT model in describing
closed datasets, Peng et al. designed the Closed Polygon Tracking (CPT) model [20],
later refining it with the optimized closed polygon tracking (OCPT) model [21], which
improved the resilience of the CPT model. We developed an adaptive polygon tracking
(APT) model in this study. This model incorporates an innovative normalization method
and a smart data radius judgment scheme with the CPT model, thereby optimizing the
trade-off between precision and efficiency on a global scale.

Innovation and Enhancement
Normalization: In contrast to Jain et al. employing a min-max normalization approach
[22], this study incorporates a different normalization technique [23]. This method starts
with the calculation of the average μ (depicted in Eq. (1)) and variance σ (displayed
in Eq. (2)) of the pi coordinates. Following this, an update is performed on the x- and
y-axis coordinates of pi as outlined in Eq. (3).

μx = 1

n

n∑

i=1

xi μy = 1

n

n∑

i=1

yi (1)

σx =
√√√√1

n

n∑

i=1

[
(xi − μx)

2] σy =
√√√√1

n

n∑

i=1

[(
yi − μy

)2] (2)

xi = xi − μx

σx
yi = yi − μy

σx
(3)

Data radius r’s automatic determination: r affects the number of segments Ns =
β ∗ n

1
3 ∗ r ∗ (�n(fNs,n)

− 1
2 ). Different selections of the Ns determine different shapes of

the f , shown in Fig. 2. An optimal outcome is showcased in Fig. 2(a). As per Fig. 2(b), a
small Ns value inadequately represents the true character of the function f , necessitating
a larger Ns. Conversely, as illustrated in Fig. 2(c), the use of an excessively large Ns

results in an unnecessary addition of vertices, leading to longer computation time and
compromised accuracy.
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Fig. 2. Different characterizations to f at different numbers of segments is.

2.3 Historical Storage-Based Quantum-Inspired Evolutionary Network (HQIE)

The Quantum Differential Evolution (QDE) model [24] is commonly employed to pre-
vent the neural network (NN)model from getting stuck in local minima. In this study, we
substantially enhanced this model by incorporating several novel modifications. These
include 1) a quantum evolution mechanism underpinned by historical data storage, 2) a
novel mutation method, and 3) the implementation of the cuckoo search (CS) model.

Historical Storage-Based Quantum Evolution Mechanism. This mechanism seeks
to preserve the optimal mutation Factor F and Crossover Rate CR from the preced-
ing cycle, which are subsequently repurposed as initial values for the next cycle. The
optimization of both F and CR values is achieved by utilizing the succeeding formulas,

F = (1 − val) × F + rand(0, 1) × AverageL(SF ) (4)

CR = (1 − val) × CR + rand(0, 1) × AverageL(SCR) (5)

where SF and SCR respectively denote acceptable probabilities ofmutation and crossover
and the adjustment parameter val is within (0, 1). The tuning parameter, val, ranges
between 0 and 1. Guided by the Lehmer average approach [25], the optimum values for
F and CR are computed as per Eqs. (6) and (7).

AverageL(SF ) =
∑

F∈SF
F2

∑
F∈SF

F
(6)

AverageL(SCR) =
∑

F∈SF
CR2

∑
F∈SF

CR
(7)

Mutation Technique. Typical mutation procedures applicable to the QDE model add
various advantages to optimization problems. For instance, DE/rand/1 andDE/rand/2 are
exploration-based schemes [26], effectively addressing a wide spectrum of optimization
challenges. On the other hand, DE/best/1 and DE/best/2 are exploitation-based schemes,
which excel in handling a variety of unimodal problems. In the context of our research,
we devised a freshmutationmethod that amalgamates the features of both thementioned
schemes, described by,

vecg
i = ag

best + F × (
ag

i2 − ag
i3

)
(8)

ag
best − math.floor

(
ag

i × NI
)

(9)
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ag
best = λ × ag

i1 + (1 − λ) × ag
best (10)

where λ is defined as,

λ =
(

gmax − g

gmax

)2

(11)

When λ equals 1, the DE/best scheme corresponds to the DE/rand/1 scheme via
mathematical deduction (among Eq. (8) to Eq. (10)). When λ equals 0, the DE/best
scheme corresponds to the DE/best/1 scheme.

Cuckoo Search (CS)Model [6] :Thismodel is inspired by natural processes and excels
at pinpointing the optimal candidate. The solution ag−1

best at (g-1)-th iteration is adopted to
optimize a new solution ag

best , which is updated by the Levy flight scheme, as indicated
by,

ag
best = ag−1

best + Levy(ap) (12)

With ap functioning as the independent variable, Levy flight essentially provides a
random shift when random steps are acquired from a Levy distribution for a significant
leap.

Levy(ap) = g−ap, 1 ≤ ap ≤ 3 (13)

Finally, a novel mutant vector nvecg
i can be derived, as exhibited by,

nvecg
i = rand [0, 1] × ag

best + (1 − rand [0, 1]) × vecg
i (14)

2.4 Mathematical Model-Based Contour Detection

Our work also designs an interpretable smooth mathematical model to derive a smooth
outline. Utilizing a three-layer architecture, our ABNN incorporates Sigmoid and Expo-
nential Linear Unit (ELU) activation functions in the forward propagation phase. The
output variables of theABNNmodel, represented by o(x) and o(y), correspond to the rep-
resentation formulas o(x(t)) and o(y(t)), respectively. In this context, the vertex sequence
t serves as the independent variable.

(o(x(t)), o(y(t))) =

⎛
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1
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(
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,
1

2 ×
⎛

⎝e

∑H
i=1

1

1+e−
(
tw1i−ai

) w2i,2−b2+1
⎞

⎠

⎞

⎟⎟⎟⎟⎟⎟⎠
(15)

The purpose of this stage is using the model parameters of a neural network to
explain the boundary contour so that to aim the purpose of smoothing the contour. The
thresholds in the hidden and output layers are represented by ai (i = 1,…, H) and bi (i =
1, 2), respectively. The weights in the hidden and output layers are denoted by w1 and
w2, respectively.
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After training is concluded, a smooth mathematical depiction of the boundary can
be conveyed as,

f (t) = (x, y) =
(
2 × o(x(t)) + 1

2 × o(x(t)) + 2
,
2 × o(y(t)) + 1

2 × o(y(t)) + 2

)
(16)

The resulting boundary’s vertex coordinates along the x and y axes are denoted by
x and y, respectively.

3 Experiment Setup and Results

3.1 Databases

In this study, we evaluate themodel using two clinical databases of transrectal ultrasound
prostate images from two hospitals respectively: the Tsinghua Changgung Hospital
(TCH) and the Jiangsu Province Hospital of Chinese Medicine (JPHCM). By segre-
gating and then amalgamating these databases, we formed a new’Combined’ collection.
The distribution of groups within the Combined database is detailed in Table 1.

Table 1. The group proportion of all the mentioned databases. All the training, validation, and
testing data was randomly selected for evaluation.

Total group Training group
(raw + augmentation)

Validation group Testing group

TCH 945 675 146 124

JPHCM 393 215 (raw) + 430 (aug) 70 108

Combined database − 1320 216 232

The performance of our proposed model was evaluated using three metrics: the Dice
index (DI) [27], Jaccard index (OMG) [28], and accuracy (ACC) [28], on the ‘Combined’
database.

� = TP

FP + TP + FN
(17)

DSC = 2TP

2TP + FP + FN
(18)

ACC = TP + TN

TP + FN + FP + TN
(19)

where TP, FP, FN, and TN represent true positive, false-positive, false-negative, and
true negative, respectively.
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3.2 Performance on the Testing Dataset Disturbed by Noise

Our study employed varying intensities of salt and pepper noise, specifically, a signal-
to-noise ratio (SNR) of either 0.8 or 0.6, to disturb the testing images. The simulated
data was then utilized to test the model’s resilience to noise. Additionally, to measure
the rate of overlap between the histograms of original (RawH) and disturbed (DisturbH)
data, we employed an overlap metric, defined by,

overlap = |Rawh ∩ DisturbH |
RawH

(20)

Table 2 reveals that as SNR decreased from 1 to 0.6, the average DI, OMG, and ACC
metrics reduced by 4.21%, 4.82%, and 4.34%, respectively. Despite slight increases
in standard deviation (SD) for all metrics as SNR decreases, the mean and SD for
each metric demonstrated minimal fluctuation under various SNRs. Our model showed
robust segmentation performance under original and noise-disturbed scenarios. Figure 3
illustrates diverse segmentation results using our hybrid model.

Table 2. Evaluation outcomes under various degrees of salt and pepper noise. After using the
original training and validation for training, we used the corrupted testing data for final evaluation.

DI ± SD (%) OMG ± SD (%) ACC ± SD (%)

Clean set 96.4 ± 2.4 95.5 ± 2.9 96.1 ± 2.5

SNR = 0.8 94.9 ± 3.1 93.4 ± 3.2 94.4 ± 3.3

SNR = 0.6 92.5 ± 3.6 91.1 ± 4.1 92.1 ± 3.2

Fig. 3. Model capability on different degrees of salt and pepper noise.



36 T. Peng et al.

3.3 Ablation Study

A range of ablation experiments were conducted to evaluate the impact of individual
modules in this hybrid model. The results of these experiments are detailed in Table 3.
Serving as the benchmark, Model 1 delivered a performance with a DI of 91.6± 4.1(%),
OMG of 90.5 ± 4.3(%), and an ACC of 91.4 ± 4.1(%). With the integration of various
modules such as QDE, APT, HQIE, and ABNN to boost performance, the average
DI, OMG, and ACC increased by 0.98% –5.24%, 1.32% –5.52%, and 1.09% –5.13%,
respectively. Among all, the final model (Model 5) delivers the highest performance.
Figure 4 visually demonstrates the results of the ablation experiments.

Table 3. Ablation evaluation outcomes. (BNN: backpropagation neural network)

Structure DI ± SD (%) OMG ± SD (%) ACC ± SD (%)

Model 1 CPT + BNN (baseline) 91.6 ± 4.1 90.5 ± 4.3 91.4 ± 4.1

Model 2 CPT + QDE + BNN 92.5 ± 3.3 91.7 ± 3.7 92.4 ± 3.5

Model 3 APT + QEN + BNN 94.1 ± 2.9 92.6 ± 3.5 93.5 ± 3.1

Model 4 APT + HQIE + BNN 95.8 ± 2.4 94.1 ± 3.1 95.2 ± 2.6

Model 5 APT + HQIE + ABNN (our
model)

96.4 ± 2.4 95.5 ± 2.9 96.1 ± 2.5

3.4 Comparison with State-Of-The-Art (SOTA) Models

Our model was compared with the current State-Of-The-Art (SOTA) models in terms
of performance. The models included Unet + + [11], Transformer-based UTNet [12],
and H-SegMod [27], all assessed based on the Combined database. The quantitative
results of all the models under consideration are summarized in Table 4. The Unet
+ + and Transformer methods are completely automated. The other two models are
semi-automatic, leveraging a limited number of prior points to guide the model. Table 4
shows that the DI, OMG, and ACC improved between 5.54% –7.7%, 5.18% – 8.03%,
and 5.46% –7.85%, respectively, from fully automatic methods to the proposed hybrid
method. In addition, the standard deviation of the three-evaluation metrics is the lowest
in our proposed hybrid model. These evaluation results suggest that our proposed model
had improved performance over existing methods.
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Fig. 4. Visual demonstration of ablation experiment results. Red line shows the ground truth,
while the blue line shows model-generated results.

Table 4. Comparison with SOTA segmentation models

Paper Method DI ± SD (%) OMG ± SD (%) ACC ± SD (%)

[11]-2020 Unet + + 89.5 ± 6.4 88.4 ± 6.6 89.1 ± 6.1

[12]-2021 UTNet 90.1 ± 5.7 88.7 ± 6.1 89.7 ± 6.1

[27]-2022 H-SegMod 95.1 ± 3.3 93.3 ± 3.7 94.6 ± 3.5

Proposed model Hybrid 96.4 ± 2.4 95.5 ± 2.9 96.1 ± 2.5

4 Conclusion

Segmentation of the prostate in TRUS images is inherently challenging, especially using
fully automaticmethods.A hybrid artificial intelligence segmentationmethodwas devel-
oped to improve the accuracy and robustness of prostate segmentation in ultrasound
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images. Our model used limited sonographer-determined seed points as prior infor-
mation, and incorporated an enhanced polygon tracking system, an advanced quantum-
based evolutionary network, and a smooth, interpretable mathematical model of prostate
boundaries to achieve improved performance.

The noise influence on images was critically evaluated. Our model demonstrated
robust performance even at lower signal-to-noise ratio scenarios (SNR = 0.6). The
previous studies [13, 29] examined SNR values of down-to 0.8. The performance of our
model at an SNR of 0.6 is equivalent to or superior to the previous studies at an SNR of
0.8.

Themodel’s capability extends across varying levels of task complexities, as demon-
strated by its performance in a combined database. Ultrasound datasets from two hospi-
tals (TCH and JPHCM)were combined and evaluated. The image quality of the two hos-
pitals varies from each other. However, the superior performance of the proposed model
on the combined database demonstrated the model’s capability to adapt the variations
in image quality.

Our study has some limitations that can be improved in future works. First, the
model currently has three major components, contributing to the computational need
during calculation. We will optimize the model by compressing it for potential real-time
clinical use. Second, we hope to transit the model to a fully automatic format using deep
learning models for initial segmentation estimation, while fine-tuning the model using
the existing framework. Third, the model is currently examined on ultrasound image
modality. The performance of the method on other image modalities, e.g., magnetic
resonance imaging (MRI), or computed tomography (CT) could be studied. Last but not
least, the model can be further examined under various clinical conditions, such as age,
demographics, prostate zone, and changes in prostate shape and position over treatment
periods, to improve its range of clinical applications.

By enhancing and broadening the model’s application in these ways, we hope to
contribute to the advancements in medical imaging, disease diagnostics, and treatment,
bringing us closer to a future where precise, efficient, and robust ultrasound image
segmentation is a reality.
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Abstract. Efficient and accurate fabric defect detection can be ben-
eficial to enhance the competitiveness of enterprises. Aiming at fabric
defects with multi-scale characteristics, an Efficient Multi-scale Detec-
tor (EMSD) is proposed in this paper. Specifically, by combining Self-
calibrated Convolution (SCConv) and Ghost Convolution (GhostConv),
a novel feature extraction network is proposed to extract low-level spatial
feature maps more accurately and efficiently. Then, a Dense-connected
Spatial Pyramid Pooling - Fast (DCSPPF) module is designed to inte-
grate local and global information of low-level spatial feature maps in
a way that reduces the loss of defect information. Further, a feature
fusion network is constructed to extract high-level semantic feature maps
and integrate them with low-level spatial feature maps by skip connec-
tions to guide defects localization. Finally, three defect feature maps
of different scales are sent into detection heads for large, medium and
small defects detection respectively. Experiments are conducted on pub-
lic Tianchi dataset and TILDA dataset to evaluate the effectiveness of
EMSD. The results show that EMSD significantly outperforms all its
variants and previous works with a more lightweight network architec-
ture, and has better fabric defect detection capability.

Keywords: Fabric defect detection · Self-calibrated convolution ·
Ghost convolution · DCSPPF · Feature fusion

1 Introduction

There is a huge demand for the production of fabrics, which are widely used in
all kinds of clothing and household goods, etc. Effective fabric defect detection is
an important means to control the quality of fabrics and a key measure for man-
ufacturers to enhance their competitiveness. Many textile mills still use manual
visual inspection to detect defects, which is costly and inefficient, easy to cause
missed and wrong detection. To this end, automatic fabric defect detection has
become one of the research hotspots in the field of computer vision.

In practical applications, automatic fabric defect detection should be suitable
for multi-scale defects, and ensure its applicability to the hardware platforms
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with limited resources. Therefore, researchers have made a lot of works, which
can be roughly divided into two categories [10], traditional methods and deep
learning methods. Traditional methods construct texture features through arti-
ficial analysis, which suffered from their low efficiency and poor performance.
In recent years, with deep learning achieving best performance in many visual
tasks by means of automatic feature extraction, more and more deep learning-
based fabric defect detection methods have been proposed, which can be divided
into two categories: (1) One-stage methods [7,11,22,23,25], and (2) two-stage
methods [9,14,19–21]. One-stage methods output location information and cat-
egories of defects at the same time, which have higher detection efficiency with
low accuracy. Two-stage methods separate location process from classification
process, which have higher detection accuracy with low efficiency.

To achieve a balance between efficiency and accuracy, in this paper, an Effi-
cient Multi-scale Detector (EMSD) for fabric defects is proposed. The main
contributions are as follows:

1) A noval feature extraction network is designed to reduce the pollution of
background information and improve the efficiency of feature extraction.

2) DCSPPF module is designed to reduce the loss of defect information, and
integrate local and global features to improve model accuracy.

3) A feature fusion network is constructed to extract multi-scale high-level
semantic feature maps and integrate them with low-level spatial feature maps
through skip connections to guide defect location.

2 Related Work

One-stage detection methods treat all pixels as potential targets, regress cate-
gories and location information of defects at the same time, such as RetinaNet
[12], YOLO [6] series, and EfficientNet [17], et al. Xie et al. [22] make some
improvements to fit fabric defects based on RefineDet. Jin et al. [7] propose
a defect detection method based on YOLOv5, which adopts teacher-student
architecture for processing. Zhou et al. [25] propose an efficient defect fabric
detector (EDD), which adopts EfficientNet as backbone network and conducts
a new feature extraction structure to emphasize the importance of low-level fea-
tures. In addition, Li et al. [11] propose a compact convolution neural network
architecture, which is applicable to real-time detection. Xu et al. [23] propose a
deformable defect detection network (D4Net) for non-rigid products with large
patterns.

Two-stage detection methods adopt multi-phase scheme, output regional
proposals first, and then classify them. Existing two-stage detection detectors
include RCNN [3], Fast RCNN [2], Faster RCNN [16] et al. Wei et al. [20] pro-
pose a fabric defect detector based on Faster-RCNN. Wu et al. [21] design dilated
convolution module with multi-scale kernels to enhance feature extraction capa-
bility of network. Beyond that, Liu et al. [14] train a multi-stage GAN model to
synthesize reasonable defect samples and design a deep semantic segmentation
network to detect fabric defects. Jun et al. [9] propose a two-stage architecture
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to detect local defects and global defects respectively by Inception-V1 model and
LeNet-5 model. Wang et al. [19] propose a self-attention deep saliency network
for defects with blurred or complex shapes.

Fig. 1. Overview of the network architecture of EMSD. 1) LSC-Darknet as backbone to
extract low-level spatial feature maps; 2) DCSPPF module is used to integrate global
and local information; 3) LSG-PAFPN as neck to refine and fuse low-level spatial and
high-level semantic feature maps; 4) A projection layer as detection head.

3 Proposed Model EMSD

Inspired by the outstanding performance of Ghost Convolution (GhostConv) [4],
Self-calibrated Convolution (SCConv) [13] and Dense Connection [5] in various
visual tasks, we cleverly transplant them into a unified architecture to explore an
efficient multi-scale network for fabric defect detection. The overall architecture
is shown in Fig. 1.
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Fig. 2. Overview of the network architecture of LSC-Darknet, which consists of four
stages, each stage is constructed by SCConv Block and GhostCSP Block.

3.1 LSC-Darknet

The structure of the designed feature extraction network, called Lightweight Self-
calibrated Darknet (LSC-Darknet), is shown in Fig. 2, which is an improvement
based on Cross Stage Partial Darknet (CSPDarknet) [1]. It includes a Stem
Block for image patchy, and four stages to extract feature maps of different
scales successively. Each stage goes through a SCConv Block and a GhostCSP
Block.

Stem Block. 6 × 6 Conv with step of 2 is adopted to process image. This
process is equivalent to dividing the image into 2×2 adjacent patches, and then
stitching together the pixels in the same position in each patch to obtain multiple
feature maps. Different from the 16 × 16 patchy mode, 2 × 2 patch can capture
more detailed spatial information of defects.

SCConv Block. This structure is composed of SCConv, batch norm and SiLU
activation function. Among them, SCConv is an improved convolution, which
divides convolution kernels into four parts by channel, one part retains original
spatial information, and the other parts guide the feature extraction through
the lantent space after downsampling. Due to the shape characteristics of fabric
defects, the detection boxes often contain redundant background information.
Use SCConv can focus on the context information around the defects, avoid the
information pollution of unrelated background, and can achieve more accurate
defect location with nearly equivalent computation. Therefore, in each stage, 3
× 3 SCConv with step of 2 is adopted.

GhostCSP Block. This structure is improved based on Cross Stage Partial
(CSP) [1]. The input feature maps X are divided into two parts {X1,X2} by
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channel through 1 × 1 Conv. One part is jointed with another after passing
through dense bottleneck structures, which are the key to affect the efficiency of
feature extraction. This process produces abundant highly similar feature maps,
bringing unnecessary calculation, as shown in Fig. 3(a).

Fig. 3. Output feature maps comparison of CSP module and GhostCSP module.

Therefore, we adopt GhostConv in bottleneck structure. Instead of directly
generating all feature maps, it generates partial simple feature maps first, and
then performs linear transformation to extend them to the expected number.
The process of the improved GhostCSP can be formulated as:

Xs = Conv3×3(Conv1×1(X2)) = {x1, x2, · · · , xm} (1)

Xa = Φ(Xs) = {x1, x2, · · · , xm, xm+1, xm+2, · · · , xn} (2)

Y = Conv1×1(Concat(X1,Xa+X2))) (3)

where Xs represents m simple feature maps, Φ represents linear transformation,
Xa represents feature maps with expected number (n ≥ m), Convn×n represents
convolution with n×n kernel size, and Y represents final output. GhostCSP can
significantly improve efficiency by simplifying the process of feature extraction.
For the same image, the comparison of the output feature maps of CSP and
GhostCSP on the same layer is shown in Fig. 3. It can be seen that GhostCSP
can achieve the same effect as CSP. Through the above structure, three scales
of low-level spatial feature maps {f1, f2, f3} can be obtained in the last three
stages for further network processing.

3.2 DCSPPF

To further improve model accuracy, f3 is sent to Dense-connected Spatial Pyra-
mid Pooling - Fast (DCSPPF) module based on SPPF to fuse local and global
information. The structure is composed of serial 5 × 5 MaxPool layers to obtain
multiple feature maps with the same size. However, since many fabric defects
occupy only 1% of the image pixels, multi-layer MaxPool are prone to loss of
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defect information. To solve the problem, we adopt the idea of Dense Connec-
tion [5], as shown in Fig. 4. Every time the feature maps pass through a Maxpool
layer, a concatenate operation is performed to fuse the feature maps of the front
and back layers. In addition, feature maps that have not been processed by the
Maxpool layer are fused each time to emphasize the original feature information.
In this way, the final feature maps f4 can retain more defect information, and
facilitate feature propagation.

Fig. 4. The structure of DCSPPF module.

3.3 LSG-PAFPN

The Lightweight Self-guided Pixel Aggregation Feature Pyramid Network (LSG-
PAFPN) are designed based on PAFPN [15] to fuse features of different scales,
which adopts a bidirectional structure including bottom-up and top-down path.
Due to the bidirectional scheme, the structure requires more computation, so
SCConv and GhostConv are used in an intelligent way to simplify the network
and improve the detection accuracy, as shown in Fig. 1.

Top-Down Path. The F1 module is used for the top-down path. Specifically,
it first converts the input into high-level semantic feature maps through 1 × 1
Conv, then upsamples them to double size and concatenates them with low-level
spatial feature maps. After that, feature maps are sent to a bottleneck structure,
in which repeated part is executed by 3×3 GhostConv. Finally, after 1×1 Conv,
the input of the next layer is obtained. After top-down fusion process, three scales
of high-level sementic feature maps {f4, f5, f6} can be obtained.
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Bottom-Up Path. This path adds three skip connections from backbone to
enhance feature fusion and defects location guidance by low-level feature maps.
The F2 module is used for the bottom-up path. Specifically, it first extracts
feature maps from input by 3 × 3 SCConv, then concatenates them with low-
level spatial and high-level semantic feature maps. After that, feature maps are
sent to the same bottleneck structure and 1×1 Conv as top-down path to obtain
the input of the next layer. After bottom-up fusion process, three scales of feature
maps {f7, f8, f9} can be obtained and sent to detection heads for the detection
of large, medium and small scale defects respectively.

3.4 Detection Head

Three detection heads are used for multi-scale fabric defects. Each detection
head is a Fully Connected Mapping Layer, outputs the location information and
categories of the detection boxes. The output length can be formulated as:

loutput = (ncls + 4 + 1) × nanchor (4)

where ncls represents the number of categories, 4 represents the coordinates
of detection box, 1 represents the confidence score, and nAnchor represents the
number of anchors at each pixel. To guide network output, the loss function
consists of three parts, which can be formulated as:

Loss = λ1Lcls + λ2Lobj + λ3Lloc (5)

where λ1, λ2, λ3 represent balance coefficients, Lcls represents classification loss
to calculate the classification correctness, Lobj represents confidence loss to cal-
culate the confidence score of the network, Lloc represents location loss to calcu-
late the error between the detection box and ground-truth box. The details are
shown as follow: ⎧

⎪⎨

⎪⎩

Lcls = BCE (c, cgt) ,
Lobj = BCE

(
p, piou

)
,

LcIoU = 1 − IoU +
ρ2(b,bgt)

l2 + αv

(6)

where c and cgt respectively represent the predicted category and ground-truth
category, p and piou respectively represent the confidence score predicted by
network and calculated by the IoU value between the detection box and ground-
truth box, b and bgt respectively represent the center point of the detection box
and ground-truth box, ρ represents the Euclidean Distance between the two
center points, l represents the diagonal distance of the minimum closure area
that can contain both the detection box and ground-truth box, α is the weight
coefficient, v represents the similarity of aspect ratio and is calculated as follow:

v =
4
π2

(arctan
wgt

hgt
− arctan

w

h
)
2

(7)

where w and wgt respectively represent the width of the detection box and
ground-truth box, h and hgt respectively represent the height of the detection
box and ground-truth box.
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4 Experiments

4.1 Setup

Our implementation is based on Ubuntu18.04 system and Pytorch1.12 on four
NVIDIA semantic RTX 2080Ti cards. SGD optimizer is used with a learning
rate of 0.01. The batch size is 16 and 800 epochs are trained. Other methods
compared in the experiments are trained on the same environment and datasets,
the training parameters are the same as those published by the original method.

4.2 Datasets

To validate the effectiveness of EMSD in the task of fabric defect detection,
two representative fabric defect datasets are used. One is the public dataset
TILDA. As with other methods, four of the most common fabric defects: holes
(e1), patches (e2), scratches (e3), lines (e4), and four fabric groups: unpatterned
(C1), regular textured (C2), regular patterned (C3), complex irregular patterned
(C4) are used. There are 1600 fabric defect images in total. The other dataset is
Tianchi dataset provided by Alibaba Cloud in 2019 with a total of 5913 defect
images, which contains 20 categories of defects. Compared with TILDA, Tianchi
dataset is more challenging for the following reasons: Uneven distribution of
object categories; Defects vary widely in size; Annotated bounding boxes contain
a lot of background information. In the experiments, both datasets take 80% of
all defect images as the training set and the remaining 20% as the test set.

4.3 Evaluation Metrics

mAP is used to evaluate the detection results, specifically calculated as follow:
⎧
⎪⎪⎨

⎪⎪⎩

Precision = TP/(TP + FP ),
Recall = TP/(TP + FN),
AP =

∫ 1

0
P (r)dr,

mAP =
∑C

i=1 AP i/C,

(8)

where TP represents the positive sample with positive prediction, FP represents
the positive sample with negative prediction, FN represents the negative sample
with negative prediction, P(r) represents the Precision-Recall (P-R) curve, AP is
the region below the curve, C represents categories, and mAP is the average AP
for each category. In addition, IoU represents the ratio of intersection and union
between the detection boxes and ground-truth boxes. mAP@0.5 means setting
the threshold of IoU to 0.5, the detection box is positive if IoU is greater than
0.5 and negative if IoU is less than 0.5. mAP@0.5:0.95 represents the average
mAP at different IoU thresholds (from 0.5 to 0.95, step size is 0.05).



An Automatic Fabric Defect Detector Using an Efficient Multi-scale Network 49

4.4 Comparison Experiment Results

Comparison experiment results on Tianchi dataset are shown in Table 1. (mAP
refers to mAP0.5:0.95). It can be seen that the first three methods have large
parameter amounts, which are difficult to meet the real-time requirements.
Yolov5 and EDDs [25] achieve similar performance to the above methods with
relatively few parameters. While EMSD achieves the best detection performance,
mAP metric is significantly better than the other five methods, and the param-
eter amount is the least, realize a good balance between accuracy and efficiency.

Table 1. Metrics comparison of differ-
ent methods on the Tianchi dataset.

Method mAP Params

Faster RCNN [16] 19.7 41.10M

EfficientDet-d3 [17] 19.9 14.28M

RetinaNet-R101 [12] 20.5 56.51M

EDDs-d3 [25] 20.9 7.07M

Yolov5s [8] 22.5 7.07M

EMSD(ours) 26.3 7.05M

Table 2. Metrics comparison of differ-
ent methods on the TILDA dataset.

Method P R mAP

Faster RCNN [16] 69.5 68.8 70.9

FCOS [18] 76.1 81.5 76.8

RefineDet [24] 74.3 85.0 77.7

YOLOv5 [8] 74.6 79.3 78.5

Xie et al. [22] 78.9 85.5 80.2

EMSD(ours) 80.1 85.5 83.2

In addition, the comparison experiment results on TILDA dataset are shown
in Table 2. Since there is no public open source of manual annotated TILDA
dataset, the annotation by authors of different methods will lead to a big differ-
ence in metrics, this paper only compares the methods with similar results.

Table 3. Comparison of EMSD variants on the Tianchi dataset.

Configurations mAP@0.5 mAP@0.5:0.95 Params

baseline 48.3 22.5 7.07M

baseline+LSC-Darknet 50.5 24.9 6.34M

baseline+LSC-Darknet+DCSPPF 51.4 25.5 7.20M

Ours 53.8 26.3 7.05M

The performance of existing advanced detection methods on TILDA dataset
is similar. The performance of Xie et al. [22] specifically designed for fabric
defects is significantly superior to that of existing methods, while the EMSD
performs better, and each metric is optimal for all methods, which proves the
effectiveness of EMSD.
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4.5 Ablation Experiments

In order to verify the contribution of each component in the EMSD network, a
series of ablation experiments are conducted on the Tianchi dataset. The unim-
proved network structure is taken as the baseline, and components were replaced
one by one. All of these variants are trained using the same training strategy,
and the experiment results are shown in Table 3.

Fig. 5. Detection results of EMSD on the Tianchi dataset.

Each component contributes to the performance enhancement, and our
EMSD network integrates all components to achieve the best detection results at
a comparable computation. More specifically, LSC-Darknet improves mAP@0.5
by about 4.6%, and mAP@0.5:0.95 is significantly improved by about 10.7%
with less computation. This means that LSC-Darknet pays more attention to the
information around the defects, resulting in more accurate localization. Secondly,
adding the idea of Dense Connection to the SPPF module also brings some gains,
such as about 1.8% increase in mAP@0.5 and 2.4% increase in mAP@0.5:0.95,
while the extra computation is negligible. In addition, LSG-PAFPN further
improves the performance with less computing, mAP@0.5 increases by about
4.7%, mAP@0.5:0.95 increases about 3.1%, which verifies the validity of the
low-level feature guidance and bidirectional structure.

4.6 Visualization of Detection Results

The visual detection results of EMSD on Tianchi dataset is shown in Fig. 5.
For defects of any scale and shape, EMSD can predict accurate detection box
location, even for defects that are hard to inspect with the naked eye.

Figure 6 shows the test results of EMSD on the TILDA dataset, covering
four defects and eight fabrics. EMSD can be well adapted to multi-scale defects
on fabrics with different textures and patterns. For some defects that are not
clearly distinguished from the background, such as small holes, light-colored
spots, slight scratches, etc., accurate detection boxes can also be predicted. In
general, EMSD performs well on the common dataset TILDA.
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Fig. 6. Detection results of EMSD on the TILDA dataset.

5 Conclusion

In this paper, an efficient multi-scale network EMSD is proposed for the task of
automatic fabric defect detection. EMSD can reduce the affect of background
pollution and the loss of defect information, and enhance the feature fusion
process. Compared with other methods, EMSD improves accuracy significantly
with higher efficiency. It is suitable for multi-scale defects on different texture
fabrics so that has strong application value. However, EMSD is less robust to
small defects on complex patterned fabrics. In the future work, we plan to analyze
more texture information to better apply to complex patterned fabrics.
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Abstract. Due to the rapid growth in the demand for crowd analysis
and monitoring methods, there is an urgent need for pedestrian track-
ing and counting methods that are more efficient, accurate, and reliable.
However, the existing trackers and counters rarely have the three charac-
teristics of efficiency, accuracy and reliability simultaneously. Therefore,
we propose a framework named FR-DeepSORT for tracking and count-
ing pedestrians based on DeepSORT. FR-DeepSORT first selects the
YOLOv5 network as the object detector. Then the Re-ID information is
combined with IoU to construct a cost matrix to improve the tracker by
introducing FastReID. Finally, FR-DeepSORT introduces vector cross
product and combines the tracking results to monitor the pedestrian
crossing dynamics. The experimental results on the MOT tracking bench-
mark datasets show that the accuracy of our tracker is 89.38%, and the
IDF1 value is 82.45%, which are competitive and more reliable to existing
tracking methods. The counter error rate is also superior in the real-time
dynamic statistical accuracy of the crowd.

Keywords: Multi-object tracking · YOLOv5 · Fast re-identification ·
Intersection over union · FR-DeepSORT · Pedestrian counting

1 Introduction

As the global population increases, crowd surveillance in public places has
become a hot topic. Due to the great interest in crowd-gathering events such
as carnivals, sports [10], concerts and festivals [7], the increase in population has
led to an increase in large-scale events. Crowded entrance and exit areas pose
challenges for organizers to ensure safety and business health, and appropriate
safety measures and crowd management are becoming increasingly important.

As important techniques in the field of computer vision, crowd analysis and
monitoring have been widely used to estimate crowd density and track human
activities in crowded areas [12]. They are still very challenging research directions
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due to the influence of occlusion [2], appearance and background/foreground
object detection of different targets [13], crowded scenes, fast motion and other
issues, attracting attentions of many researchers [1]. Crowd surveillance usually
includes two parts, namely, pedestrian tracking and pedestrian counting [12],
both of which have been studied to some extent.

In terms of multi-object tracking (MOT), tracking by detection is currently
the most effective paradigm [17]. Bewley et. al [3] use Kalman filter to predict
and update targets, and use Hungarian algorithms to match prediction param-
eters and detect frames with an overall framework, which can achieve accurate
tracking without occlusions, but the tracking accuracy is poor with occlusions [4].
The accuracy of tracking in simple occlusion scenarios (measured by MOT accu-
racy, MOTA) is improved by using a single-target visual tracker in cases where
no object detection is available [3], but the ID switch problem still exists. In
order to improve the performance of the multi-object tracking algorithms with
occlusions, the re-identification (Re-ID) feature is introduced to solve the ID
switch problem of SORT [16]. However, it is noted that this feature may reduce
the accuracy of tracking. In this regard, we improve the DeepSORT framework
to solve the occlusion problem by combining the ReID information with IoU on
the basis of [16], which is able to find a balance between the trackers’ detec-
tion capabilities measured by MOTA and the trackers’ abilities to maintain the
correct identity over time measured by IDF1.

In terms of counting, Bewley et. al [9] propose an algorithm based on Gaus-
sian process regression to improve the accuracy of pedestrian counting, but it
is not suitable for the situation of a large number of pedestrians because of its
large calculation amount and low efficiency [14]. The use of the frame difference
method for target counting can speed up the calculation process, but the harsher
environmental demands lead to that it cannot meet the requirements of pedes-
trian detection in public areas. Choosing too low thresholds cannot handle the
background while too high ones will appear to be unable to identify pedestrians
normally [15]. In [11], a counting method based on tracking using Kalman filter
is proposed, which combines the detection results for head counting. Although
it can improve real-time efficiency while ensuring counting accuracy, it is more
dependent on the performance of the tracker because it only uses Kalman filter
in the tracking part and is easy to lose the target when the moving target is
blocked for a long time. In this regard, we introduce the vector cross product
method for target counting based on the improved DeepSORT.

Our Contributions. We propose a modified DeepSORT-based pedestrian
tracking and counting framework named FR-DeepSORT, which is competitive
for pedestrian tracking on the MOT tracking benchmark datasets and has good
performance in real-time dynamic statistical accuracy, and the main contribu-
tions of our work can be summarized as follows:

(1) We use YOLOv5 instead of the Faster R-CNN network in DeepSORT to per-
form detection resulting in a higher tracking rate. In the correlation part, the
cost matrix is constructed by combining the FastReID information with IoU,
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which not only improves the accuracy of the overall tracker, but also makes
the detection and trajectory obtain a stable correlation, thereby reducing
the number of ID switches.

(2) Based on the tracking results, we introduce the vector cross product method
for target cross-line monitoring, which counts pedestrian flow faster and more
accurately.

(3) Experiments on the MOT benchmark datasets verify that our proposed FR-
DeepSORT framework is with high MOT and counting accuracy and a low
number of ID switches.

2 FR-DeepSort for Pedestrian Tracking and Counting

We propose a method that exploits the advantages of FastReID and IoU to
improve DeepSORT, and implement a framework for pedestrian tracking and
cross-line counting on this basis. In this section, we first introduce the details
of our proposed FR-DeepSORT framework, and then elaborate the pedestrian
tracking and counting modules respectively.

2.1 The FR-DeepSORT Framework

There are four modules in DeepSORT for completing the target tracking
task [16], namely, object detection, tracklet prediction, data association and tra-
jectory generation. For the object detection module, DeepSORT adopts Faster
R-CNN detector while for tracklet prediction, the Kalman filter is adopted to
build a cost matrix based on Re-ID feature information. Then the Hungarian
algorithm is used to match the detected frames and the predicted boxes. At last,
the short tracklets are connected to form a trajectory.

However, in crowded scenarios, DeepSORT cannot work well for its inherent
deficiencies. Since DeepSORT uses Faster R-CNN to detect targets in each frame
which is a two-step object detection process, it is necessary to use area extraction
technique to extract the area where the target is located, and then detect the
target for a specific area. These cumbersome steps lead to slow detection, which
further leads to a long time of the whole tracking process. In addition, the cost
matrix of DeepSORT in the cascaded matching process only considers the Re-
ID information, which is apt to reduce the accuracy of the final tracking results.
Therefore our specific improvements to DeepSORT mainly include two aspects:
a) YOLOv5 is used to replace the Faster R-CNN detector to improve the detec-
tion rate; b) FastReID was introduced and an approach combining the Re-lD and
loU information is adopted to reduce the tracking error caused by occlusions and
simplify the process. Figure 1 illustrates the FR-DeepSORT framework, where
the modules shaded in dark cyan color depict the ones of DeepSORT. By these
modules, matched and confirmed tracklets compose of trajectories. Our pro-
posed modules for our FR-DeepSORT framework as shown in Fig. 1 are in dark
yellow color which improve accuracy for tracking and reliability for counting of
DeepSORT.
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Fig. 1. The FR-DeepSORT framework.

2.2 Pedestrian Tracking

In the tracking part of FR-DeepSORT, we first use YOLOv5 to detect pedestri-
ans, and then predict the possible positions of pedestrians in the next adjacent
frames through Kalman filtering. Next, we introduce FastReID to obtain the
Re-ID information and combine IoU and Re-ID to construct a pedestrian target
cost matrix and adopt the Hungarian algorithm to associate the detected frames
with the predicted boxes, and finally obtain the complete trajectory of different
targets.

The Object Detection Network. False or missed detection of the object
detection network will cause problems such as frequent switching of target ID
or disconnection of the target trajectory, and its rate is also closely related
to the speed of the entire tracking process. Thus, a target detection network
needs to take into account both accuracy and speed which have a crucial impact
on the overall performance of multi-target trackers. As the mainstream one-
stage structure object detection network of deep learning, YOLO series detector
[5] is a regression method based on deep learning differentiating from R-CNN,
Fast-RCNN and other deep learning-based classification methods. Compared
with the RNN series, the YOLO series network can see the information of the
entire image in the whole process, and it can make good use of the context
information when detecting targets. It is not easy to predict the wrong object
information on the background, and the recognition and position are combined
into one, which has the advantages of simple structure and fast detection speed.
Among them, YOLOv5 is at present the most prominent one where most of
the network components are optional resulting in reducing the computational
cost and speeding up the inference process while guaranteeing the accuracy of
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model detection and recognition. Therefore, we use YOLOv5 instead of Faster
R-CNN in our FR-DeepSORT framework as a detector to extract features which
improves the final tracking speed while ensuring the accuracy of the results. In
the experiments, YOLOv5s is adopted as the default.

Apparent Features Representative Matrix. In order to better extract
apparent features, we design a new apparent feature extraction method which
combines IoU and Re-ID based on the new development in the field of depth
visual representation FastReID library, FR-IoU. Then an appearance similarity
matrix is built and the cost matrix is replaced in FR-DeepSORT.

FastReID is a highly modular and extensible architecture with user-friendly
management system configuration and engineering deployment functions. Its
open-source library provides a complete toolbox for many Re-ID tasks, including
modules such as model training, model evaluation, and model deployment, and
implements models with leading performance in multiple tasks. Thus, FastReID
is a commonly used solution for computing Re-IDs because of its high accuracy
and efficiency in various pedestrian re-identification dataset tests. IoU is an
important indicator in object detection, which generally refers to the ratio of
the intersection over the union of the prediction and the detection boxes. IoU
is adopted to measure the degree of overlap between the prediction box and
the detection box, and is a standard for measuring the accuracy of detecting
the corresponding object in the specified dataset. Let the intersection of the
prediction bounding box and the detection bounding box be Intersection, and
the union be Union, and its calculation formula is:

IoU =
bboxprediction ∩ bboxdetection

bboxprediction ∪ bboxdetection
=

Intersection

Union
(1)

Combined with the above information, we construct a cost matrix. First, we
define the average appearance state vector of the ith tracklet in the kth frame,
expressed as eki :

eki =
ek−1
i + fk

i

k
(2)

where fk
i is the appearance vector of the currently matched detection target

computed by FastReID. Because appearance features are susceptible to crowds,
occlusions, and obscure objects, we only consider high-confidence detection
to maintain correct feature vectors. In order to match the average trajectory
appearance state eki with the new detection appearance embedding vector fk

i ,
we use cosine similarity to measure, and then construct the cost matrix.

Assuming that the minimum value of each element in the matrix can be
used as the final value of the cost matrix C, the FR-IoU calculation process is
expressed as:

̂dcosi,j =
{

0.5 · dcosi,j ,
(

dcosi,j < θreid
) ∧ (

dioui,j < θiou
)

1, otherwise
(3)
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Ci,j = min
{

dioui,j , ̂dcosi,j

}

(4)

where Ci,j is the final value of the (i, j)-bit element of the cost matrix C, dioui,j is
the IoU difference between the prediction bounding box of the ith tracklet and
the jth detection bounding box, dcosi,j is the cosine distance between the average
appearance descriptor eki of the ith tracklet and the appearance descriptor of
the new detection j, and ̂dcosi,j is the obtained new appearance cost. θiou is the
rejection threshold of IoU and is set to 0.5 which is used to reject the trajectory-
detection pair with weak probability, and θreid is the Re-ID threshold, which is
used to separate the positive correlation of the detection embedding vector from
the trajectory appearance state and is set to 0.25. To find a balance between the
IoU and Re-ID values, we set the weight of dcosi,j to 0.5.

2.3 Pedestrian Counting

In the counting part, we use the counting line method to determine whether the
line segment formed by the center point of the adjacent detection boxes inter-
sects with the preset counting line of pedestrians in each independent tracking
trajectory for two consecutive frames and complete the statistics of the number
of pedestrians. First, the preset line is drawn in the middle of the video, and then
the vector cross product method is further combined on the basis of Sect. 2.2 to
decide whether the target crosses the line and the direction of the target crossing
the line according to the intersection of the target center point and the preset
lines.

To achieve the real-time dynamic judgment of pedestrians up and down, it
is necessary to preprocess the position data of pedestrians obtained in Sect. 2.2
at different times to facilitate the next judgment operation. Taking target A
for an example, the center points of the trajectory frame in frames framet and
framet+1 captured of A at moments t and t + 1 are calculated separately, and
the center coordinates of A in the two frames are obtained. Let the position
value of target A at time t be expressed as (x, y, w, h), then m, n in the center
point midpoint(m,n) of A can be expressed as:

m = x + w/2 (5)

n = y + h/2 (6)

In the counting process, it is necessary to determine whether the pedestrian
trajectory crosses the line, that is, to determine whether the center point con-
nection line of the trajectory boxes of two consecutive frames intersects with the
preset counting line, and we introduce vector cross product to judge.

a × b = x1 ∗ y2 − y1 ∗ x2 (7)

For two vectors a = (x1, y1) and b = (x2, y2), if a × b < 0, it means that b
is clockwise in a direction; if a × b > 0, it means that b is counterclockwise in
a; if a × b = 0, it means that b is parallel or collinear with a.
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The idea can be further generalized to two line segments AB and CD. Then
the sufficient conditions for judging their intersection are: point A and point B
are on both sides of the line segment CD, and points C and D are also on both
sides of the line segment AB. When point C and point D are on both sides of the
line segment AB, and points A and B are also on both sides of the line segment
CD, it can be concluded that the two line segments intersect, that is, satisfying

{

(
−→
AC × −−→

AB)(
−−→
AD × −−→

AB) < 0
(
−−→
CB × −−→

CD)(
−→
CA × −−→

CD) < 0
(8)

By Eqs. 5,6,7 and 8, it is easy to decide whether the center point connection
line intersects with the preset center count line in the frames.

3 Experiments

To verify the effectiveness of the tracking and counting methods, we conduct
experiments to evaluate our proposed method and the other ones on the MOTS
and MOTSynth datasets. MOTS focuses on pedestrians in crowded scenes and
is very challenging because it contains many occlusion situations. However, since
there are no ground truth (gt) files, it is necessary to manually annotate the orig-
inal video sequence in MOTS by the DarkLabel tool [8]. MOTSynth is a large,
highly diverse synthetic dataset which can replace real datasets in tasks such
as pedestrian detection, re-identification, segmentation and tracking, and can
better simulate crowded and rapid pedestrian movement in real scenes [6]. To
comprehensively evaluate the pedestrian tracking method, we use multi-metrics
to evaluate various aspects of trackers, including the MOTA metric and IDF1
score. Among them, MOTA focuses on multi-target tracking accuracy, while
IDF1 score focuses on association performance which can demonstrate how reli-
able the tracker is. To evaluate our pedestrian counting method, we used three
metrics: mean absolute error (MAE), mean squared error (MSE), and mean
absolute percentage error (MAPE).

3.1 Analysis of Pedestrian Tracking Results

To test the performance of the tracking methods, we conducted comparative
experiments using SORT, DeepSORT, MOTS and FR-DeepSORT etc. as track-
ers to track pedestrians in each frame of the video. The accuracy is measured by
comparing the results of these methods with those labeled by DarkLabel, and
the experimental results on the test set of MOTS are shown in Table 1.

From Table 1, we can see that in the test sets of MOTS, FR-DeepSORT’s
tracking accuracy, i.e., MOTA value, is 89.38%, which is 9.8% higher than Deep-
SORT, 4.98% higher than ReMOTSv2, and 5.68% higher than EMNT. In addi-
tion, the ratio of correctly identified detections over the average number of
ground-truth and computed detections. The total number of IDs for identity
ID switches is 213, which has a significant decrease compared to DeepSORT and
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Table 1. Experimental results of various algorithms on the test sets of MOTS.

Year MOTA↑ IDF1↑ IDs↓
DeepSORT 2017 79.58% 57.75% 364

ReMOTS 2020 84.40% 75.00% 231

ReMOTSv2 2022 84.40% 75.80% 229

EMNT 2022 83.70% 77.00% 261

FR-DeepSORT 2023 89.38% 82.45% 213

Fig. 2. Comparison of experimental results on MOTS20-09.

others. It can be seen that the accuracy of the tracking with FastReID improved
and the number of ID switches decreased.

The results of DeepSORT and our FR-DeepSORT framework for tracking
on MOT-09 are shown in Fig. 2a and Fig. 2b, respectively. In Fig. 2a, pedestrian
No. 4 was confirmed in frame 31 by DeepSORT but was misidentified as No.
6 in frame 57, while pedestrian No. 16 was also confirmed in frame 153 but
was wrongly identified as No. 6 in frame 180. We can see that tracking by
DeepSORT has serious identity ID switch problem. In Fig. 2b, it can be found
that pedestrians No. 4 and No. 21 were confirmed by FR-DeepSORT in frame
149 and pedestrian No. 4 was blocked in frame 175. In frame 189, pedestrian
No. 4 reappeared while pedestrian No. 21 was occluded. But both pedestrians
reappeared in frame 192, and there was no ID switch problem for tracking by
our FR-DeepSORT framework.

For the MOTSynth dataset, the results of DeepSORT and FR-DeepSORT
are shown in Fig. 3a and Fig. 3b, respectively. In Fig. 3a, it can be found that
pedestrians 28 and 6 were confirmed by DeepSORT in the first frame, but there
were occlusions in the second frame, No. 28 was blocked by pedestrian No. 6, and
the original pedestrian No. 28 reappeared in the third frame, but DeepSORT did
not accurately identify pedestrian ID No. 28. Instead, the trajectory of pedestrian
No. 28 in this frame is connected to pedestrian No. 6. That is, the trajectory
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Fig. 3. Comparison of experimental results on MOTSynth-515.

of pedestrian No. 28 is incorrectly marked as No. 6, and the original pedestrian
trajectory of No. 6 is incorrectly marked as No. 28 in the fourth frame. We can
see that there was a serious problem of mis-identification. In Fig. 3b, it can be
found that pedestrians No. 29 and No. 6 were confirmed by FR-DeepSORT at
the first frame, and occluded in the last 2 frames. Pedestrian No. 29 was occluded
by pedestrian No. 6, and pedestrian No. 29 reappeared at the last frame. We also
find that the pedestrians are accurately tracked by FR-DeepSORT, and there is
no ID switch problem.

Next, experiments for tracking of FR-DeepSORT and DeepSORT on the
MOTS dataset under different circumstances were conducted and the coordi-
nates of pedestrians with the same identity in the ground truth files in random
continuous frames were recorded. The tracking results representing the coor-
dinates of the specified pedestrians in these continuous frames were reported
compared to the coordinates in the gt files.

Fig. 4. The tracking effects in pedestrian coordinates of the two methods compared to
the ground truth without occlusions.
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Fig. 5. The tracking effects in pedestrian coordinates of the two methods compared to
the ground truth with occlusions.

Figure 4 and Fig. 5 show the effect in the pedestrian coordinates of Deep-
SORT and FR-DeepSORT compared to the ground truth without/with occlu-
sions respectively. In Fig. 4, the pedestrian coordinates of DeepSORT, FR-
DeepSORT and the ground truth are almost the same. That is, DeepSORT and
FR-DeepSORT are both with good performance when there are no occlusions.
But in Fig. 5, the coordinates of DeepSORT and FR-DeepSORT differentiate a
lot. When occlusions occur, in frames 52 to 65, the tracking results of Deep-
SORT are missing and there is a large deviation from the ground truth in 30–52
frames, which may be caused by false detection or ID switch problem. For FR-
DeepSORT, the results are the same with the ground truth which proves that
FR-DeepSORT can better handle the target tracking problem with occlusions.
The reason is that FR-DeepSORT can avoid false detection and solve the ID
switch problem effectively.

3.2 Analysis of Pedestrian Counting Results

Fig. 6. The illustration of FR-DeepSORT for counting on MOTS20-09.
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We first illustrate the counting process when using DeepSORT and FR-
DeepSORT for counting. In Fig. 6a, it can be seen that in frame 16, the pedes-
trian No. 6 on the right edge is moving downward, and the preset line changes
to red color at the initial moment of crossing, and dynamic live updates are set
in the upper left corner where the total number of pedestrians crossing the line
is plus one meaning one pedestrian crosses the line downward. It can be seen
from Fig. 6b that in frame 183, the pedestrian No. 5 in the middle of the right is
crossing the line upward, and at the initial moment of the span, the preset line
changes to red color, and the dynamic live monitoring value in the upper left
corner is updated, adding one to the total number of crossers.

Table 2. Counting results of the two trackers on different datasets.

MOTS-02 MOTS-06

MAE↑ MSE↓ MAPE↓ MAE↓ MSE↓ MAPE↓
DeepSORT 0.76% 1.12% 7.29% 1.07% 2.48% 19.67%

FR-DeepSORT 0.78% 1.04% 7.09% 0.12% 0.14% 1.49%

MOTS-07 MOTS-09

MAE↑ MSE↓ MAPE↓ MAE↓ MSE↓ MAPE↓
DeepSORT 0.87% 1.57% 4.58% 37.28% 49.14% 5.16%

FR-DeepSORT 0.88% 0.90% 4.51% 4.21% 4.21% 0.61%

Table 2 shows the results of DeepSORT and FR-DeepSORT trackers, respec-
tively, measured by MAE, MSE and MAPE of the counting results and their
true values. We can see that our proposed FR-DeepSORT framework outper-
forms DeepSORT. In addition, since most of the previous pedestrian counting
methods use Gaussian regression density map where the Gaussian kernel func-
tion runs slowly with an overall computational complexity O(n2) ∗ O(nd). As
a contrast, our vector fork multiplication method only needs to perform the
computation for the line connecting the midline with the target centroid in the
previous and latter frames, which is with a complexity of O(n2). Thus, our vector
fork multiplication method is much faster than the density map method.

4 Conclusion

In this paper, we propose the FR-DeepSORT framework for pedestrian track-
ing and counting which is based on DeepSORT. The FR-DeepSORT frame-
work improves the tracking and counting efficiency by replacing the detector,
and also makes full use of the advantages of IoU and FastReID to improve
the feature expression ability of the tracker. In addition, the counter of FR-
DeepSORT improves the accuracy of pedestrian traffic statistics benefiting from
above adjustments. Experiments on the MOT datasets verify the superiority of
our method which can be applied to a variety of scenarios.
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Abstract. Learning-based methods have attracted a lot of research
attention and led to significant improvements in low-light image enhance-
ment. However, most of them still suffer from two main problems: expen-
sive computational cost in high resolution images and unsatisfactory
performance in simultaneous enhancement and denoising. To address
these problems, we propose BDCE, a bootstrap diffusion model that
exploits the learning of the distribution of the curve parameters instead
of the normal-light image itself. Specifically, we adopt the curve esti-
mation method to handle the high-resolution images, where the curve
parameters are estimated by our bootstrap diffusion model. In addition,
a denoise module is applied in each iteration of curve adjustment to
denoise the intermediate enhanced result of each iteration. We evaluate
BDCE on commonly used benchmark datasets, and extensive experi-
ments show that it achieves state-of-the-art qualitative and quantitative
performance.

Keywords: Low-light image enhancement · Diffusion model · High
resolution image · Image processing

1 Introduction

Low-light image enhancement (LLIE) is a very important and meaningful task
in computer vision. Images captured in environments with insufficient lighting
often exhibit numerous issues, including diminished contrast, dark colors, low
visibility, etc. Therefore, LLIE is often used to process these poor quality images,
and the processed images can also be better suited for other downstream tasks.
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Fig. 1. Visual results of ablation study. The naive DCE-based method can’t denoise
and obtain satisfactory result. w/o means without. Detail settings are provided in
Sect. 4.4 and Table 3

The traditional LLIE method is mainly implemented based on histogram
equalization [2,22] and Retinex model [30,42,51]. However, these methods still do
not do a good job of detail and accurate color restoration. In the past few years,
with the continuous development of deep learning, there are more and more
LLIE methods based on deep learning [15,18,23,27,32,33,37,50,60–64,71,72].
Compared with traditional methods, these methods achieve better visual effects
and are more robust.

Despite the progress of existing methods, two major problems remain: 1)
The first problem is that LLIE on high resolution images is computationally
too expensive. 2) The second problem is that simultaneous enhancement and
denoising is unsatisfactory. Solving both problems is extremely challenging.

For the first problem, many LLIE methods [18,23,27,32,33,37,50,60–64,71]
are not specifically designed for high resolution images, and these methods need
to feed high resolution images into their networks, which is computationally
expensive. The first problem can be solved using DCE-based methods [15], which
achieve a small computational cost by downsampling the input image to a lower
resolution, then predicting the Light-Enhancement curves (LE-curves) at the
low resolution. However, DCE-based methods [15,72] tend to use lightweight
networks, resulting in poor curve estimation, and their pixel-wise adjustment
causes them to fail to denoise, so they are less effective on real data as shown in
Fig. 1 (naive result).

Hence, while the first problem can be addressed using the existing DCE-
based methods, the second problem remains unresolved. Some existing diffusion
models [8–10,55] for image restoration also fail to solve these two problems,
because they work on RGB pixel space, which makes them computationally
expensive on high resolution images.

To deal with these two key problems, we proposes BDCE, an effective boot-
strap diffusion model based high-resolution low-light enhancement and denoising
method. The main contributions are summarized as follows:

– In BDCE, a bootstrap diffusion model is presented for model the distribution
of optimal curve parameters, which can then be used for high resolution
images.

– We set a denoising module into each iteration of curve adjustment for
enhancement and denoising simultaneously.

– Extensive experiments on benchmark datasets demonstrate the superiority of
BDCE over previous state-of-the-art methods both quantitatively and quali-
tatively.
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2 Related Work

2.1 Learning-Based Methods in LLIE

Recently, there has been a notable surge in the development of deep learning solu-
tions for addressing the LLIE problem [32,33,50,53,57,60,62,67–69,72]. Wei et
al. [57] introduce a Retinex-based method that achieves superior enhancement
performance in most cases while maintaining physical interpretability. DCC-Net
[71] employs a collaborative strategy based on a strategy of partition and resolve
to preserve information of color and retain a natural appearance. Zhang et al. [69]
introduce KinD, which consists of three specialized subnetworks for layer decom-
position and reflectance restoration, and illumination adjustment. LLNet [33]
utilizes a multi-phase encoder for reducing sparse noise to enhance and denoise
images captured under low-light conditions. Wang et al. [53] present LLFormer,
a computationally efficient approach that leverages blocks employing multi-head
self-attention along different axes and cross-layer attention fusion for compu-
tational reduction. Wu et al. [60] propose a novel approach where the Retinex
decomposition problem is reformulated as a learnable network that incorporates
implicit prior regularization. Liu et al. [32] employ a cooperative prior architec-
ture search strategy along with a principled optimization unrolling technique.
Liang et al. [31] propose a unique self-supervised approach that optimizes a sep-
arate untrained network specifically for each test image. SCI [37] utilizes a self-
supervised approach to autonomously adjust the reflection component. EnGAN
[23] takes an unsupervised learning approach to tackle the challenges of overfit-
ting and limited generalization. Zero-DCE [15] performs pixel-level adjustments
by leveraging a depth curve estimation network and a collection of non-reference
loss functions. This combination allows for precise adjustments and improve-
ments in image quality. Jin et al. [24] propose a specialized network designed to
suppress light effects and enhance illumination in darker regions. However, these
methods are still challenging to solve the two problems mentioned in Sect. 1.

2.2 Diffusion Models

Within the domain of computer vision, diffusion models have garnered significant
attention as a category of generative models. These models are trained to reverse
the sequential corruption process of data by utilizing Gaussian random noise.
Two main types of diffusion models have emerged: score-matching based [21,49]
models and diffusion-based models [44]. Notably, denoising diffusion probabilistic
models [19,40] and score networks [11,38,46–48] conditioned on noise have shown
great promise in generating high-quality images. In recent times, there has been
a notable increase of interest in exploring the advantages of conditional forward
processes in diffusion-based models. This exploration has demonstrated promis-
ing potential across diverse computer vision applications, including image syn-
thesis [13,20,26,73], deblurring [59], and image-to-image translation [7,43,54].
Moreover, diffusion models have found applications in image restoration. For
example, Ozan et al. [41] proposed a patch-based diffusion model for restor-
ing images captured under challenging weather conditions. While many existing



70 J. Huang et al.

methods [8–10,55] in image restoration focus on solving inverse problems and
require prior knowledge of the degradation models, several concurrent works
[34,58] have specifically addressed blind restoration problems such as deraining,
deblurring, denoising, and face restoration. Kawar et al. introduced DDRM [25]
as a solution for linear inverse image restoration problems, but its applicability
is limited to linear degradation. However, these diffusion based methods can’t
handle the first problems (high resolution image) mentioned in Sect. 1.

3 Methodology

In this section, we describe the details of BDCE given a low-light image Il.
Firstly, we describe the curve estimation for high resolution image in Sect. 3.1.
Then, we design the bootstrap diffusion model for curve estimation in Sect. 3.2.
Finally, we describe the denoising module for real low-light image in Sect. 3.3.

Fig. 2. The training pipeline of our BDCE. We first downsample the high resolution
low-light image and use curve estimator to predict the low-resolution curve parameters
C̄. Then diffusion model is applied to learn a more accurate distribution of C̄. The
estimated Ĉ is upsampled and we adopt our denoise module in each iteration of curve
adjustments to get a denoised final result.

3.1 Curve Estimation for High Resolution Image

Deep Curve Estimation Network (DCE-Net) [15] is one of the most effective
methods for enhancing low-light images since their adaptability to high res-
olution images. In DCE-Net [15], a network is designed to predict a set of
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optimal Light-Enhancement curves (LE-curves) that match well with the input
low-light image. This method maps all pixels of the input image by progres-
sively applying curves to achieve the ultimate enhanced image. DCE-Net uses
quadratic curves LE(Il,C) = Il +CIl(1−Il) for mapping, where Il ∈ R

3×H×W ,
C ∈ [−1, 1]3×H×W and LE(Il,C) ∈ R

3×H×W denote the input image, the curve
parameters and the adjusted image, respectively. The curve parameters C are
per-pixel predicted by a CNN in DCE-Net.

The above procedure LE(Il,C) represents only one iteration of curve adjust-
ment, in fact 8 curve adjustments are used in DCE-Net and each iteration can
be denoted as

ai+1 = LEi(ai,Ci) = ai +Ci ai(1 − ai), i = 1, ..., 8, a1 = Il . (1)

Then the total adjustment can be denoted by

LE(Il,C) = LE8(a8,C8), a8 = LE7(a7,C7), ..., a2 = LE1(a1,C1). (2)

Ci ∈ [−1, 1]3×H×W and C = [C1, ..., C8] ∈ [−1, 1]24×H×W . We express the
above adjustment by C = φθ(Il) and Ie = LE(Il,C), where φθ is a CNN net-
work.

Based on the localised nature of the curve adjustment, DCE-Net can effi-
ciently cope with high resolution input images. For a high-resolution input image
Il, DCE-Net first resizes to get a fixed low resolution image Īl ∈ R

3×H̄×W̄ where
H̄ and W̄ are always set to 256, then uses the curve estimation described above
C̄ = φθ(Īl) to get a curve C̄ ∈ [−1, 1]24×H̄×W̄ at the low resolution, then upsam-
ples that curve C̄ to the original high resolution C ∈ [−1, 1]24×H×W , and per-
forms curve adjustment at high resolution. For any high resolution image, the
computational cost of network is the same.

3.2 Bootstrap Diffusion Model for Better Curve Estimation

In order to make BDCE adaptable to arbitrary high resolution images, BDCE is
very different from other diffusion model based methods, where other diffusion
model based methods learns the distribution of target images, while our BDCE
learns the distribution of curve parameters C̄ ∈ [−1, 1]24×H̄×W̄ . Because the
target image In (the normal-light image in our task) may have a high resolution
such that In ∈ R

3×H×W , the learning burden of In will be much bigger than it
of C̄ if H � H̄.

The forward process in DDPMs aims to learn the distribution of x0, i.e.,
C̄ (curve parameters) in our BDCE. However, the values of C̄ are unknown
at the beginning of training. To solve this, first we enter resized Īl into curve
estimator φθ to get a curve estimation C̄. Then, we denote x0 = C̄ as the data
distribution of our diffusion model. Specifically, the forward process of BDCE
can be described as follows:

q(xt |x0) = N (xt;
√

ᾱt x0, (1 − ᾱt) I). (3)
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xt =
√

ᾱt x0 +
√

1 − ᾱtεt, εt ∼ N (0, I) (4)

With the same setting of μ̃t(xt,x0) in [45], the reverse process from xT to x0 is:

q(xt−1 |xt,x0) = N (xt−1; μ̃t(xt,x0), σ̃2
t I), (5)

where x0 can be predicted by a noise estimation network εθ(xt, Īl, C̄, t):

x̂0 =
xt −√

1 − ᾱtεθ(xt, Īl, C̄, t)√
ᾱt

. (6)

As shown in Fig. 2, a U-Net similar to that in [66] is used as the noise estima-
tion network εθ of BDCE. As for the curve estimator φθ, we adopt a lightweight
network following [15]. In each step t of training, the given low-light image Il

and the curve parameters C̄ serve as the conditions in BDCE to model the
distribution of C̄. Lsimple defined in [39] is utilized as the supervision for εθ.

Note that the curve parameters C̄ estimated by φθ are not the optimal curve
parameters for enhancement. Therefore, we adopt a bootstrap diffusion model
for stable training and better optimization for learning the distribution of C̄. To
achieve this, the following bootstrap loss is used:

Lbootstrap = ||LE(Il, Ĉ) − In ||2, Ĉ = Upsample(x̂0), (7)

where Ĉ ∈ [−1, 1]24×H×W denotes the estimated curve parameters from x̂0 in
Eq. 6 upsampled to the original high resolution.

Fig. 3. Visual comparison on LOL-v1. BDCE yields less noise and more natural colors.

Fig. 4. Visual comparison on MIT-Adobe FiveK. BDCE yields better colors.
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3.3 Denoising Module for Real Low-Light Image

Because most of the real low-light images are degraded by real noises, LLIE
always includes the demands of real image denoising. However, using only LE-
curves is difficult to remove the real noises since curve adjustment is pixel-wise
without localised smoothing, so all DCE-based methods suffer from the problem
of real noises [15].

To solve this problem, we propose to combine enhancement and denoising in
one model by applying a denoising module ψθ consisting of servel residual blocks.
We implement the denoising during each iteration by refining the intermediate
enhanced result ai as following, given a1 = Il:

a2 = LE1(a1, Ĉ1), â2 = ψθ(a2),

a3 = LE2(â2, Ĉ2), â3 = ψθ(a3),
...

a9 = LE8(â8, Ĉ8), În = ψθ(a9),

(8)

where ai denotes the intermediate enhanced result of the i-th iteration. The
process described above can be briefly expressed as În = LEde(Il, Ĉ). It can
be understood as using the denoising module to denoise after each iteration
of brightness adjustment before proceeding to the next iteration of brightness
adjustment. After 8 iterations of brightness adjustment and denoising, the result
is an enhanced output with less noise. To train ψθ, a full-supervised loss Lsup

and a self-supervised loss Lself are used:

Lsup = ||În − In ||2,
âd1

i = Down1(âi), âd2
i = Down2(âi),

Lself =
∑

i=1,...,8

||âd1
i − âd2

i ||2,
(9)

where Down1 and Down2 denote two types of downsampling way (randomly
choose from max-pooling, average-pooling, nearest, bilinear, bicubic and lanczos
interpolation), because the MSE between two different downsampling results âd1

i

and âd2
i should be small for a denoised image.

Fig. 5. Visual comparison on LSRW. BDCE yields natural colors with clear details.
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Table 1. Results on LOL-v1, LOL-v2, MIT and LSRW. The best and second best are
in bold and underlined, respectively.

LOL-v1

Method KinD [69] Retinex [57] DRBN [64] URetinex

[60]

IAT [12] SNR [61] DCC-Net

[71]

BDCE

PSNR ↑ 20.87 18.23 19.55 21.32 23.38 24.61 22.72 25.01

SSIM ↑ 0.800 0.720 0.746 0.834 0.809 0.842 0.810 0.850

LOL-v2-real

Method KinD [69] SID [5] MIR-Net

[67]

A3DLUT

[52]

Retinex

[57]

SNR [61] Uformer

[56]

BDCE

PSNR ↑ 14.74 13.24 20.02 18.19 18.37 21.48 18.82 22.70

SSIM ↑ 0.641 0.442 0.820 0.745 0.723 0.849 0.771 0.851

LOL-v2-synthetic

Method KinD [69] SID [5] MIR-Net

[67]

A3DLUT

[52]

Retinex

[57]

SNR [61] Uformer

[56]

BDCE

PSNR ↑ 13.29 15.04 21.94 18.92 16.66 24.14 19.66 24.93

SSIM ↑ 0.578 0.610 0.876 0.838 0.652 0.928 0.871 0.929

MIT

Method LCDPNet

[18]

DPE [6] DeepUPE

[50]

MIRNet

[67]

HWMNet

[14]

STAR [72] SCI [37] BDCE

PSNR ↑ 23.23 22.15 23.04 23.73 24.44 24.13 20.44 24.85

SSIM ↑ 0.842 0.850 0.893 0.925 0.914 0.885 0.893 0.911

LSRW

Method Retinex-Net

[57]

KinD [69] Zero-DCE

[15]

SSIENet

[70]

Zero-

DCE++

[29]

RUAS [32] SCI [37] BDCE

PSNR ↑ 15.90 16.47 17.66 16.74 15.83 14.43 15.01 20.10

SSIM ↑ 0.3725 0.4929 0.4685 0.4879 0.4664 0.4276 0.4846 0.5308

4 Experiments

4.1 Datasets Settings

In our supervised experiments, we utilize several datasets, including LOL-v1 [57],
LOL-v2 [65], MIT-Adobe FiveK (MIT) [4] and LSRW [17]. The LOL-v1 dataset
consists of 485 training pairs and 15 testing pairs of real low-light images. As
for LOL-v2, it consists of two parts: LOL-v2-synthetic and LOL-v2-real images.
LOL-v2-synthetic contains 900 pairs of synthetic low-light images for training
and 100 pairs for testing, while LOL-v2-real comprises 689 pairs of real low-light
images for training and 100 pairs for testing. The MIT dataset comprises 5,000
paired synthetic low-light and normal-light images. We adopt the same training
and testing settings as previous methods [50,72] for consistency. To assess the
generalization ability of BDCE, we further evaluate its performance on unpaired
real low-light datasets, including DICM [28], LIME [16], MEF [36], NPE [51],
and VV [1].

4.2 Comparison with SOTA Methods on Paired Data

First, we assess the performance of our BDCE model through supervised training
on paired datasets (LOL-v1, LOL-v2, MIT, LSRW). Subsequently, we evaluate



Bootstrap Diffusion Model Curve Estimation 75

Table 2. Average results in terms of 5 NR-IQA metrics (NIQE, NIMA, BRISQUE,
NRQM [35] and PI [3]) on the 5 unpaired real low-light datasets (DICM, LIME, MEF,
NPE and VV).

Method Retinex-Net

[57]

KinD [69] Zero-DCE

[15]

EnGAN

[23]

Zero-DCE++

[29]

SSIENet

[70]

BDCE

NIQE ↓ 4.85 4.09 4.93 4.27 5.09 4.50 3.99

BRISQUE ↓ 27.77 26.87 24.78 18.97 21.11 21.08 17.43

NIMA↑ 4.24 4.16 3.87 3.92 3.85 3.53 3.86

NRQM ↑ 7.86 7.47 7.52 7.50 7.34 7.58 7.44

PI ↓ 3.15 3.26 3.21 2.90 3.29 3.47 2.87

Fig. 6. Visual comparisons on unpaired real low-light images, and the example is from
the NPE dataset.

the model’s effectiveness by conducting testing on the corresponding test sets of
these datasets.

LOL Dataset. Our BDCE is evaluated on LOL-v1 and LOL-v2 datasets.
Results in the Table 1 demonstrate BDCE’s superiority over other state-of-the-
art methods. The PSNR and SSIM metrics for the compared methods are sourced
from their respective papers. Visual comparisons in the Fig. 3 reveal that BDCE
yields visually appealing results with reduced noise.

MIT Dataset. The performance of BDCE is assessed on the MIT dataset [4],
and the obtained results in Table 1 indicate that it achieves the highest PSNR
and SSIM scores. Figure 4 clearly demonstrates that our BDCE method effec-
tively prevents color-shift in the enhanced images. In contrast, some of the com-
pared methods tend to exhibit over-enhancement or under-enhancement.

LSRW Dataset. Among the evaluated methods, BDCE achieves the highest
scores on PSNR and SSIM, as shown in the Table 1. Figure 5 presents a visual
comparison of the results. While the images enhanced by other methods suffer
from color shifts or appear under-enhanced, the images enhanced by BDCE
exhibit a more natural appearance.

4.3 Comparison with SOTA Methods on Unpaired Data

Our BDCE approach’s effectiveness is evaluated on various unpaired datasets,
namely DICM, LIME, MEF, NPE, and VV datasets. The evaluation is conducted
by directly testing our pretrained model on the test set of each dataset.
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Table 3. Comparison of different settings in BDCE on LOL-v1. Bootstrap Diffusion
Model: using the proposed bootstrap diffusion model for learning the distribution of
curve parameters. Denoising Module: using the proposed denoising module in each
iteration of curve adjustment. Self-supervised Loss: using self-supervised loss in Eq. 9.
✔: used. : ✘ not used.

Method Bootstrap Diffusion Model Denoising Module Self-supervised Loss PSNR SSIM
naive 18.51 0.721

w/o denoise 22.15 0.809
w/o diff 23.33 0.807
w/o self 24.56 0.810
BDCE 25.01 0.850

We compare the result of BDCE with other SOTA methods on these unpaired
real low-light image datasets. The quantitative results in terms of 5 NR-IQA
metrics are provided in a Table 2. Additionally, a visual comparison is presented
in Fig. 6, demonstrating that the results obtained by the compared methods often
exhibit unrealistic appearances, loss of fine details, or excessive enhancement. In
contrast, BDCE consistently produces images with enhanced colorfulness and
sharp details.

4.4 Ablation Study

We evaluate the performance of BDCE using various modules, presenting the
results in Table 3 and providing visual comparisons in Fig. 1.

The absence of the bootstrap diffusion model makes it challenging to acquire
desirable curve parameters, leading to noticeable deficiencies in color rendition
and illumination quality.

Removing the denoising module results in severe noise in the enhanced output
due to the inability of pixel-wise curve adjustment alone to effectively leverage
the spatially local smooth prior for denoising.

The denoising module’s performance is enhanced by our self-supervised loss,
which enables it to focus on denoising during each iteration of curve adjustment.
Consequently, the utilization of the self-supervised loss proves advantageous.
Overall, the combination of the proposed components effectively enhances the
LLIE performance.

5 Conclusion and Limitation

In this paper, we first analyse the problems of high computational cost in high
resolution images and unsatisfactory performance in simultaneous enhancement
and denoising. To mitigate these problems, we propose BDCE, a bootstrap dif-
fusion model adapted to LLIE. For high resolution images, a curve estimation
method is adopted and the curve parameters are estimated by our bootstrap dif-
fusion model. At each iteration of curve adjustment, a denoise module is applied
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to denoise the intermediate enhanced result of each iteration. BDCE outperforms
SOTA methods on LLIE benchmarks.

The main limitation of BDCE is its time cost, which is due to the multiple
steps of the sampling process of the diffusion model. For future research, we aim
to devise a more streamlined approach for acquiring the curve parameter distri-
bution. In addition, finding a lightweight network design is also a consideration.
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41. Özdenizci, O., Legenstein, R.: Restoring vision in adverse weather conditions with
patch-based denoising diffusion models. arXiv preprint arXiv:2207.14626 (2022)

42. Park, S., Yu, S., Moon, B., Ko, S., Paik, J.: Low-light image enhancement using
variational optimization-based Retinex model. IEEE Trans. Consum. Electron.
63(2), 178–184 (2017)

43. Saharia, C., et al.: Palette: image-to-image diffusion models. In: ACM SIGGRAPH
(2022)

44. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsuper-
vised learning using nonequilibrium thermodynamics. In: ICML (2015)

45. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502 (2020)

46. Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data
distribution. In: NeurIPS (2019)

47. Song, Y., Ermon, S.: Improved techniques for training score-based generative mod-
els. In: NeurIPS (2020)

48. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-
based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456 (2020)

49. Vincent, P.: A connection between score matching and denoising autoencoders.
Neural Comput. 23(7), 1661–1674 (2011)

50. Wang, R., Zhang, Q., Fu, C.W., Shen, X., Zheng, W.S., Jia, J.: Underexposed
photo enhancement using deep illumination estimation. In: CVPR (2019)

51. Wang, S., Zheng, J., Hu, H.M., Li, B.: Naturalness preserved enhancement algo-
rithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9),
3538–3548 (2013)

52. Wang, T., Li, Y., Peng, J., Ma, Y., Wang, X., Song, F., Yan, Y.: Real-time image
enhancer via learnable spatial-aware 3D lookup tables. In: ICCV (2021)

53. Wang, T., Zhang, K., Shen, T., Luo, W., Stenger, B., Lu, T.: Ultra-high-definition
low-light image enhancement: a benchmark and transformer-based method. arXiv
preprint arXiv:2212.11548 (2022)

54. Wang, T., Zhang, T., Zhang, B., Ouyang, H., Chen, D., Chen, Q., Wen,
F.: Pretraining is all you need for image-to-image translation. arXiv preprint
arXiv:2205.12952 (2022)

55. Wang, Y., Yu, J., Zhang, J.: Zero-shot image restoration using denoising diffusion
null-space model. arXiv preprint arXiv:2212.00490 (2022)

56. Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: Uformer: a general U-shaped
transformer for image restoration. In: CVPR (2022)

57. Wei, C., Wang, W., Yang, W., Liu, J.: Deep Retinex decomposition for low-light
enhancement. In: BMVC (2018)

58. Welker, S., Chapman, H.N., Gerkmann, T.: DriftRec: adapting diffusion models to
blind image restoration tasks. arXiv preprint arXiv:2211.06757 (2022)

59. Whang, J., Delbracio, M., Talebi, H., Saharia, C., Dimakis, A.G., Milanfar, P.:
Deblurring via stochastic refinement. In: CVPR (2022)

60. Wu, W., Weng, J., Zhang, P., Wang, X., Yang, W., Jiang, J.: URetinex-Net:
retinex-based deep unfolding network for low-light image enhancement. In: CVPR,
pp. 5901–5910 (2022)

http://arxiv.org/abs/2208.11284
http://arxiv.org/abs/2207.14626
http://arxiv.org/abs/2010.02502
http://arxiv.org/abs/2011.13456
http://arxiv.org/abs/2212.11548
http://arxiv.org/abs/2205.12952
http://arxiv.org/abs/2212.00490
http://arxiv.org/abs/2211.06757


80 J. Huang et al.

61. Xu, X., Wang, R., Fu, C.W., Jia, J.: SNR-aware low-light image enhancement. In:
CVPR (2022)

62. Yang, C., Jin, M., Jia, X., Xu, Y., Chen, Y.: AdaInt: learning adaptive intervals
for 3D lookup tables on real-time image enhancement. In: CVPR (2022)

63. Yang, C., Jin, M., Xu, Y., Zhang, R., Chen, Y., Liu, H.: SepLUT: separable image-
adaptive lookup tables for real-time image enhancement. In: Avidan, S., Brostow,
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Abstract. 3D medical image segmentation tasks play a crucial role in
clinical diagnosis. However, Handling vast data and intricate structures
in Point-of-Care (POC) devices is challenging. While current methods
use CNNs and Transformer models, their high computational demands
and limited real-time capabilities limit their POC application. Recent
studies have explored the application of Multilayer Perceptrons (MLP)
to medical image segmentation tasks. However, these studies overlook the
significance of local and global image features and multi-scale contextual
information. To overcome these limitations, we propose CoalUMLP, an
efficient vision MLP architecture designed specifically for 3D medical
image segmentation tasks. CoalUMLP combines the strengths of CNN,
Transformer, and MLP, incorporating three key components: the Multi-
Scale Axial Permute Encoder (MSAP), Masked Axial Permute Decoder
(MAP), and Semantic Bridging Connection (SBC). We reframe the med-
ical image segmentation problem as a sequence-to-sequence prediction
problem and evaluate the performance of our approach on the Medical
Segmentation Decathlon (MSD) dataset. CoalUMLP showcases a state-
of-the-art performance by significantly reducing the parameter count by
32.8% and computational complexity by 48.5%, all while maintaining a
compact structure. Our results highlight the potential of CoalUMLP as a
promising backbone for real-time medical image applications. It achieves
a superior trade-off between accuracy and efficiency compared to previ-
ous Transformer and CNN-based models.

Keywords: 3D Medical Image Segmentation · MLP-like Model ·
Efficiency and Accuracy Trade-off · Point-of-Care (POC) Devices

1 Introduction

Medical image segmentation [6,17,30,32] is crucial in the medical field, as it aims
to divide images into distinct tissue, organ, or lesion regions. It finds extensive
applications in radiology and pathology to assist doctors in locating problem
areas, diagnosing diseases, and formulating treatment plans. However, noise and
complex structures in medical image data pose challenges for segmentation tasks,
necessitating high-accuracy algorithms to handle fuzzy boundaries.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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Fig. 1. This figure illustrates the differences in receptive fields among various backbone
networks. (a) Convolution employs a 3 × 3 kernel. (b) Swin Transformer uses a window
size of 4. (c) MLP-Mixer with global receptive field characteristics. (d1) Basic Axial
Permute operation with a ShiftSize of 3 and dilation rate of 1. (d2) Core operations
of MSAP, where different colors represent Axial Permute operations with varying shift
sizes. (d3) Operations of MAP, where the image is randomly occluded by 30% using a
binary mask before applying the Axial Permute operation.

Medical image segmentation methods can be broadly classified into three
categories: CNN-based architecture [7,16,22], Transformer-based architecture [5,
26,28], and MLP-based architecture [9,17,23]. Convolutional Neural Networks
(CNNs) [12,19,24,27] have played a pivotal role in computer vision, with clas-
sical networks like VGG [29] and ResNet [12] providing a solid foundation for
tasks such as semantic segmentation. FCN [19] introduced the concept of replac-
ing the last fully connected layer with convolutional layers, enabling segmenta-
tion on images of any size. UNet [22], based on an encoder-decoder convolu-
tional network with skip connections, achieved significant success in medical
image segmentation. Recent extensions like 3D UNet [7] and ResUNet++ [14]
have improved performance in specific scenarios. However, one disadvantage of
CNN is limited global perception and difficulty capturing long-range depen-
dencies. Transformers [3,5,25,26] initially proposed for NLP tasks have been
adapted for computer vision. TransUNet [5] combines the U-Net architecture
with Transformers to enhance finer details. Other methods like Swin-Unet [3],
HRViT [8], and SETR [26] have also demonstrated strong performance in med-
ical image segmentation. However, one disadvantage of Transformers is their
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higher computational complexity compared to convolutional neural networks,
which can limit their applicability in resource-constrained environments. MLP-
based architecture [9,17,23] presents a concise framework using matrix trans-
formations and MLP for information exchange between spatial features. For
example, AS-MLP [17] incorporates axial shift to focus on local feature inter-
action. Hire-MLP [9] implements a hierarchical reordering operation for feature
fusion. However, one disadvantage of MLP is its limited ability to model spatial
relationships and capture local structures, which may restrict its performance in
tasks requiring spatial awareness. In Fig. 1, we show the difference between the
receptive fields of different feature fusion operations.

UNeXt [31] applies the MLP architecture to medical image segmentation,
achieving excellent performance with fewer parameters, faster inference speed,
and lower computational complexity. As computing power and datasets improve,
researchers have found that simple MLPs can achieve comparable performance
to Transformers and CNNs in computer vision tasks while reducing computation.
UNeXt cleverly combines convolution with MLP, with convolution responsible
for extracting local features and MLP integrating and abstracting these fea-
tures. Challenges remain in optimizing the MLP architecture, extending it to 3D
medical image segmentation, and enhancing local detail and global dependency
modeling. Addressing these challenges will improve the efficiency, accuracy, and
applicability of the MLP model in medical image segmentation tasks.

We propose CoalUMLP, a fusion strategy combining CNN, Transformer, and
MLP for 3D medical image segmentation. By incorporating the U-shaped UNet
structure, CoalUMLP captures multi-level image features for end-to-end train-
ing. Key components include the Multi-scale Axial Permute Encoder (MSAP)
for spatial feature fusion, the Masked Axial Permute Decoder (MAP) for com-
pact representations, and Semantic Bridging Connections (SBC) for multi-scale
feature integration. CoalUMLP achieves superior performance on the Medical
Segmentation Decathlon dataset, reducing parameters by 32.8% and computa-
tional complexity by 48.5% compared to UNETR, making it suitable for real-
time medical imaging applications. In summary, the main contributions of this
article are as follows:

(1) CoalUMLP effectively combines the strengths of CNN, Transformer, and
MLP models for 3D medical image segmentation, leveraging the U-shaped
structure of UNet. This integration enhances feature representations and
enables end-to-end training.

(2) We introduce MSAP, which aggregates features from different spatial posi-
tions and applies multi-scale feature fusion. It focuses on spatial feature
fusion, addressing the depth-related intricacies and ensuring consistent fea-
ture integration across varying image scales in 3D datasets.

(3) MAP is designed for compact representations, catering to the often denser
and overlapping structures in 3D images. With the innovative idea of incor-
porating binary masks during training, the MAP aids in reducing the rank
of the input matrix, promoting the model’s generalization and adaptability
to the intricate structures of unknown 3D data.
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Fig. 2. Overview of CoalUMLP architecture. The overall architecture of CoalUMLP
is described at the top of the figure; the structure of the MSAP module is described
at the bottom left; the structure of the MAP module is described in the middle at the
bottom; the structure of the SBC is described at the bottom right.

(4) Drawing inspiration from Transformer skip connections, SBC concatenates
the output of MSAP and MAP. This innovative fusion ensures a cohesive
interplay between multi-scale features, crucial for addressing the overlapping
and adjacent structures commonly found in 3D medical images.

2 Method

2.1 Overview

As shown in Fig. 2, CoalUMLP follows the traditional U-shaped encoder-decoder
architecture while improving its skip connections, encoders, and decoders.
Unlike UNeXt and Mixed-Net [18], CoalUMLP completely abandons convolution
blocks. After the image input, it first goes through the patch embedding layer,
which divides the input image into patches (tokens) and performs linear embed-
ding and layer normalization for each sub-block. The patches are input into the
first stage Multi-scale Axial Permute Encoder (MSAP). Next, patch merging
is performed for downsampling. In CoalUMLP, the encoder and decoder each
contain four stages, with the number of MSAPs in each stage being 3, 3, 8,
and 3, respectively. As the network depth increases, each patch’s D, H, and W
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dimensions are reduced by half while the output channel number doubles. In the
decoder, we replace the convolution layers in UNet with a Masked Axial Permute
Decoder (MAP). The number of MAPs in each stage is the same as the num-
ber of MSAPs in the same stage, and upsampling is performed through cubic
interpolation. The original skip connections are replaced by Semantic Bridging
Connections (SBC). SBC receives the output of the current stage MSAP and
MAP and connects them as input. It is then input into an Axial Permute (AP)
module, and the result is passed to the next decoder stage, MAP. The Axial
Permute operation can be described by the following equations Eqs.(1)–(2):

XDim
Shift = MLP(Narrow(Roll(Chunk(Pad(MLP(XDim))), d), d)). (1)

XAP = MLP(XD
Shift + XH

Shift + XW
Shift). (2)

In the above formulas, Pad is a padding operation used to add extra values
(usually zeros) around the input data; Chunk is a chunking operation that splits
the input data into multiple chunks; Narrow is a narrowing operation used to
reduce the size of a particular dimension of the input data; X is the input
image, XDim

Shift represents the input image X after Shift operation in the specific
dimension Dim, XAP represents the output after performing the AP operation,
Dim represents the dimension of X, and d represents the shift size.

2.2 Multi-scale Axial Permute Encoder

The Multi-scale Axial Permute (MSAP) is the core operation of the Multi-scale
Axial Permute Encoder. For an input feature X ∈ RC×D×H×W that has under-
gone patch embedding, we perform Axial Permute operations on Y with different
shift sizes along each dimension and concatenate them to obtain three new fea-
ture maps: Y D, Y H , and Y W . We apply channel MLP operations to the three
feature maps separately and then element-wise add their results. Next, we per-
form another channel MLP operation on the sum to obtain the final result,
denoted as YMSAP . This process can be represented in Eqs.(3)–(4), where the{
XDim

Shift [i]
}n

i=1
represents a set of elements. Each element in this set is a version

of the input image X transformed by the Shift operation in the Dim dimension.
The index i ranges from 1 to n, indicating that there are n such transformed
versions of X. Each i corresponds to a different shift size value from an array of
shift sizes. Therefore, this set represents the collection of all transformed versions
of X for each shift size value in the shift sizes array.

Y Dim = Concat
{
XDim

Shift [i]
}n

i=1
. (3)

YMSAP = MLP (MLP (Y D) + MLP (Y H) + MLP (Y W )). (4)
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2.3 Masked Axial Permute Decoder

The Axial Permute operation in the Masked Axial Permute Decoder (MAP)
bears a resemblance to the Multi-scale Axial Permute Encoder (MSAP), with
a key distinction being the elimination of the multi-scale feature fusion and
the incorporation of a binary mask for noise introduction during training. This
noise serves as a regularization form. The MAE [11] (Masked Autoencoder for
Distribution Estimation) inspires using binary masks. In MAE, binary masks
are added to the input data during training, setting some input data elements
to zero. This forces the model to learn a robust, low-dimensional representation,
enhancing the model’s generalization ability.

X is the input image, and M is a binary mask matrix. The mask matrix M
is the same shape as X, with elements being 0 or 1. The operations performed
in MAP can be represented by Eq.(5):

ZMAP = (X � M)AP . (5)

Here, � denotes element-wise multiplication, and ZMAP represents the out-
put after applying the MAP operation. Some elements of X become zero due to
this operation. The decoder’s task is to recover the original data from X � M .
The rank of X �M may be lower than X after applying the mask, leading to a
low-dimensional representation. It is an implicit regularization, constraining the
decoder’s representation space, thus enhancing generalization ability.

2.4 Semantic Bridging Connections

In traditional skip connections, a semantic gap can hinder the effective transfer
of low-level features and high-level semantic information, impacting model per-
formance. Our introduced Semantic Bridging Connections (SBC) address this by
enhancing the transfer between encoder and decoder, overcoming the limitations
of traditional connections that often use simple tensor operations. SBC provides
a potent semantic link, ensuring adequate information transfer in complex sce-
narios. As depicted in Fig. 2, we draw on the Transformers’ idea to facilitate
an element-wise addition operation between the encoder and decoder outputs.
This technique efficiently fuses local and high-level semantic features, boosting
information transfer. The sum passes through the Axial Permute module, gets
upsampled using trilinear interpolation three times, and is fed into the subse-
quent stage decoder. The operations performed in SBC can be represented by
Eq.(6):

OZBC = (YMSAP ⊕ ZMAP )AP . (6)

Here, ⊕ represents element-wise addition, and OZBC denotes the output after
applying the SBC operation.
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Table 1. Quantitative Comparisons of the segmentation performance in spleen & brain
tumor segmentation

Networks Spleen Segmentation (CT) Brain tumor Segmentation (MRI) #Params(M)↓ Flops(g)↓
Spleen WT ET CT All

Model Dice↑ HD95↓ Dice↑ HD95↓ Dice↑ HD95↓ Dice↑ HD95↓ Dice↑ HD95↓
UNet[22] 0.953 4.087 0.766 9.205 0.561 11.122 0.665 10.243 0.664 10.190 19.070 412.650

CoTr[15] 0.954 3.860 0.746 9.918 0.557 9.447 0.748 10.445 0.683 9.697 46.510 399.210

TransUNet[5] 0.950 4.031 0.706 14.027 0.542 10.421 0.684 14.501 0.644 12.983 96.070 48.340

SETR[26] 0.950 4.091 0.698 15.503 0.554 10.237 0.665 14.716 0.639 13.485 86.030 43.490

UNETR[10] 0.964 1.333 0.789 8.266 0.585 9.354 0.761 8.845 0.711 8.822 92.580 41.190

CoalUMLP(Ours) 0.967 3.161 0.906 19.711 0.626 7.732 0.876 7.683 0.802 11.708 62.230 21.230

Ground Truth OursUNETR TransBTS CoTr UNet

Fig. 3. CoalUMLP precisely captures intricate details in the segmentation results. The
entire tumor, labeled as Whole Tumor (WT), encompasses a combination of red, blue,
and green regions. The central portion of the tumor, known as the Tumor Core (TC),
merges the red and blue regions. The green region signifies the Enhancing Tumor core
(ET). (Color figure online)

3 Experiment

3.1 Dataset

We use the Medical Segmentation Decathlon (MSD) [1] dataset to assess our
algorithm. This dataset encompasses ten tasks, each focusing on different organs
and image modalities. We specifically chose two tasks for evaluation:

– Task09 Spleen: Aimed at precise spleen segmentation, this task employs
abdominal CT images sourced from multiple hospitals. We partitioned the
dataset into a training set of 41 images and a testing set of 20 images.

– Task01 BrainTumour: Dedicated to detailed brain tumor segmentation, it
uses CT images from various medical centers. For this task, our dataset was
divided into a training set with 484 images and a testing set comprising 266
images.

3.2 Implement Details

Evaluation Metrics: In the experiments, we use the Dice score [2] and the
95% Hausdorff distance (HD) [13] to evaluate the accuracy of the segmentation.
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Settings: In this study, we use Pytorch [21] and the open-source library
MONAI [4] (Medical Open Network for AI) for medical image processing to
implement the model. Data augmentation techniques include Spacing Resam-
pling, Scale Intensity Range, Crop Foreground, Random Crop by Positive and
Negative Label, Random Flip, Random Rotate 90 Degrees, Random Scale Inten-
sity, and Random Shift Intensity. The AdamW [20] optimizer is used for training
for 500 epochs, with weight decay set to 1e-5 and momentum set to 0.99. The
learning rate scheduling strategy uses Linear Warmup [12] and Cosine Annealing.
The experiments are conducted on 4 NVIDIA RTX 3090 GPUs.

Table 2. Ablation study on different block number in each layer

Block number

in each layer

Spleen Segmentation

(CT)

Brain tumor Segmentation (MRI)

Spleen WT ET TC All

Dice↑ HD95↓ Dice↑ HD95↓ Dice↑ HD95↓ Dice↑ HD95↓ Dice↑ HD95↓
(3,3,3) 0.962 4.012 0.871 22.981 0.454 9.150 0.811 10.157 0.712 14.430

(3,3,3,3) 0.964 4.120 0.801 23.309 0.443 10.134 0.670 9.132 0.605 15.192

(3,3,8,3) 0.967 3.161 0.906 19.711 0.626 7.732 0.876 7.683 0.802 11.708

(3,3,12,3) 0.970 3.740 0.913 19.005 0.639 7.910 0.884 7.383 0.812 11.432

Table 3. Ablation study on different permuted dimension

Permute

Dimension

Spleen

Segmentation (CT)

Brain tumor Segmentation (MRI)

Spleen WT ET TC All

Dice↑ HD95↓ Dice↑ HD95↓ Dice↑ HD95↓ Dice↑ HD95↓ Dice↑ HD95↓
(D,H,W) 0.967 3.161 0.906 19.711 0.626 7.732 0.876 7.683 0.802 11.708

(D,W) 0.970 3.740 0.871 22.547 0.530 9.130 0.812 8.70 0.737 13.459

(D,H) 0.960 5.242 0.810 24.846 0.562 8.950 0.795 7.85 0.722 13.882

(H,W) 0.954 6.046 0.790 23.948 0.434 10.683 0.781 8.14 0.669 14.257

3.3 Comparison with SOTA

CoalUMLP performs superior in spleen and brain tumor segmentation tasks. The
specific results are in Table 1 and Fig. 3. For spleen segmentation, CoalUMLP
obtained a Dice score of 0.967, a 0.3% increase compared to the highest-scoring
benchmark method, i.e., UNETR.

In terms of brain tumor segmentation, our model achieved Dice scores of
0.906, 0.626, and 0.876 in Whole Tumor (WT), Edema Tumor (ET), and Core
Tumor (CT) segmentation, respectively. These scores correspond to improve-
ments of 14.8%, 7.0%, and 15.1% over the highest-performing benchmark models
in WT, ET, and CT segments, respectively.
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CoalUMLP performed well on most metrics but struggled with the HD95
metric for Whole Tumor (WT). This challenge might arise from the model’s
limited global perception. The model must have strong global perceptual skills
because WT morphology and location can differ among patients. However, the
current structure of CoalUMLP may not be adept at capturing this global infor-
mation, leading to occasional lapses in the precise delineation of the WT bound-
aries.

When considering computational efficiency, CoalUMLP outperforms all mod-
els in the benchmark by reducing the required parameters and FLOPs by 32.8%
and 48.5%, respectively. The relationship between computational efficiency and
model performance of different models is shown in Fig. 4. Without sacrificing per-
formance, CoalUMLP’s enhanced efficiency makes it a top model for these tasks.

Table 4. Ablation study on model component

ComponentModel Spleen Segmentation (CT) Brain tumor Segmentation (MRI)

Spleen WT ET TC All

Dice↑ HD95↓ Dice↑ HD95↓ Dice↑ HD95↓ Dice↑ HD95↓ Dice↑ HD95↓
CoalUMLP w/o Everything 0.958 5.120 0.754 27.064 0.454 12.564 0.669 14.635 0.625 18.087

CoalUMLP w/o MSAP 0.962 5.240 0.789 22.087 0.459 11.206 0.761 9.807 0.669 14.367

CoalUMLP w/o MAP 0.965 5.751 0.804 19.451 0.589 10.894 0.850 8.471 0.748 12.939

CoalUMLP w/o SBC 0.964 5.082 0.871 20.594 0.561 10.064 0.830 9.481 0.754 13.379

3.4 Ablation Study

We conducted a series of ablation experiments on all the datasets used to select
the optimal model architecture settings and validate the effectiveness of each
component in the CoalUMLP framework:

Fig. 4. Comparison Charts of Different Models. The y-axis represents the Dice score
(higher is better), while the x-axis shows GFLOPs and parameter count (lower is
better). CoalUMLP outperforms other networks in efficiency.

Different scales of CoalUMLP: Our study on the impact of different
CoalUMLP model configurations, represented by the tuples (a, b, c, d), denotes
the number of CoalUMLP blocks at each layer, as shown in Table 2, we found
that performance enhancements start to plateau beyond a certain model depth.
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The (3, 3, 8, 3) configuration delivered a strong performance, with a Dice score
of 0.967 and HD95 scores of 3.161 in spleen segmentation, outperforming the
(3, 3, 3) and (3, 3, 3, 3) configurations. It also achieved superior Dice scores for
WT, ET, and TC and HD95 scores for TC in brain tumor segmentation.

Adding more blocks, like in the (3, 3, 12, 3) setup, had minimal impact on
performance. Spleen segmentation saw a slight Dice score rise to 0.970 and a
worse HD95 of 3.740. Brain tumor scores were comparable or slightly better than
the (3, 3, 8, 3) setup, showing limited benefits from added model complexity.

The difference between executing Axial Permutation in different
dimensions: We assessed different Axial Permutation dimensions for perfor-
mance and training speed. Table 3 shows the full (D,H,W ) setup excelled in
3D medical image segmentation, with notable scores for Spleen and Brain tumor
segmentation. The (D,W ) configuration had a higher Dice score for Spleen but
was overall less effective, indicating the H dimension’s limited impact. Configu-
rations omitting width or depth ((D,H) and (H,W )) performed worse, empha-
sizing the need for both depth and width. The height dimension seems less vital,
especially for simpler tasks.

Component Analysis: This study highlights the significance of each compo-
nent in the CoalUMLP model. Without these elements, the performance drops
noticeably. For instance, when all components are removed (CoalUMLP w/o
Everything), the model’s Dice score falls to 0.958 and the HD95 to 5.10 for
Spleen Segmentation, in contrast to our full model that achieves a Dice score of
0.967 and HD95 of 3.161.

As shown in Table. 4, removing the MSAP block (CoalUMLP w/o MSAP)
results in a Dice score of 0.962, illustrating its role in capturing multi-scale
features. Without the MAP block (CoalUMLP w/o MAP), the Dice score
dips to 0.965, pointing out its role in managing spatial complexity. Replacing
the SBC (CoalUMLP w/o SBC) with a skip connection brings the Dice score
down to 0.964, signifying its importance in integrating information. These results
underline the critical contributions of each component to the CoalUMLP model’s
enhanced performance.

4 Conclusion

This paper proposes a novel method for medical image segmentation that inte-
grates the advantages of three neural network paradigms (CNN, Transformer,
and MLP). The resulting architecture, CoalUMLP, effectively reduces the seman-
tic gap between local context information and global semantic associations.
Extensive experimental validation demonstrates that our approach surpasses
existing techniques on two widely-recognized benchmark datasets. In future
research, we plan to further explore how CoalUMLP can be applied to a broader
spectrum of medical image analysis domains.
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Abstract. Computed tomography (CT) reconstruction faces difficulties
in dealing with artifacts caused by imperfect imaging processes. Deep
learning-based CT reconstruction models have been proposed to address
these challenges, but they often lack interpretability since they use end-
to-end neural networks to directly transform signals from sinograms to
CT sections. Additionally, supervised methods are commonly used to
guide network training, yet obtaining supervision information can be
challenging in biomedical imaging systems. To overcome these limita-
tions, we propose a new domain transform CT reconstruction framework
that includes self-supervision. Our approach interprets sinogram signals
as tomographic information in the CT section domain, which is then used
to formulate pixel intensities with a simple mean operation. A refine-
ment network is utilized to improve the quality of the CT images, which
are further processed using the Radon transform to achieve simulated
sinograms without requiring additional supervision. Our experimental
results demonstrate the effectiveness of the proposed framework in both
anatomical structure reconstruction and artifact reduction.

Keywords: CT reconstruction · Domain transform · Self-supervision

1 Introduction

In the medical field, X-ray based Computed Tomography(CT) imaging is essen-
tial for the clinical diagnosis and treatment. Analytical reconstruction methods
such as Filtered Back Projection (FBP) [13], face intrinsic challenges in address-
ing artifacts or noises caused by imperfections in the imaging process or equip-
ment, such as sparse-view projection, limited-angle imaging, low-dose imaging,
etc. To improve the quality of CT reconstruction images, many influential works
have been proposed, categorized as Direct image reconstruction, Iterative image
reconstruction, and Deep image reconstruction [27]. Among these works, the
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iterative reconstruction algorithms including SART [1] and POCS [5], as well as
the regularization terms such as TV [10,29], have a reputable advantage in sup-
pressing artifacts and improving image quality. However, these methods require
high computational complexity due to iterative projections and back-projections
[34]; even so, artifacts-free reconstruction is still unlikely to obtain complete
guarantee.

In recent years, Deep image reconstruction (deep learning based) is raising its
popularity for noise removal and image refinement. Some of these works focus on
the sinogram domain, optimizing the signals to provide complete and substantial
semantic information for the mathematical reconstruction process [15], or using
network learning to optimize back-projection algorithm [24,25] and coordinate
representation of signals position in the sinogram domain [31]. On the other way
around, improving the quantity in image domain [6,7,33] has also been a way
for many works to optimize the reconstruction. The typical solutions for image-
domain optimization is to leverage a convolutional neural network to learn the
mapping function between the inferior and prior superior images. There are some
works that put their efforts in optimizing the sinograms and images simultane-
ously [8,9,17], aiming to interactively optimize the dual-domain information for
refined reconstruction. Despite achieving promising performances in artifact sup-
pression and quality refinement through supervised end-to-end networks, most of
these works have limited capabilities for complex high-precision reconstruction.
Because they rely on convolutional neural networks to directly learn the black-
box mapping between the sinograms and the reconstructed images for a faster
domain transformation [28]. Moreover, acquiring supervision information can
be practically challenging, especially for biomedical imaging systems. Certain
works have integrated neural networks into iterative reconstruction frameworks
to achieve greater interpretability and ultimately enhance the overall image qual-
ity [22,26,32]. However, Due to the iterative schema involved, these works often
entail unavoidable computational complexity and significant time consumption.
Additionally, the use of supervision is typically necessary to achieve optimal
results in this framework.

With the aim of improving the interpretability for complex high-precision
reconstruction and avoiding expensive or unattainable prior knowledge via super-
vised learning, we present a novel self-supervised CT reconstruction framework
that utilizes tomographic domain transform module to convert sinogram sig-
nals into CT sections. This module could well bridge the information gap in the
conversion between sinogram domain and CT image domain. It also explains
how the signals in sinogram evolve and formulate the pixels in image. The out-
put of the module is an initial reconstruction with a coarse anatomic structure
that guides a refinement neural network to achieve elegant convergence for fine
reconstruction. The reconstructed results are further projected by the Radon
transform [4] to achieve a predicted sinogram for self-supervision. Different from
the previous reconstruction methods that require either complex mathemati-
cal algorithms for better interpretability or supervision information for higher
image quality, our approach enhances the reconstruction interpretability through
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the domain transform module just with simple mathematical operations and
relies only on the observed sinogram without additional supervision required.
Our experimental results on multiple datasets indicate that the proposed app-
roach not only performs well in dealing with sufficient projection angles, but also
achieves impressive reconstruction results on sparse-view sinograms.

2 Methodology

2.1 Radon Transform in CT Imaging

The primary objective of CT imaging is to assess the condition of tissues by mea-
suring the extent of X-ray energy attenuation as it passes through the human
body [4,12]. By rotating the X-ray at different angles θ around the object, one
can acquire energy variations in different directions. The resulting sinogram rep-
resents the detected energy loss during the CT scanning process. It is a two-
dimensional graph that displays signal intensity, with the vertical axis indicat-
ing the distance s between the source and detector, and the horizontal axis
representing the measurement angle θ. In the context of CT imaging, different
geometric structures are utilized for the process of forward projection. For the
purpose of illustration, we specifically concentrate on the parallel beam geom-
etry, considering the inherent correlations that exist among various geometries,
including fan beam geometry. The projection process of parallel beams in CT
imaging is visually depicted in Fig. 1.

Fig. 1. Parallel X-Ray Beam Geometry.

The Radon transform, which is the main approach for obtaining simulated
sinograms, is a mapping from the Cartesian rectangular coordinates (x, y) to
a distance and an angel (s, θ), also known as polar coordinates. Applying the
transform to an image with the density variation f(x, y) for a given angle θ, its
distance s in the sinogram domain is able to written mathematically as:

s = xcosθ + ysinθ (1)
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The detector records the constantly changing angle θ and distance s, as well
as the signal intensity p(θ, s) integrated on the corresponding ray path that goes
through the object in the image domain, The signals in sinogram are formulated
as:

p(θ, s) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(xcosθ + ysinθ − s) dx dy (2)

where δ(·) is the Dirac delta function [13].
Note that the Eq. (1) and Eq. (2) separately describes the correlation of

coordinates and signals transformed from sinogram to image domain, i.e. the
projection process in CT imaging systems. While in the scenario of back projec-
tion (or reconstruction), given the coordinate (x, y) of a pixel in image domain,
the projected (or detected) distance s in each projection angle θ is achievable via
Eq. (1). The calculated N pairs of (s, θ) compose the coordinates for retrieving
tomographic information in a sinogram, which actually formulates the image
intensity of the pixel in image domain. N indicates the number of projection
angles. This is the basic idea of our reconstruction method.

Since Eq. (1) describes a general correlation between the coordinates of two
domains, practically there is an offset of origins in both sinogram and image
domain. For this reason, the coordinate correlation is adapted as follows:

s(x, y, θ) = (x − W

2
)cosθ + (y − H

2
)sinθ +

D

2
(3)

Here, W and H are the width and height of image size. D symbolizes the width
of detector in sinogram. The differences between Eq. (1) and Eq. (3) reflect the
origin shifts in both domains.

2.2 CT Reconstruction Using Tomographic Domain Transform
with Self-supervision

Based on the principles of CT imaging, the reconstruction process aims to uti-
lize the positions and signals in the sinogram to reconstruct the image inten-
sities. The domain transformation relationship between the sinogram and the
image is determined by the Radon transform, which was derived in the previous
section and further represented by our Eq. (3). This means that the Radon-based
domain transform plays an important role in improving the interpretability of
reconstruction process. With this inspiration, we propose a new CT reconstruc-
tion approach that consists of tomographic domain transform, image formulation
and reconstruction refinement. As show in Fig. 2, the tomographic domain trans-
form module (in blue) acquires the tomographic information for a given pixel in
image domain, and arrange them to a 3D matrix M . The size of the matrix is
H ∗ W ∗ N , with H and W indicating the image size. The tomographic infor-
mation is represented in the third dimension of M , which will be used for image
formulation to obtain an initial reconstruction. To further improve the quality
particularly for complex high-precision image, a refinement network is employed
to suppress artifacts and identify prominent information.
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Fig. 2. The pipeline of proposed reconstruction network via self-supervision. The tomo-
graphic domain transform module acquires tomographic information for individual pix-
els, and the image formulation average them as initial intensities. Sequentially, a refine-
ment network is employed for accurate reconstruction, followed by Radon transform
to obtain the predicted sinogram for loss calculation.

Tomographic Domain Transform Module. It is used to bridge the trans-
form mapping between sinogram signals and image intensities via a tomographic
information matrix M . To acquire this 3D matrix, we explain the implementa-
tion details in Fig. 3. Given the observed sinograms and the coordinates (x, y)
of image to be reconstructed, we first transform (x, y) to sinogram coordinates
(s, θ) with Eq. (3). As a results, a pixel I in image corresponds to a sin curve in
sinogram. In Fig. 3, there are three examples with each coordinate pair shown
in a different color, i.e. blue, yellow or pink. This sin curve describes how the
detection distance s varies as the projection angle θ changes. According to the
principle of tomographic parallel CT imaging, the sinogram signals that con-
tribute to the intensity formulation of pixel I are on this curve. To acquire these
signals as tomographic information, we map the curve to the sinogram and rep-
resent it in a vector. The vectorized tomographic information for each pixel is
represented in the third dimension of matrix M at location (x, y).

Image Formulation and Refinement Module. According to the principle
of tomographic imaging, the intensity of a given pixel in image is formulated
by an integral transform of tomographic signals. Therefore, the N -dimensional
information at each position of matrix M corresponds to a reconstructed coor-
dinate. In Fig. 2, this means that a simple sum or mean operation on the tomo-
graphic information (i.e. the third dimension of matrix M) is able to approxi-
mately reconstruct the intensity of pixel I with an initial result R′. Applying the
mean operation directly in this way ensures that information from each dimension
of matrix M is utilized during the process of dimensional reduction, and guaran-
tees that the initial results obtain clear contour information without introducing
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Fig. 3. The implementation details of tomograghic domain transform. A given pixel in
image domain is transformed to a sin curve in sinogram domain with Eq. (3). There are
three examples shown in blue, yellow and pink. By mapping the curve to the observed
sinogram, the tomographic information that corresponds to the formulation of pixel
intensity is acquired, which is further vectorized and represented in the third dimension
of matrix M at the location of (x, y). (Color figure online)

additional network parameters. Practically due to inevitable noises and undecom-
posable integrals in sinogram, the initial reconstruction may suffer from contour
blur or a lack of details, especially for complex high-precision images. To address
this issue, we proposed a refinement network to optimize the initial coarse results
and enrich the semantic information. Due to the exceptional coarse-to-fine feature
extraction capability inherited from the Encoder-Decoder architecture, as well as
its performance in the field of medical imaging, the U-Net [3,20] has been chosen
as the backbone network for the refinement network. This step involves acquiring
high-dimensional information from the initial result R

′
, which might have been

attenuated during preceding steps. By reemphasizing these high-dimensional fea-
tures, it facilitates the recovery of detailed information. The integration of the
inherent skip connections in the U-Net structure ensures that, during this process,
the complete contour information from the initial reconstruction is fully utilized
while also restoring the fine details within the image. Thus, the refinement net-
work is capable of representing low- and high-level features with sufficient seman-
tic information, which allows it to enhance details and suppress noise.

Loss Function via Self-supervision. Through self-supervision, deep image
reconstruction trains models based solely on the observed sinograms, without
any prior knowledge of the reconstruction. This is because that the predicted
reconstruction can be projected to the sinogram domain for loss calculation via
the Radon transform. To guide the training process of the refinement network in
our reconstruction framework, we apply the differentiable Radon transform [19]
to project the predicted reconstruction from U-Net to achieve the predicted
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sinogram for loss calculation. The projection angle and sparsity level of the
projection process are the same as those of the observed sinograms, ensuring
the effectiveness of the self-supervised process. The loss function is defined in
Eq. (4) [30]:

L =
√

‖ S′ − S ‖2 +ε2 (4)

where S represents the observed sinogram, S′ indicates the predicted sinogram
via Radon transform and constant ε is set to 10−3 to ensure that the L is
differentiable.

3 Experimental Results

3.1 Datasets and Experimental Settings

Datasets. To evaluate the performance of the proposed reconstruction Network,
we conduct the training and test on both simulated and real CT scans. The DL
sparse-view CT challenge dataset, as described in [21], is a simulated dataset
comprising 4000 clear breast phantom simulation images. These images exhibit
a complex random structure and contain microcalcification-like objects. The
LoDoPaB dataset [16] selected from LIDC/IDRI [2] (a real CT scan image set
acquired from around 800 patients) contains 5000 real CT scans of human lung.
Both the simulated and real images are randomly spit into training, validation
and test set with a ratio of 6:2:2. The observed sinograms are generated by a
parallel beam geometry, and the projection strategies are set as θ = (1◦, 180◦)
with a variant number of angles N = (30, 60, 180) to explore the performances
on sparse-view reconstruction.

Experimental Settings and Evaluation Metric. To train the refinement
network, we adopt the Adam optimizer [14] with (β1, β2) = (0.9, 0.999) thanks
to it elegant performance on convergence. The learning rate is initially set as 2×
10−4 and steadily decreased to 1 × 10−6 using the cosine annealing strategy [18,
30]. The batch size is set as 4 on the Nvidia 3090 GPU, with a setting of 100
and 300 epochs on the simulated and real datasets, we apply the torch-radon
package [19] for Radon transform. For evaluation, both visual and quantitative
results are exhibited. As for quantitative evaluation, we choose peak signal to
noise ratio (PSNR) and mean structural similarity index (SSIM) [11], to mainly
measure the ability of noise suppression and structure reconstruction.

3.2 Comparison Experiments

We compare the proposed method with four classic reconstruction methods
including FBP, SART-TV, N2 Learned [24] and Fourier MLP [23] on both the
simulated and real datasets. While FBP and SART-TV are model-based with
established reputation in Direct and Iterative image reconstruction, N2 Learned
is self-supervised with a framework that combines FBP and neural networks.
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SART-TVFBP N2 Learned Fourier MLP Proposed GT

Fig. 4. The visualization performances of the different reconstruction methods on the
simulated dataset with a variant number of projections in the range of for sparsity
study.

The Fourier MLP is a new reconstruction framework that learns the mapping
between locations and intensities with MLP network without additional super-
vision. The differences are visually and quantitatively exhibited.

Table 1. Quantitative results on the test set of the simulated DL sparse-view CT
datasets.

DL Sparse-
view CT

N=30 N=60 N=180

PSNR SSIM PSNR SSIM PSNR SSIM

FBP 22.028 0.560 23.713 0.728 24.131 0.813

SART-TV 30.115 0.835 30.982 0.862 30.974 0.860

N2 Learned 35.331 0.919 38.399 0.964 42.240 0.986

Fourier MLP 29.177 0.664 34.154 0.831 35.871 0.908

Proposed 38.173 0.945 42.662 0.983 44.257 0.992

Visual Performance. The visual performances of the different reconstruction
methods are shown in Fig. 4 on the simulated dataset, and Fig. 5 on the real
dataset. We selected the most representative case with (N = 60) for magnifi-
cation processing (shown in yellow bounding boxes) to clearly distinguish the
performance of each comparative algorithm. It is observed that most algorithms
perform well with sufficient angles (N = 180). However, when the number of pro-
jections decreases, the FBP algorithm suffers from ring artifacts due to the need
for larger singoram information to fill the surrounding pixels. This problem also
occurs in N2 Learned which uses FBP as a means of back-projection. SART-TV
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FBP SART-TV N2 Learned Fourier MLP Proposed GT

Fig. 5. The visualization performances of the different reconstruction methods on the
LoDoPaB dataset with a variant number of projections in the range of for sparsity
study.

sacrifices image quality for artifact removal, while Fourier MLP exhibits poor
performance in removing artifacts. In contrast to the existing works, the pro-
posed method is able to simultaneously suppress artifacts and preserve details.
This is consistent with the visual results on the real dataset in Fig. 4.

Table 2. Quantitative results on the test set of the real LoDoPaB datasets.

LoDoPaB N=30 N=60 N=180

PSNR SSIM PSNR SSIM PSNR SSIM

FBP 20.490 0.519 20.623 0.568 22.238 0.717

SART-TV 25.393 0.694 28.295 0.756 30.711 0.794

N2 Learned 23.711 0.684 23.685 0.709 24.016 0.767

Fourier MLP 29.174 0.545 31.369 0.639 31.876 0.675

Proposed 30.647 0.770 33.326 0.831 34.740 0.887

Quantitative Comparison. The quantitative results of the different recon-
struction methods are reported in Table 1 and Table 2 separately for the sim-
ulated and real dataset. The highest values of PSNR and SSIM for each pro-
jection strategy are highlighted in bold. The results on both datasets indicate
that FBP has the worst performance across projection angles and evaluation
metrics. The SART-TV on two datasets demonstrated its good performance in
preserving image structure, and the method showed a stable performance on
simulated data when the projection angles became sparse. However, its perfor-
mance rapidly declined on real data. The Fourier MLP has good performances
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on both datasets when the object is densely projected, however the PSNR and
SSIM drops sharply when N decreases to 30. Compared to the above methods,
N2 Learned exhibits stable performance in noise suppression as the projection
angles decrease, and this approach has significant advantages over other meth-
ods on synthetic datasets. Nonetheless, when applied to real data, it is unable
to maintain its original advantages in quantitative values, indicating that this
approach is highly sensitive to data distribution. As a comparison, the proposed
method achieved advantages in various evaluation metrics compared to other
methods, which proves that our work in addressing noise suppression and struc-
ture preservation achieves an observable outperformance across datasets and
projection strategies.

4 Conclusion

In this paper, we proposed a self-supervised enhancing interpretability CT recon-
struction method. The key step is to bridge the transform between the sinogram
and image domains via a 3D matrix that collects tomographic information for a
given image pixel. With this matrix, we are exempt from complex model-based
algorithms such as FBP and obtain sufficient information for initial reconstruc-
tion in the absence of supervision. Meanwhile, a simple and efficient encoder-
decoder refinement network ensures the reliability of the output results. The
visual and quantitative experiments compare the proposed method with four
reputable ones, and the outperforming results demonstrate the promise of our
work in both noise suppression and structure maintenance regardless of variant
projection sparsity. Furthermore, we have also observed that our method exhibits
inconsistent performance on two types of data. This encourages us to focus on
exploring different paradigms in our future work to mitigate the result dispari-
ties caused by variations in data distribution, thereby enhancing the robustness
of the model.

References

1. Andersen, A.H., Kak, A.C.: Simultaneous algebraic reconstruction technique (sart):
a superior implementation of the art algorithm. Ultrason. Imaging 6(1), 81–94
(1984)

2. Armato, S.G., III., et al.: The lung image database consortium (LIDC) and image
database resource initiative (IDRI): a completed reference database of lung nodules
on CT scans. Med. Phys. 38(2), 915–931 (2011)

3. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 39(12), 2481–2495 (2017)

4. Beatty, J.: The radon transform and the mathematics of medical imaging (2012)
5. Candes, E.J., Romberg, J.K.: Signal recovery from random projections. In: Com-

putational Imaging III. vol. 5674, pp. 76–86. SPIE (2005)
6. Chen, H., et al.: Low-dose CT with a residual encoder-decoder convolutional neural

network. IEEE Trans. Med. Imaging 36(12), 2524–2535 (2017)



Enhancing Interpretability in CT Reconstruction 103

7. Chen, H., et al.: Low-dose CT denoising with convolutional neural network. In:
2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp.
143–146. IEEE (2017)

8. Ernst, P., Chatterjee, S., Rose, G., Speck, O., Nürnberger, A.: Sinogram upsam-
pling using primal-dual UNet for undersampled CT and radial MRI reconstruction.
arXiv preprint arXiv:2112.13443 (2021)

9. Ge, R., et al.: DDPNet: a novel dual-domain parallel network for low-dose CT
reconstruction. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.)
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022:
25th International Conference, Singapore, September 18–22, 2022, Proceedings,
Part VI, pp. 748–757. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
16446-0 71

10. Getreuer, P.: Rudin-Osher-Fatemi total variation denoising using split Bregman.
Image Process. Line 2, 74–95 (2012)

11. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th Interna-
tional Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010)

12. Jun, K.: Virtual multi-alignment theory of parallel-beam CT image reconstruction
for rigid objects. Sci. Rep. 9(1), 13518 (2019)

13. Kak, A.C., Slaney, M.: Principles of computerized tomographic imaging. In: SIAM
(2001)

14. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

15. Lee, H., Lee, J., Kim, H., Cho, B., Cho, S.: Deep-neural-network-based Sinogram
synthesis for sparse-view cCTimage reconstruction. IEEE Trans. Radiation Plasma
Med. Sci. 3(2), 109–119 (2018)

16. Leuschner, J., Schmidt, M., Baguer, D.O., Maaß, P.: The lodopab-ct dataset:
A benchmark dataset for low-dose ct reconstruction methods. arXiv preprint
arXiv:1910.01113 (2019)

17. Li, Z., et al.: Promising generative adversarial network based Sinogram inpainting
method for ultra-limited-angle computed tomography imaging. Sensors 19(18),
3941 (2019)

18. Loshchilov, I., Hutter, F.S.: Stochastic gradient descent with warm restarts (2016)
19. Ronchetti, M.: Torchradon: Fast differentiable routines for computed tomography.

arXiv preprint arXiv:2009.14788 (2020)
20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-

ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI
2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Pro-
ceedings, Part III, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24574-4 28

21. Sidky, E.Y., Pan, X.: Report on the AAPM deep-learning sparse-view CT grand
challenge. Med. Phys. 49(8), 4935–4943 (2022)

22. Song, Y., Shen, L., Xing, L., Ermon, S.: Solving inverse problems in medical imag-
ing with score-based generative models. arXiv preprint arXiv:2111.08005 (2021)

23. Trancik, M., et al.: Fourier features let networks learn high frequency functions in
low dimensional domains. Adv. Neural. Inf. Process. Syst. 33, 7537–7547 (2020)

24. Unal, M.O., Ertas, M., Yildirim, I.: Self-supervised training for low-dose CT recon-
struction. In: 2021 IEEE 18th International Symposium on Biomedical Imaging
(ISBI), pp. 69–72. IEEE (2021)

http://arxiv.org/abs/2112.13443
https://doi.org/10.1007/978-3-031-16446-0_71
https://doi.org/10.1007/978-3-031-16446-0_71
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1910.01113
http://arxiv.org/abs/2009.14788
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/2111.08005


104 B. Huang et al.

25. Unal, M.O., Ertas, M., Yildirim, I.: An unsupervised reconstruction method for
low-dose CT using deep generative regularization prior. Biomed. Signal Process.
Control 75, 103598 (2022)

26. Wang, C., et al.: Improving generalizability in limited-angle CT reconstruction
with Sinogram extrapolation. In: de Bruijne, M., et al. (eds.) Medical Image Com-
puting and Computer Assisted Intervention – MICCAI 2021: 24th International
Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part
VI, pp. 86–96. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-
1 9

27. Wang, G., Ye, J.C., De Man, B.: Deep learning for tomographic image reconstruc-
tion. Nature Mach. Intell. 2(12), 737–748 (2020)

28. Wang, H., et al.: InDuDoNet: an interpretable dual domain network for CT metal
artifact reduction. In: de Bruijne, M., et al. (eds.) Medical Image Computing and
Computer Assisted Intervention – MICCAI 2021: 24th International Conference,
Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VI, pp. 107–
118. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1 11

29. Yu, H., Wang, G.: Compressed sensing based interior tomography. Phys. Med. Biol.
54(9), 2791 (2009)

30. Zamir, S.W., et al.: Multi-stage progressive image restoration. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14821–14831 (2021)

31. Zang, G., Idoughi, R., Li, R., Wonka, P., Heidrich, W.: Intratomo: self-supervised
learning-based tomography via sinogram synthesis and prediction. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 1960–1970
(2021)

32. Zhang, H., Liu, B., Yu, H., Dong, B.: Metainv-net: meta inversion network for
sparse view CT image reconstruction. IEEE Trans. Med. Imaging 40(2), 621–634
(2020)

33. Zhang, H., et al.: Image prediction for limited-angle tomography via deep learning
with convolutional neural network. arXiv preprint arXiv:1607.08707 (2016)

34. Zhao, J., Chen, Z., Zhang, L., Jin, X.: Unsupervised learnable sinogram inpainting
network (sin) for limited angle CT reconstruction. arXiv preprint arXiv:1811.03911
(2018)

https://doi.org/10.1007/978-3-030-87231-1_9
https://doi.org/10.1007/978-3-030-87231-1_9
https://doi.org/10.1007/978-3-030-87231-1_11
http://arxiv.org/abs/1607.08707
http://arxiv.org/abs/1811.03911


Feature Aggregation Network
for Building Extraction

from High-Resolution Remote Sensing
Images

Xuan Zhou(B) and Xuefeng Wei(B)

Institut Polytechnique de Paris, Rte de Saclay, 91120 Palaiseau, France
{xuan.zhou,xuefeng.wei}@ip-paris.fr

Abstract. The rapid advancement in high-resolution satellite remote
sensing data acquisition, particularly those achieving sub-meter preci-
sion, has uncovered the potential for detailed extraction of surface archi-
tectural features. However, the diversity and complexity of surface dis-
tributions frequently lead to current methods focusing exclusively on
localized information of surface features. This often results in signifi-
cant intra-class variability in boundary recognition and between build-
ings. Therefore, the task of fine-grained extraction of surface features
from high-resolution satellite imagery has emerged as a critical chal-
lenge in remote sensing image processing. In this work, we propose the
Feature Aggregation Network (FANet), concentrating on extracting both
global and local features, thereby enabling the refined extraction of land-
mark buildings from high-resolution satellite remote sensing imagery.
The Pyramid Vision Transformer captures these global features, which
are subsequently refined by the Feature Aggregation Module and merged
into a cohesive representation by the Difference Elimination Module.
In addition, to ensure a comprehensive feature map, we have incorpo-
rated the Receptive Field Block and Dual Attention Module, expanding
the receptive field and intensifying attention across spatial and channel
dimensions. Extensive experiments on multiple datasets have validated
the outstanding capability of FANet in extracting features from high-
resolution satellite images. This signifies a major breakthrough in the
field of remote sensing image processing. We will release our code soon.

Keywords: Building extraction · Remote sensing image processing ·
Deep learning

1 Introduction

Modern remote sensing technology, with its sub-meter high-resolution satellite
data, provides a deeper understanding of the surface of the earth. Especially
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the extraction of buildings, a core task of remote sensing image feature extrac-
tion, provides critical information for urban planning, population estimation and
disaster assessment [1]. However, as the resolution increases, the differences in
shape, size, and style between buildings become more apparent. This intensifies
intra-class differences and makes it difficult for the model to correctly distinguish
between the land object background and the main body of the building. More-
over, factors such as trees and shadows can also reduce segmentation accuracy.
Faced with the diversity and complexity of surface distribution, manual classi-
fication of land objects is time-consuming and expensive [2]. Therefore, how to
extract detailed surface features from high-resolution remote sensing images [3,4]
has become a major challenge in the field of remote sensing image processing.

Most of the existing work concentrates on building extraction methods from
high-resolution remote sensing images using machine learning, and while substan-
tial progress has been made, these methods are heavily reliant on manual feature
design. With the evolution of deep learning, particularly the Fully Convolutional
Networks (FCNs) [5,6], they have demonstrated remarkable progress in enhanc-
ing the accuracy and efficiency of building extraction from high-resolution remote
sensing images through end-to-end network structures. However, when dealing
with high-resolution, complex structures and patterns of remote sensing images,
they still face challenges of insufficient global context information. Recently, many
researchers have started to use methods based on Transformer, using its powerful
global context information acquisition ability to effectively extract complex and
diverse land object features. However, its fully connected self-attention mecha-
nism can lead to the neglect of spatial structure information. This results in redun-
dant attention in image processing tasks, leading to a decline in performance in
fine spatial information tasks such as building boundary extraction.

We propose a novel Feature Aggregation Network (FANet), which uses
a Pyramid Vision Transformer (PVT) [7] in the encoder part of its new
design. It effectively addresses attention map redundancy in conventional
Transformer-based methods through multi-scale structural design. This revolu-
tionary enhancement notably bolsters the accuracy and efficiency of our model
in building extraction tasks. Specifically, the Aggregation Module strengthens
the local information in the global features already extracted by the Trans-
former through spatial and channel information filtering. More precisely, its focus
lies in optimizing and supplementing the Transformer’s global features from a
local perspective. The Difference Elimination Module enhances image compre-
hension by fusing features at different levels, thereby facilitating interpretation
from both global and local perspectives. This effectively compensates for the
Transformer’s limitations in understanding spatial relationships. Concurrently,
the Receptive Field Block and Dual Attention Module augment the model’s
perception of global and local features by expanding the receptive field and
intensifying attention across both spatial and channel dimensions. The Fusion
Decoder is responsible for effectively fusing features at high and low layers to
output detailed land object extraction results. Extensive experiments on several
datasets demonstrate the efficiency of our proposed FANet model in extracting
detailed features from high-resolution remote sensing images. The multi-module
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cooperative design of the model marks a substantial advance in the field of
remote sensing image processing. The main contributions of this research are:

1. We propose a FANet framework that enhances the accuracy of landmark
building segmentation in high-resolution satellite remote sensing images.

2. The feature aggregation and dual attention modules, designed to filter infor-
mation and enhance spatial and channel data, boost the model’s accuracy
and efficiency in extracting buildings from remote sensing images.

3. Experimental results show that FANet outperforms most state-of-the-art
models on challenging datasets, demonstrating the effectiveness and robust-
ness of our method in handling complex remote sensing image data.

2 Related Work

Building extraction has made significant strides in research and has played an
important role in various fields, such as human activities and socio-economics
among others. Earlier studies primarily relied on manually designed features,
such as shape, context and shadow indices to identify buildings [8–10]. Sub-
sequent research [11] began to introduce endmembers and associated filters to
separate buildings from the background. With the advent of deep learning tech-
nologies, techniques such as Fully Convolutional Neural Networks (CNNs) [12]
have been introduced into building extraction, significantly improving the execu-
tion of this task [13]. For instance, methods such as deep neural networks based
on autoencoders [14] and CNNs based on a single path [15] have shown excellent
performance in this regard. Despite these methods have proven the effectiveness
of using deep neural networks for building extraction, they tend to overlook the
impact of building layout changes.

To solve the aforementioned problem, researchers have proposed several
methods for multi-scale feature extraction, such as parallel networks [17], and
pyramid-based methods [16]. These methods can extract building features from
different perspectives and scales, but may overlook the interaction between
information at different scales. Meanwhile, to enhance the feature recognition
capabilities of CNNs, some research began to introduce attention mechanisms
[18,19], while others have achieved higher classification accuracy by integrating
the advantages of different network structures or modules [20,21]. However, due
to a lack of attention to edge details, the building contours extracted by these
methods are often irregular. Recent research has begun to seek methods that
reduce the amount of annotation work without sacrificing accuracy. For exam-
ple, some of the latest methods [22] attempt to model the features of building
edges and interiors more accurately through a coarse-to-fine hierarchical train-
ing strategy. These methods have been able to model the overall layout and
detailed information of buildings effectively, capturing the detailed information
inside buildings while ensuring edge accuracy.

However, we note that when dealing with high-resolution satellite remote
sensing images, the accuracy of the aforementioned methods in dealing with the
edge details of buildings is not ideal, often extracting irregular building contours.
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Fig. 1. The proposed Feature Aggregation Network (FANet) workflow. Starting with
the Pyramid Vision Transformer for multi-scale feature extraction, the process seam-
lessly progresses through feature enrichment, integration, receptive field expansion,
and dimension amplification, concluding with the Fusion Decoder outputting the final
building segmentation.

To address this, we propose a Feature Aggregation Network (FANet) with a
Pyramid Vision Transformer (PVT) [7] as the encoder. PVT is a network that
employs vision transformers, capable of effectively combining global and local
information to improve feature extraction and classification performance. With
PVT, our FANet can effectively capture the detailed information inside buildings
while ensuring edge accuracy, providing an effective solution for high-precision
building extraction.

3 Methodology

We propose the Feature Aggregation Network (FANet), an innovative approach
to the fine-grained extraction of buildings from high-definition remote sensing
imagery. As illustrated in Fig. 1, FANet is designed around the concept of feature
enrichment and integration. It starts with the extraction of multi-scale, long-
range dependencies using the Pyramid Vision Transformer encoder. To these
initial features, the Feature Aggregation Module provides further enrichment and
the Difference Elimination Module integrates low-level details. By expanding the
receptive field through the Receptive Field Block and intensifying the spatial
and channel dimensions with the Dual Attention Module, FANet achieves a
holistic understanding of the image data. The final building segmentation is
realized by the Fusion Decoder. The subsequent sections provide a comprehensive
exploration of these components and their intricate interplay.
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3.1 Transformer Encoder

Given the extensive spatial coverage of remote sensing images, a Pyramid Vision
Transformer (PVT) is employed to effectively extract features. The transformer-
based backbone [23] processes an input image I ∈ R

H×W×3, generating pyramid
features Xi ∈ R

H

2i+1 × W

2i+1 ×Ci , where Ci ∈ 64, 128, 320, 512 and i ∈ 1, 2, 3, 4.
The channels of the low-layer features X1, X2, and X3 are then acquired via
convolutional units and passed to the Feature Aggregation Module (FAM).

This PVT model employs patches of different scales which are fed into Trans-
formers at multiple levels, thereby forming a pyramid-like structure. This app-
roach aids in capturing multi-scale image features, enhancing the model’s perfor-
mance while reducing the computational burden associated with high-resolution
images. Specifically, we adopt PVTv2 [23], an improved version of PVT, which
possesses a stronger feature extraction capability. Adapting PVTv2 to the task
of image segmentation, we discard the last classification layer and design a seg-
mentation head based on the multi-scale feature maps X1, X2, X3, and X4.
These feature maps provide both lower-layer appearance information of building
images and high-layer features.

3.2 Feature Aggregation Module

The Feature Aggregation Module (FAM) is employed to refine and enrich the
low-layer features (X1, X2, X3) in both spatial and channel dimensions. By
applying Global Adaptive Average Pooling (GAvgPool) and Global Adaptive
Max Pooling (GMaxPool), we generate channel response maps. The aggregation
of these maps, after passing through a Sigmoid function, generates a probabil-
ity map, R′. Subsequently, channel-level fusion is achieved by the element-wise
multiplication of the input F and R′, resulting in the feature map Fchannel. The
process can be mathematically expressed as:

Fchannel = Sigmoid(GAvgPool(F ) + GMaxPool(F )) · F, (1)

where Fchannel ∈ R
B×C×H×W . This method ensures a balanced representation

of global and salient features, leading to a comprehensive channel-wise feature
profile.

Next, to perform spatial-level feature aggregation, we use the derived fea-
ture map Fchannel. We compute mean and max responses across all channels,
concatenate them, and pass through a convolution and a Sigmoid function. The
resulting probability map, T ′, is used for spatial-level fusion, yielding Fspatial as
follows:

Fspatial = Sigmoid(concat(Mean(Fchannel),Max(Fchannel))) · Fchannel, (2)

where Fspatial ∈ R
B×C×H×W . This procedure enables the model to capture

average representation and distinctive spatial characteristics, thus providing a
more enriched spatial feature description.
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3.3 Feature Refinement via Difference Elimination Module
and Receptive Field Block

In our method, the Difference Elimination Module (DEM) and the Receptive
Field Block (RFB) play critical roles in refining the initial low-level features and
crafting a diverse, unified feature representation as shown in Fig. 1. Upon pro-
cessing by the Feature Aggregation Module (FAM), initial low-level features are
transformed into enhanced features (F1, F2, F3). To reconcile differences between
adjacent features, these undergo upsampling, convolution, and element-wise mul-
tiplication with higher layer maps, resulting in a composite feature representa-
tion. These maps are then funneled through the RFB, comprising five branches
with adaptable kernel sizes and dilation rates in branches k > 2, capturing
multi-scale information. The outputs from the last four branches are concate-
nated and element-wise added to the first branch’s output, fostering rich feature
interactions. The DEM and RFB synergistically address layer discrepancy issues
and enhance the overall feature representation’s diversity. The ensuing section
will delve into the application of the Dual Attention Module that further refines
these composite features, leading to more effective model performance.

3.4 Dual Attention Module for Enhanced Feature Interactions

The Dual Attention Module (DAM) refines high-layer features by capturing
interactions across spatial and channel dimensions. It is designed to harness the
dependencies inherent in the features along these dimensions, thus augmenting
feature representation and enhancing the model’s overall interpretive capacity.

The DAM takes an input feature map A ∈ R
B×C×H×W and generates two

new feature maps, B and C. These are utilized to compute a spatial attention
map S ∈ R

N×N . Concurrently, a separate convolution operation on A interacts
with S to produce the spatially refined feature map E. This is mathematically
encapsulated as follows:

Ej = γ

N∑

i=1

(
exp(Bi · Cj)∑N
i=1 exp(Bi · Cj)

Di

)
+ Aj , (3)

where γ is a learnable weight parameter that controls the trade-off between
the original and the spatially-attended features, initialized as 0. This allows the
model to progressively learn the optimal balance as training progresses.

In parallel, the module exploits channel-wise interdependencies by generating
a channel attention map X ∈ R

C×C directly from A. This map interacts with A
to yield the channel-refined feature map M :

Mj = β

C∑

i=1

(
exp(Ai · AT

j )
∑C

i=1 exp(Ai · AT
j )

Ai

)
+ Aj , (4)

where β is another learnable weight parameter, also initialized as 0. Similar to
γ, it controls the mix between the original and the channel-attended features,
letting the model learn the optimal balance during training.
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The module concludes by combining the spatially and channel-wise refined fea-
ture maps, E and M , using an element-wise addition. A 1× 1 convolution oper-
ation follows, reducing dimensions to complete the fusion enhancement of fea-
tures. Consequently, the DAM effectively enhances the model’s overall capability
to understand complex scenes by promoting richer feature interdependencies.

3.5 Fusion Decoder and Loss Function

Our Fusion Decoder, shown in Fig. 1, integrates high-level global contexts with
detailed local features, optimizing segmentation. High-level features, providing
holistic target understanding, are resized to match low-level features, ensuring
a comprehensive fusion. After merging, these features undergo convolutional
refinement. A 1× 1 convolution yields a predicted segmentation map, resized to
the input image dimensions for the final result. The decoder maintains high-
level contexts and leverages low-level details, enhancing segmentation. We use
the Binary Cross Entropy (BCE) loss to measure consistency between predictions
and ground truth.

4 Experiments

4.1 Datasets

To assess the efficiency of our method, we experimented with three public
datasets, namely, the WHU Building dataset [17], the Massachusetts Building
dataset [31], and the Inria Aerial Building Dataset [32]. The WHU Building
dataset contains approximately 220,000 buildings from aerial images. We parti-
tioned the 8189 images of 512× 512 pixels into a training set (4736 images), a
validation set (1036 images), and a test set (2416 images). The Massachusetts
Building dataset, which includes 151 aerial images from the Boston area, was
divided post non-overlapping cropping into 512× 512 pixels, resulting in 3076
training images, 100 validation images, and 250 test images. Finally, the Inria
Aerial Image Labeling Dataset, covering an area of 810 km2 across five cities,
was split into 8271 training images and 1600 test images after removing training
images without buildings. These three datasets, with their diverse geographical
contexts, provide a rigorous testing environment for our proposed method.

4.2 Implementation Details

In our model, input image data and label data were cropped to a size of 512× 512
pixels. The cropped images underwent data augmentation techniques, including
random horizontal flipping and random Gaussian blurring, to generate the pre-
processed dataset. Subsequently, all models were trained using the same param-
eter settings and environment. Our model was developed under the framework
of Pytorch 1.8.1 and cuda 11.1, with the hardware of a single GeForce RTX
3090 with 24 GB of computation memory. The initial learning rate was set to
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Fig. 2. Visual comparison between our results and those of state-of-the-art methods.
The first and second columns represent the building images and the corresponding
ground truth, respectively. Columns 3 to 7 display the results generated by UNet [24],
PSPNet [25], Deeplabv3+ [26], HRNet [27], and Ours, respectively.

1×10−4, and the Adam optimizer was employed. The learning rate was decayed
by a factor of 10 every 50 epochs, and the training process lasted for a total of 100
epochs. To quantitatively evaluate the performance of the proposed method, this
study employs four metrics, namely Precision, Recall, F1-score, and Intersection
over Union (IoU).

4.3 Comparison with Other State-of-the-Art Methods

To evaluate the effectiveness of the proposed method, we compared our app-
roach with other state-of-the-art methods, including UNet [24], PSPNet [25],
Deeplabv3+ [26], HRNet [27], BOMSNet [28], LCS [29], and MSNet [30]. These
comparisons were conducted when applied to the WHU Building dataset, the
Massachusetts Building dataset, and the Inria Aerial Building Dataset. We per-
formed a visual qualitative evaluation of the experimental results, as shown in
Fig. 2. As can be observed from the results, compared to other state-of-the-art
methods, our approach yielded superior results in building extraction. Quanti-
tative evaluation results are shown in Table 1.
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Table 1. Experimental Results for Various Datasets, The bolded data shown in the
table indicates the best data on the corresponding metric and the data with underline
indicates the second best one on the corresponding metric.

Dataset Methods IoU F1 Pre Recall

Massachusetts
Building Dataset

UNet 67.61 80.68 79.13 82.29

PSPNet 66.52 79.87 78.53 81.26

Deeplabv3+ 69.23 81.82 84.73 79.10

HRNet 69.58 82.01 85.06 79.17

MSNet 70.21 79.33 78.54 80.14

Ours 73.35 84.63 86.45 82.87

Inria Aerial
Building Dataset

UNet 74.40 85.83 86.39 84.28

PSPNet 76.8 86.88 87.35 86.4

Deeplabv3+ 78.18 87.75 87.93 87.58

HRNet 79.67 88.68 89.82 87.58

BOMSNet 78.18 87.75 87.93 87.58

LCS 78.82 88.15 89.58 86.77

Ours 81.05 89.53 90.49 88.60

WHU Building
Dataset

UNet 85.51 92.19 91.86 92.52

PSPNet 86.68 92.55 92.25 92.86

Deeplabv3+ 85.78 92.35 93.45 91.27

HRNet 87.85 93.21 94.22 92.23

MSNet 89.07 93.96 94.83 93.12

Ours 90.01 94.74 94.50 94.98

The rows represent different tested methods, and the columns represent dif-
ferent evaluation metrics. It can be observed that the method we proposed
achieved the best performance across all three datasets. On the Massachusetts
Building dataset, our proposed method surpassed the second-best method (i.e.,
MSNet) by approximately 4.47% in IoU, and surpassed the second-best method
(i.e., HPNet) by approximately 3.19% and 1.63% in terms of F1-score and Pre-
cision, respectively. On the Inria Aerial Building Dataset, compared to HPNet,
the IoU and Recall metrics of our proposed method increased by approximately
1.73% and 1.16%, respectively. On the WHU Building dataset, compared to
MSNet, the Recall of our proposed method improved by approximately 2%.
Experimental comparison with different methods indicates that our proposed
method outperformed others on all three datasets.

4.4 Ablation Study

In our investigation, an exhaustive ablation study validates the efficacy of pivotal
components within the FANet architecture, namely, the Feature Aggregation
Module (FAM), Receptive Field Block (RFB), Dual Attention Module (DAM),
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and Difference Elimination Module (DEM). These experiments were carried out
on the Massachusetts Building Dataset, employing standard benchmarks such
as IoU, F1-score, Precision, and Recall.

Fig. 3. The results of ablation experiment on Massachusetts Building Dataset.

As demonstrated in Fig. 3, FANet excels across all evaluation metrics. Pre-
liminary experiments with solely FAM displayed a notable enhancement over
the baseline model, thereby attesting FAM’s effectiveness in information filter-
ing. Upon integrating the RFB with FAM, the model’s performance underwent
further improvement, underlining the RFB’s indispensable role in receptive field
expansion. Models lacking the DEM performed sub-optimally in comparison to
FANet, indicating that feature fusion amplifies the model’s performance. More-
over, FANet surpassed the FAM+RFB+DAM configuration by approximately
2.8% in terms of IoU, accentuating the importance of feature fusion. In summary,
the ablation study effectively highlighted the potency of each module within
FANet. The stepwise integration of each module led to significant performance
enhancements, underscoring their integral role within the network.

5 Conclusion

In this work, we propose a novel Feature Aggregation Network (FANet) for the
fine-grained extraction of buildings in high-resolution satellite remote sensing
images. This is to address the challenges posed by the variance in shape, size, and
style among buildings, and the complex ground conditions that make it difficult
to distinguish the main body of buildings. Experimental results on three open-
source datasets have validated the effectiveness of the proposed network. FANet
can accurately extract the boundaries of buildings in complex environments such
as shadows and tree occlusions and achieve the complete extraction of buildings
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of different scales. For future research in building extraction, designing a robust
model trained with less data presents a promising direction.
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Abstract. Deep learning methods have achieved remarkable results in
the direction of image quality assessment tasks. However, most of the
related studies focus only on image unimodal, ignoring the potential
advantages that come with the development of cross-modal techniques.
Cross-modal models have implied a wealth of information, which pro-
vides new research directions and possibilities in the field of image quality
assessment. In this paper, the feasibility of cross-modal models in image
quality assessment is first explored for the image quality binary classifica-
tion task. Subsequently, the optimization prompting method is combined
with the tuning of the image encoder in the cross-modal model so that
the cross-modal model can be used for image quality assessment scoring.
To verify the feasibility of the cross-modal model on the image qual-
ity assessment task, an empirical analysis was conducted on the binary
image quality dataset PQD, and it was found that the F1 score improved
by 18% over the baseline model. Further, we propose an adaptive cross-
modal image quality assessment method AC-IQA. On the image quality
scoring dataset, compared with the previous optimal methods, AC-IQA
improves the PLCC and SROCC metrics on the TID2013 dataset by
5.5% and 9.5%, respectively, and on the KADID dataset by 6.2% and
5.2%.

Keywords: Cross-modal · Image Quality Assessment · Prompt
Optimization

1 Introduction

With the increasing number of images on the Internet, people have higher and
higher requirements for the quality of images. Automatic assessment of image
quality has become a critical task in the domain of computer vision. It is impor-
tant to design methods that can accomplish this objective. In the past, image
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quality assessment methods mainly adopted manually designed feature extrac-
tion. Although these methods perform well on specific images or simulated data,
the poor generalization of hand-designed features to real-life datasets makes
them inconvenient for practical applications. Due to the advancement of deep
learning techniques, many studies of image quality assessment have used cnn-
based methods. The performance of deep learning methods has surpassed that of
traditional methods, but the training process often uses only information from
a single module of the image and ignores the role of other modal information for
image quality assessment.

With the continuous progress of technology, cross-modal techniques have
gradually matured in recent years with deep learning models capable of han-
dling multiple data types, such as text, image, audio, and video. These models
can capture the inter-relationship between different modalities to achieve more
powerful and general representation learning. CLIP [17] is a pre-training model
proposed by OpenAI to learn both image and text representations, which can
train models to predict similarities between image and text to achieve zero-shot
learning for various visual-language tasks. Furthermore, Stable Diffusion [18] is
credited as the leading open source image generation model, which uses the CLIP
model as the text encoder, and when performing a “text-to-image” task using
a Stable Diffusion model, we often want to generate high quality images, add
prompt such as “high quality” and “high precision” is effective. This indicates
that the large cross-modal model of text-image has already implied the repre-
sentation information for image quality assessment. This cross-modal technique
provides new possibilities for image quality assessment.

To fill the gap of under-utilization of cross-modal information in image qual-
ity assessment tasks, we propose a cross-modal based approach for image quality
assessment. First, the cross-modal model is introduced in the binary classifica-
tion task, and the feasibility of using the cross-modal model for image quality
assessment is demonstrated by a fine-tuning method. Second, the optimization
prompting method is combined with the tuning of the image encoder in the
cross-modal model so that the cross-modal model can be used for image quality
assessment scoring. Finally, leading assessment metrics are achieved on multiple
image quality assessment datasets.

2 Related Work

2.1 Deep Learning-Based Image Quality Assessment

Deep learning-based IQA (Image Quality Assessment) mainly focuses on convo-
lutional neural network (CNN), whose convolutional structure brings it power-
ful feature extraction and feature mapping capabilities. Recent research on IQA
methods has predominantly focused on constructing convolutional neural net-
work models [8] and conducting joint research on multi-tasking using neural net-
works [22,25]. RankIQA [12] uses distorted images as a training set, and then uses
transfer learning techniques to train deeper networks. Meta-IQA [31] explores
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the meta-knowledge shared by humans when assessing distorted images. CAE-
IQA [2] focuses on spatial features in images and uses convolutional autoencoder
to generate distortion maps for better results in training.NIMA [20] proposes
the method to predict human subjective and perceptual distribution opinion
scores.DBCNN [28] uses a deep bilinear model structure for adaptive determi-
nation and assessment of synthetic and real distortion in image quality. Even
these deep learning based methods have improved results over traditional meth-
ods, they use only image single modality information and ignore image quality
information in other modalities.

2.2 Cross-Modal Techniques

Cross-modal techniques are maturing, with deep learning models that can han-
dle multiple data types, such as text, image, audio, and video. These models can
capture the inter-relationship between different modalities to enable more pow-
erful and general representation learning. CLIP is a pre-trained model proposed
by OpenAI to learn both image and text representations. It trains the model
by learning to predict matches between text and images, thus enabling zero-
sample learning for multiple visual-language tasks. ViLBERT [13] is a BERT-
based cross-modal model for visual-language tasks. The model comprises two
distinct BERT structures that separately process image and text features. These
features are then fused to perform cross-modal tasks. LXMERT [21] is a cross-
modal pre-training model that simultaneously learns visual-language represen-
tations. It employs a self-attention mechanism to process image and text inputs
and facilitates information exchange through a cross-modal self-attention layer.

Based on these cross-modal models, various downstream tasks have been
explored. CLIPAdapter [3] uses Stochastic Gradient Descent (SGD) training
to introduce a Multilayer Perceptron (MLP) into a pre-trained CLIP model.
CoOp [30] and CoCoOp [29] introduce a co-optimization approach to jointly
optimize prompts and model parameters. Tip Adapter [27] uses a caching model
that corresponds to the labels in the database in order to store the features
of the image during training. But it still employs handcraft prompts and can-
not fully leverage the vast knowledge of CLIP model text encoders for tasks
such as image quality assessment. It is difficult to design prompts manually and
requires prompt optimization. Visual Prompt Tuning (VPT) [7] improves the
performance of cross-modal models by customizing the prompts based on image
inputs.

Most of these cross-modal models and techniques for downstream tasks have
been developed, but they generally combine visual-language modal for image
classification, segmentation, or detection, with little efforts in image quality
assessment. The design of prompts for text encoder that the image quality infor-
mation is implicit inside the visual cross-modal model, which provides a new
direction for assessing the quality of images.
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3 Methods

3.1 Exploring the Feasibility of Cross-Modal Models

Binary classification is a basic classical task for image quality assessment, such
as high quality and low quality. When using a unimodal approach, only the
image information is classified (Let 0 for high quality image labels and 1 for low
quality image label). As shown in Fig. 1, this is a unimodal task with only image
information.

Fig. 1. Methods for unimodal image quality classification.

Image-text cross-modal models can be generally used in image classification,
detection and segmentation. We find that the information on image quality is
already implicit in the large cross-modal model of image-text. As shown in Fig. 2.

Fig. 2. Methods for cross-modal image quality classification.

In the text encoder of the cross-modal model CLIP, two different prompts of
high and low quality are taken as input, and two text encoding feature{wi}i={0,1}
are obtained. The cosine similarity is calculated with the image encoding feature
x. The probability p (y | x) of each image for the text prompts y is obtained as
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shown in Eq. 1, where sim indicates the calculation of the cosine similarity. We
classify the images by selecting the prompt with the highest calculated value of
cosine similarity to the image.

p(y|x) = sim(x,wy) (1)

We found that in CLIP zero-shot inference, high and low quality images can
be initially classified, while better results can be achieved using few-shot for
learning after adding a fully connected layer for fine-tuning after calculating the
cosine similarity.

3.2 Image Quality Score Assessment Based on Cross-Modality

In the area of image quality assessment, the majority of studies are focused
on scoring tasks, which requires that the final result should be regressed to a
score. After calculating the cosine similarity of the image and text, the results are
normalized to fit the subsequent loss calculation, and the normalization function
is in Eq. 2, and S is the final score.

S =
exp (sim (x,w0))

exp (sim (x,w0)) + exp (sim (x,w1))
(2)

Image quality scoring is more complex than image quality classification. The
text input with prompt can be adaptively optimized to enhance the coupling
between images and prompt. In this work, this approach is called AC-IQA
(Adaptable CLIP Image Quality Assessment), as shown in Fig. 3.

Fig. 3. AC-IQA method structure.

We put “low quality” and “high quality” as fixed prompts with a learnable
vector prefix to tune the text encoder input. Text features ft and image features
fi are obtained from two different modal encoders of CLIP respectively. The
meta network uses two linear layers, with ReLU as the activation function in
the middle, which incorporates the features of the image fi into the learnable
vector to adapt the text features ft to the image. After normalizing the cosine
similarity, in order to improve the sensitivity of the model to minute scoring
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errors, we backpropagate the prediction loss by using the mean square error
(MSE) as a loss function.

4 Experiments

4.1 Datasets

This work conducted experiments on various image quality assessment tasks.
The following datasets are used in this paper: the PQD [14] dataset explores
the feasibility of cross-modal large models in image quality assessment; the
TID2013 [16], KADID-10K [11] and CSIQ [10] datasets validates the advance-
ment of our method in image quality scoring tasks.

PDQ comes from a total of 29690 photographic images in real scenes, and
through manual classification, these images were categorized into 19,166 and
10,524 as low and high quality images respectively, of which 8,000 images are
taken and split into the training set, validation set, and test set in a ratio of
7:1:2. This dataset is used to verify the applicability of the image-text cross-
modal model in image quality assessment.

The TID2013, KADID-10K and CSIQ datasets were labeled with mean sub-
jective opinion scores (MOS) of 3,000, 1,0125 and 866 images, respectively. In
this paper, 80% and 20% of these datasets are used as training and test sets
according to the commonly used methods in image quality assessment [4,19]. To
ensure statistical robustness, the training and test sets are randomly sampled
10 times, and the median of the 10 results is taken as the final result during the
experiment.

4.2 Experimental Details

We use an NVIDIA RTX3070 GPU for training and testing, and our program
is written using the Pytorch framework. To preserve the quality characteristics
of the images, we simply apply data augmentation techniques such as cropping
and flipping. Additionally, adaptive scaling is employed to handle datasets with
varying scale sizes when inputting them into the model. The Adam optimizer
and cosine annealing learning rate tuning strategy were used during training.
The batch size is set to 16 for training and 4 for testing.

4.3 Evaluation Metrics

The proposed method was evaluated in different experiments using various metrics
to assess its effectiveness. For binary classification, the F1 score was used to mea-
sure the effectiveness. In the image quality scoring task, we used two evaluation
metrics, the Pearson linear correlation coefficient (PLCC) is defined by in Eq. 3:

PLCC =
∑N

i=1 (si − s̄) (pi − p̄)
√∑N

i=1 (si − s̄)2
∑N

i=1 (pi − p̄)2
(3)



Image Quality Assessment Method 123

where si and pi represent the subjective and objective quality score of the i-th
image, respectively. N denotes sample size, and s̄ and p̄ are the average subjective
and objective quality scores, respectively. The Spearman rank-order correlation
coefficient (SROCC) is defined by Eq. 4:

SROCC = 1 − 6
∑N

i=1 d
2
i

N (N2 − 1)
(4)

where N denotes sample size. For the i-th image, di is defined as the difference
between its subjective and objective quality score rankings for i-th image.

4.4 Feasibility Research

The feasibility of the cross-modal approach in image quality assessment is
explored using the PQD binary classification dataset, and the CLIP cross-modal
model is introduced, with “low quality” and “high quality” as binary prompts
words, and add a fully connected layer after the image encoder for fine-tuning.
A simple image unimodal classification network based on ResNet50 [6] is con-
structed as a benchmark, and its parameters are initialized using KaiMing [5].
Correspondingly, the image encoder in CLIP also uses the ResNet50 architecture.
The results of the experiment can be shown in the Table 1.

Table 1. Experiments of CLIP method and unimodal method for image quality clas-
sification.

Method Epoch Train samples Accuracy↑ F1 score↑ Train time/s↓
unimodal(ResNet50) 30 2800 0.802 0.778 1913.78

CLIP(ResNet50) 0 0 0.642 0.684 0

CLIP(ResNet50) 6 32 0.804 0.818 110.88

CLIP(ResNet50) 6 64 0.863 0.872 112.43

CLIP(ResNet50) 6 1024 0.917 0.919 124.03

CLIP(ResNet50) 6 2800 0.890 0.891 153.63

In Table 1, it can be verified that the pre-trained model using CLIP exhibits
a certain degree of image quality assessment capability even under zero sample
conditions. After subsequent fine-tuning of the training, the performance has sur-
passed the results of the unimodal model with 2800 training samples after 30
rounds of training, using only 32 training samples for 6 rounds of training. In addi-
tion, in the scenario where the CLIP method is applied with 1024 training samples,
its accuracy is improved by 14% and F1 score is improved by 18% compared to the
unimodal model. The multimodal model has advantages over the unimodal model
for the image quality binary classification task, as shown in Fig. 4.
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The performance of CLIP decreases when it reaches 2800 train samples. We
believe that this is due to overfitting on the training set, which leads to a degra-
dation of the model’s performance on the test set, which precisely illustrates the
versatility of the CLIP pre-trained model for image quality assessment, and that
too much training rather affects this advantage. Compared with the unimodal
approach, the cross-modal approach requires the use of multiple encoders, which
undoubtedly increases the consumption during inference. However, the advan-
tages of the cross-modal approach in training are obvious, as can be seen from
the data in Table 1, CLIP requires cross-modal feature extraction for both text
and images when adapting to image quality classification training, but saves a
lot of training time because fewer weights are updated, so that the cross-modal
approach can quickly train the image quality assessment model.

Fig. 4. Comparison of CLIP and unimodal methods in image quality classification.

Through this section of experiments, it can be demonstrated that the CLIP
cross-modal model, although not explicitly labeled with quality information dur-
ing pre-training, can be seen in the subsequent downstream tasks to have implic-
itly rich features of image quality. It provides feasibility for its role in image
quality assessment.

4.5 Comparison Experiments

We compare several image quality assessment methods on several scoring label-
based datasets TID2013, KADID-10K and CSIQ. Some of their labeling and
prediction results are shown in Fig. 5.

The results of PLCC and SROCC are shown in Table 2. In the CSIQ dataset
the SROCC of this paper method can reach the suboptimal result, while in
both TID2013 and KADID datasets, this paper method reaches the optimal
metric, compared to the suboptimal result the PLCC improves by 5.5% and
6.2%, respectively, and the SROCC improves by 9.5% and 5.2%, respectively.
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Fig. 5. Test results on the KADID dataset

Table 2. Comparison experiments between AC-IQA and other methods on the
TID2013 , KADID-10K and CSIQ datasets, where underlining represents sub-optimal
results and the bolded font represents the best results.

Method TID2013 KADID CSIQ

PLCC↑ SROCC↑ PLCC↑ SROCC↑ PLCC↑ SROCC↑
PQR [24] 0.864 0.849 – – 0.901 0.873

BRISQUE [15] 0.571 0.626 0.567 0.528 0.748 0.812

ILNIQE [26] 0.648 0.521 0.558 0.534 0.865 0.822

BIECON [9] 0.762 0.717 0.648 0.623 0.823 0.815

WaDIQaM [1] 0.855 0.835 0.752 0.739 0.844 0.852

DBCNN [28] 0.865 0.816 0.856 0.851 0.959 0.946

TIQA [23] 0.858 0.846 0.855 0.850 0.838 0.825

MetaIQA [31] 0.868 0.856 0.775 0.762 0.908 0.899

HyperIQA [19] 0.858 0.840 0.845 0.852 0.942 0.923

TReS [4] 0.883 0.863 0.858 0.859 0.942 0.922

AC-IQA(ours) 0.932 0.945 0.924 0.920 0.922 0.932

Among the compared methods, such as HyperIQA, which also use ResNet50
as an image feature extraction module like the method in this paper. However,
compared to these unimodal methods, this work incorporates cross-modal infor-
mation from text and achieves significant improvements in the metrics of the
image quality scoring task. This is sufficient to demonstrate the rich information
of image quality representation in the cross-modal model and the superiority of
applying it to image quality assessment.
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Table 3. Ablation experiments with or without using Prompt Optimization.

Method TID2013 KADID

PLCC SROCC PLCC SROCC

AC-IQA(w/o) 0.924 0.916 0.901 0.903

AC-IQA(w/) 0.932 0.945 0.924 0.920

4.6 Ablation Experiments

In order to verify the role of prompts optimization in cross-modal methods in
image quality assessment, experiments were conducted with (w/) and without
(w/o) the use of the Prompt Optimization method, respectively, as shown in
Table 3.

The ablation experiments identified that after using the prompt optimization
method, the PLCC and SROCC metrics improved by 0.8% and 3.1% on the
TID2012 dataset, and by 2.6% and 0.9% on the KADID dataset. All the metrics
improved, which indicates that the initial prompts designed manually, when the
cross-modal model is applied to image quality assessment, not fully competent
for the image quality assessment task. Optimization and adjusting prompts can
lead to better performance in cross-modal model image quality assessment tasks.

5 Conclusion

This paper presents a novel approach for evaluating image quality by adapting
and optimizing a cross-modal model. By adapting the vision-language models for
image quality assessment, our method achieved superior results. Our approach
innovatively leverages the rich perceptual information in cross-modal models to
improve image quality assessment, opening up new avenues for further develop-
ment in this field.

6 Outlook

In recent years, cross-modal techniques have made remarkable developments.
This study only provides a preliminary discussion on the application of the
vision-language cross-modal model CLIP in the field of image quality assessment.
Looking ahead, we can try to combine other modalities such as audio and video
with images to further enrich the image quality assessment methods. In addition,
the cross-modal text model is closely related to the field of natural language
processing, and we can achieve a more accurate description of image quality with
the help of more advanced prompt optimization techniques. We firmly believe
that with the continuous development of cross-modal technology, its application
in the field of image quality assessment will become more and more efficient and
in-depth.
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Abstract. Deep learning-based edge detectors are successful due to the
large amount of supervisory information provided by manual labeling.
However, there are inevitably errors in the manually labeled supervisory
information (MLSI), which greatly mislead the learning of the models
and become the bottleneck of deep learning-based edge detectors. To
solve the drawbacks of MLSI, we propose a novel Knowledge Distilla-
tion based Edge Detector (KDED). By means of knowledge distillation,
MLSI is transformed into edge probability map to supervise the learn-
ing of the models, which can effectively correct the errors in MLSI and
represents disputed edges by probability. Adapting to the new training
strategy and solving the sample imbalance problem, the Sample Balance
Loss is proposed, which ensures the stability of the model and improve
the accuracy. The experimental results indicate that KDED remarkably
improves the accuracy without increasing the parameters and the com-
putational cost. KDED achieves an ODS F-measure of 0.832 with 14.8
M parameters on BSDS500 dataset, which is significantly super to the
results of previous methods. The source code is available at this link.

Keywords: Edge detection · Knowledge distillation · Sample balance
loss

1 Introduction

Edge detection is a fundamental task used to obtain boundaries and visually
remarkable edges of objects in images. Thus, it has been widely applied to other
downstream tasks of computer vision, such as image segmentation [13], depth
map prediction [29], and salient detection [28].

Edge detection is a typical binary classification task that divides the pixels of
images into edges and non-edges. Earlier manual feature-based methods [3,17]
rely on low-level cues to classify pixels. Since edges are semantically meaning-
ful, using low-level cues to represent edges is a herculean work. From the past

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14327, pp. 129–140, 2024.
https://doi.org/10.1007/978-981-99-7025-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7025-4_11&domain=pdf
http://orcid.org/0000-0002-4516-5576
http://orcid.org/0000-0003-2997-2439
http://orcid.org/0000-0002-5558-4897
http://orcid.org/0000-0001-5102-1387
http://orcid.org/0000-0002-8699-9331
http://orcid.org/0000-0003-0774-2878
http://orcid.org/0000-0003-4785-791X
https://github.com/Yachuan-Li/CTFN-pytorch-master
https://doi.org/10.1007/978-981-99-7025-4_11


130 Y. Li et al.

Fig. 1. (a) An image randomly selected from BSDS500 dataset. (b) GT is the abbre-
viation of ground truth, which refers to the collection of manually labeled supervisory
information corresponding to the image. And red boxes are used to highlight con-
tradictions between different labels (c) The prediction of the teacher network in our
experiment. (d) and (e) are manually labeled supervisory information labeled by dif-
ferent people, which are part of ground truth in (b). (Color figure online)

few years, edge detection has achieved great success with the help of the excel-
lent semantic information aggregation ability of Convolutional Neural Networks
(CNN). HED [24], the pioneer of contemporary edge detector, firstly introduces
multi-scale predictions and deep supervision into deep learning-based edge detec-
tion. Inspired by HED, many excellent methods [4,6,12] are produced, making
deep learning-based methods known as the mainstream of edge detection. Deep
learning-based methods are data-driven, in which the learning of the models is
guided by manually labeled supervisory information (MLSI). MLSI has emerged
as a crucial factor contributing to the deep learning-based edge detectors, as it
helps models better understand semantic edges.

However, MLSI has huge drawbacks. Firstly, the annotation information is
not accurate, which will mislead the learning of the models. As highlighted in
the red boxes of Fig. 1(b), for the same edge, there are significant errors in
the manual labels of different people. Second, different people have different
definitions of edge when labeling edges, which seriously confuses the model, as
shown in Fig. 1(d) and (e). Furthermore, single-pixel wide edge conflicts with
the locally relevant of the convolution operation and increases the difficulty of
model learning.

To address those drawbacks of MLSI, we develop a Knowledge Distillation
based Edge Detector (KDED), in which a new label optimization strategy is
proposed to eliminate the adverse effects of MLSI. Specifically, MLSI is trans-
formed into edge probability map by knowledge distillation [7] to train our model.
Therefore, the prior knowledge in the teacher network is exploited to eliminate
the divergence in the definition of the edge and correct the error caused by the
annotation. It can avoid the misdirection of the annotation error and effectively
improve the accuracy of the results. In order to adapt to the new supervisory
information, we proposed a new Sample Balance Loss (SBL) to further distribute
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the sample weights in the images, which can ensure the stable training of the
student network and further improve the performance of the student network.
The basic model of KDED is a compact twice fusion network based on VGG-
16 [19]. The label optimization strategy and new loss function do not increase the
number of parameters and computation cost of the network, either in training
or inference.

The contributions of the paper are as follows: (1) To our knowledge, we
systematically analyze and summarize the problems of MLSI in edge detection
for the first time. (2) We propose a Knowledge Distillation based Edge Detector
(KDED), in which a new label optimization strategy and the corresponding loss
function are utilized to solve the problems existing in MLSI. (3) We verify the
validity of KDED through extensive experiments. The accuracy of KDED is the
second best result after EDTER [16], while the model size of KDED is only
1/30 of EDTER.

2 Related Work

2.1 Label Problems in Edge Detection

The problems existing in manually labeled supervisory information (MLSI) have
been identified by previous researchers and corresponding solutions have been
discussed. In view of labeling errors in MLSI, a new weighted cross entropy loss
is proposed in RCF [12] to ignore controversial pixels through voting mechanism
which prevents the network from being misled by false labels. This method is
effective as long as the dataset contains multiple groups of annotation informa-
tion. While it fails when an image has only one corresponding label in a dataset,
which limits the scope of application of this method.

Unify the standard of edge in MLSI is a hard work, since everyone has a
different idea of what an edge is. Different standards greatly weaken the gener-
alization of the model. A noteworthy work is DexiNed [15], in which all visible
lines are considered as edges. It is not flexible enough. We have developed a
new standard for edges that does not crudely include all textures into edges but
define edges through a trained network.

2.2 Knowledge Distillation

A large model is used as a teacher network to summarize the data, and then
the prior knowledge can be taught to a smaller student network. The classic
strategy of knowledge distillation is a common means of model compression.
knowledge distillation can be categorized into online distillation [23] and offline
distillation [10] according to whether the teacher network is learnable concur-
rently. Compared to offline methods, online methods increases training time for
distillation learning, especially when the network of teachers is large. The high-
capacity teacher in online settings is usually can not be addressed well.
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We find that in addition to acceleration and model compression, knowledge
distillation can also solve the problems in the MLSI mentioned above. Consider-
ing the flexibility and efficiency of the strategy, we adopts offline Response-Based
Knowledge Distillation.

3 Method

Our proposal is divided into three parts: a compact edge detector, a knowl-
edge distillation-based label correction strategy, and sample balance loss. In this
section, these contributions will be presented specifically.

3.1 Compact Twice Fusion Network for Edge Detection

In recent years, the new edge detection methods obtain higher accuracy with
considerably more parameters, although most of them [6,8,26] claim to employ
the same backbone. To ensure the balance between accuracy and model size, we
employ a Compact Twice Fusion Network (CTFN) [11], in which the redundant
operations are removed and only necessary structures are preserved to keep the
model lightweight. The structure of CTFN is displayed in Fig. 2.

Fig. 2. The Architecture of CTFN.

Feature Extraction. To be fair, the features of CTFN is extracted by the
same backbone as the existing methods [12,24], which is based on the feature
extraction module of VGG16 [19]. The dilation rate of convolution layers in the
last block is enlarged to 2 and the last pooling layer is removed. This can make
the receptive field larger while retaining higher resolution features.

The backbone with the most parameters of CTFN is utilized to generate the
multi-scale features.
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The First Feature Fusion. In edge detection, edges and textures looks similar
in appearance and can only be distinguished by high-level semantic information.
One of the most effective ways is to enlarge the receptive field of the features. A
larger receptive field is crucial for fine-scale branches, since their natural recep-
tive fields are smaller. In the Neck of CTFN, we introduce a FPN-based feature
fusion module, in which the fine-scale branch features get larger receptive field by
being enhanced by the coarse branch features. It is remarkable that lightweight
convolution layers and Group Normalization layers are indispensable before fea-
ture fusion to stabilize the propagation of the gradient.

The Second Feature Fusion. As displayed in Fig. 2, with the help of Head
layers, multi-scale edges are generated by multi-scale features. These head lay-
ers, which only contain one 1 × 1 convolution, generate multi-scale edges by
compressing the multi-scale features.

In the earlier studies [12,24], the weighted sum of multi-scale edges are
directly applied to generate the final single-channel edge map. While it looks
unreasonable that pixels in the same channel own equal significance during
fusion. The following works [9,26] find the issue and try to assign various weight
to each pixel regardless of whether they are in the same channel or not. However,
additional operations lead to the increasing parameters and computation cost.

In the paper, a light-weight Pseudo Pixel-level Weighting (PPW) module is
introduced, in which we decompose the weights of pixels into spatial weights
and channel weights. By calculating the product of space weights and channel
weights, we can assign a pseudo-weight to each pixel, and avoid a significant
increase in the complexity of the model. To further compress the module, we
employ a single 1 × 1 convolution to contral the channel weight and fuse them
with multi-scale edges directly.

The prediction of PPW can be formalized as

Pij = PPW (Xijk) =
L∑

i=1

(Xijk × Wijk)

=
L∑

i=1

(Xijk × Wci × Wsjk)

(1)

where X and P represent the input and the output of PPW. Wc and Ws are
used to represent the channel weight and the spatial weight. L is the number of
edge generated by multi-scale features.

Although, PPW looks similar to CBAM [22], the biggest difference is that
the purpose of CBAM is to enhance features, while The objective of PPW is to
allocate weights to pixels in order to produce a single-channel edge map.

3.2 Knowledge Distillation Based on Label Correction

In the label correction strategy, CTFN training is performed in two steps.
The training of the teacher network is supervised by MLSI in the first step.
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EDTER [16] is utilized as the teacher network and the training process is com-
pletely consistent with the earlier works [12,24]. In the second step, MLSI is
abandoned and the output of EDTER is directly used to supervise the training
of CTFN. In this step, EDTER is only used to generate supervisory information
and is no longer updated.

EDTER leverages Transformer’s feature extraction capabilities to achieve
the surprising result, but super-large-scale model size becomes a burden during
training and inference. To ensure the efficiency of training, we directly load
the official EDTER pre-training model, thus avoiding the training of teacher
model EDTER. That’s why we use an offline distillation. The edge probability
maps generated by EDTER is utilized to train CTFN. In this way, EDTER only
needs to inference once, which avoids that every epoch of training should contain
EDTER’s time-consuming inference.

Through these improvements, the training time of KDED is same as that of
the original CTFN.

3.3 Sample Balance Loss

Edges and non-edges of images are extremely imbalanced, as a result, Weighted
Cross-Entropy loss (WCE) becomes the most popular loss function in edge detec-
tion, the formula of which can be expressed as

WCE (pi, yi) =

⎧
⎨

⎩

−α log (pi) if yi = 1
−β log (1 − pi) if yi = 0

0 otherwise
(2)

where p represents the edge map predicted by the model and y denotes the
ground truth. α = |Y+|/|Y | and β = λ · |Y−|/|Y |. |Y+| and |Y−| represent the
number of edges and non-edges, separately. the hype-parameter λ is used to
control the weight of edges over non-edges. |Y | = |Y+| + |Y−|. Since the annota-
tion between different annotators may be controversial, the threshold γ is useful.
Pixel i will be considered as an edge and define yi = 1 when the ground truth
yi is larger than γ. While if yi = 0, pixel i will be considered as a non-edge.

WCE requires binarized supervisory information as weights to balance edges
and non-edges, while in the distillation learning of KDED, the supervisory infor-
mation is the prediction of the teacher network, which is a probability map.
Therefore, the weighting method of WCE cannot be applied directly. In addition,
Kullback Leibler divergence loss (KL) [7], which is commonly used in distillation
learning cannot solve the problem of sample imbalance, so it is not suitable for
the training of KDED.

To meet the requirements of sample imbalance distillation learning of KDED,
we propose a new loss function named Sample Balance Loss (SBL). The formula
of SBL is expressed as

SBL (pi, yi) = ω((1 − yi) log(pi) + yi log(1 − pi)) (3)
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where
ω = μyi‖yi − pi‖δ (4)

p denotes the predicted edge map and y is for the supervisory information gen-
erated by EDTER. μ and δ are hyper-parameters to balance the samples. ‖�‖
represents Manhattan distance.

The supervisory information of KDED is the probability map, in which the
boundary between positive and negative samples has been blurred, so it is not
applicable to take the ratio of edges to non-edges as the basis of weighting. But
inspired by WCE, we balance edges and non-edges according to the supervisory
information pi, too. The weight is expressed by μyi . The hyper-parameter μ set
by experiment is utilized to further adjust the weight. On the other hand, larger
pi means a higher probability that the pixel is an edge, so it is more reliable.
Therefore, we should pay more attention to the information contained therein. A
hyper-parameter δ is employed to increase the importance to the hard samples,
which are those prone to misclassification.

SBL is applied to solve the problem of sample imbalance when using proba-
bility map as supervisory information. Combining the advantages of WCE and
KL at the same time, SBL is the first loss function for distillation learning task
of edge detection.

4 Experiments

4.1 Datasets and Implementation

KDED is tested on two benchmark datasets, BSDS500 [1] and NYUDv2 [18].
BSDS500 is one of the most common edge detection datasets, including 500
images. The ratio of images used for training, validation, and testing is 2:1:2.
Each image corresponds to 4–9 labels labeled by different people. We combine
training set and validation sets to train models, and test set is used to evaluate.
NYUDv2 is a classical indoor scene dataset for semantic segmentation, the
ground truth of edge is generated from segmentation. There are 1449 pairs of
depth images and RGB images in NYUDv2, and there only one label for each
image. We choose 795 images for training and the rest are for test. Due to
the equipment limitation, we load the official pre-training parameters of teacher
network to avoid the energy-intensive training. In NYUDv2, only the pre-training
parameters of RGB mode are available, so we only test RGB images. For a fair
comparison, we keep a same data augmentation method as previous works [9,
12]. Multi-scale test is consistent with EDTER [16] and The other settings are
the same as for RCF [12]. During evaluation, Optimal Dataset Scale (ODS) F-
measure and Optimal Image Scale (OIS) F-measure are used for all experiments.

4.2 Comparison with the State-of-the-Art Methods

To show the performance of KDED, a larger scale comparison is listed in
Table 1. When training on the train-val set of BSDS500, KDED can get the
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Table 1. Comparison on BSDS500. The highlighted in red and blue results are the
best two results, respectively, and the same rules apply to the other tables. MS is short
for the multi-scale test, + indicates training with extra PASCAL-Context data and
++ indicates training with extra PASCAL-Context data and using multi-scale during
test. P indicate the number of model parameters (Million) and F means FLOPs.

Method Pub.‘year’ MS + ++ P↓ F↓
ODS OIS ODS OIS ODS OIS ODS OIS

Canny [3] PAMI’86 0.611 0.676 – – – – – – – –

Pb [14] PAMI’04 0.672 0.695 – – – – – – – –

SE [5] PAMI’14 0.746 0.767 – – – – – – – –

DeepEdge [2] CVPR’15 0.753 0.772 – – – – – – – –

CEDN [27] CVPR’16 0.788 0.804 – – – – – – – –

HED [24] IJCV’17 0.788 0.807 – – – – – – – –

CED [21] TIP’18 0.803 0.820 – – 0.815 0.833 – – – –

LPCB [4] ECCV’18 0.800 0.816 – – – – 0.815 0.834 – –

RCF [12] PAMI’19 0.798 0.815 – – 0.806 0.823 0.811 0.830 14.8 75.3

BAN [6] IJCAI’21 0.810 0.827 0.816 0.834 – – – – 15.6 142.2

BDCN [8] PAMI’22 0.806 0.826 – – 0.820 0.838 0.828 0.844 16.3 103.4

FCL [26] NN’22 0.807 0.822 0.816 0.833 0.815 0.834 0.826 0.845 16.5 134.4

EDTER [16] CVPR’22 0.824 0.841 – – 0.832 0.847 0.848 0.865 468.8 802.3

KDED – 0.811 0.825 0.826 0.842 0.821 0.837 0.832 0.849 14.8 75.9

ODS of 0.811 with single-scale test and obtains 0.826 with multi-scale test, which
already outperforms most of the existing edge detectors. KDED can achieve 0.832
(ODS) and 0.849 (OIS) with the extra PASCAL-Context data and multi-scale
test, which is second only to EDTER and far beyond other methods.

Although EDTER has obvious advantages in accuracy, it has great disadvan-
tages in efficiency. We further compared the model size and computation cost
of these edge detection methods with high accuracy. EDTER’s advantage in
accuracy is achieved regardless of efficiency. The parameters of EDTER reaches
468.8M, far exceeding the average value of existing methods, and more than 30
times that of KDED. Meanwhile, EDTER’s FLOPs are more than 10 times the
FLOPs of KDED. It is worth mentioning that even without multi-scale test,
the inference speed of EDTER is still less than 5 fps, which is much slower
than KDED with multi-scale test (around 10 fps). While the accuracy of the
two is similar at this time. Compared with the methods other than EDTER,
the efficiency of KDED is quite competitive. In Table 1, only the model size and
computation cost of RCF can be compared with that of KDED, but the accuracy
of KDED is much more than that of RCF.

In Fig. 3, some visible results are presented. It’s easy to observe that KDED
preserves more detail and is more effective in complex scenes.

Performance on NYUDv2. KDED is evaluated on RGB images and com-
pared with other state-of-the-art methods. All results are generated by single-
scale input. And The quantitative results are presented in Table 2. KDED
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Fig. 3. Qualitative comparisons on the test set of BSDS500. GT is short for the ground
truth.

achieves scores of 0.754 (ODS) and 0.77 (OIS), respectively. The experimen-
tal results are consistent with those of BSDS500 dataset, indicating that KDED
achieves better performance. It performs second best, just behind EDTER, and
significantly outperforms other methods.

Table 2. Comparison on NYUDv2. All results are generated with single-scale test.

Method Pub.‘year’ ODS OIS

HED [24] IJCV’17 0.720 0.734

RCF [12] PAMI’19 0.729 0.742

AMH-Net [25] NeurIPS’17 0.744 0.758

LPCB [4] ECCV’18 0.739 0.754

BDCN [8] PAMI’22 0.748 0.763

PiDiNet [20] ICCV’21 0.733 0.747

EDTER [16] CVPR’22 0.774 0.789

KDED (Ours) – 0.754 0.770

The model size has nothing to do with datasets and the model computation
overhead is positively correlated with the size of the images. So the model size
and computation cost on NYUDv2 are not shown. The results in Table 1 can be
utilized as a reference if desired.

4.3 Ablation Study

To verify each component of KDED and study the impact of hype-parameters,
we perform ablation study.

Firstly, we show the impact of each component in Table 3, where the Baseline
is RCF [12], Neck stands for FPN-based Neck, PPW is the Pseudo Pixel-level
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Weighting module, KD is short for Knowledge distillation based label correction,
and SBL means the Sample Balance Loss. Each component contributes to the
accuracy to varying degrees and the final ODS and OIS of KDED are improved
to 81.1% and 82.5%, both more than 2% improvement over the baseline.

Table 3. The numerical results for ablation study. The models are all trained on
BSDS500 train-val set and the results are evaluated on test set with single-scale test.

Model Neck PPW KD SBL ODS OIS

Baseline 0.790 0.804

– � 0.798 0.815

CTFN � � 0.801 0.816

– � � � 0.810 0.823

KDED � � � � 0.811 0.825

Then, we verify the impact of the hyper-parameters in Sample Balance Loss
(SBL), the results are listed in Table 4. SBL is critical that it solves the problem
that distillation learning does not work under the premise of sample imbalance.
μ is used to adjust the weight between edges and non-edges and δ is for the
simple and hard samples. When μ < 10 or μ > 500, the model can not converge.
And when 10 ≤ μ ≤ 500, the selection of μ has little influence on the accuracy of
the method. Compared with μ, the effect of δ on the accuracy of KDED is more
regular. With the increase of δ, the accuracy of KDED increases firstly and then
decreases, and the optimal result is obtained when δ = 2.

Table 4. The effect of hyper-parameters in Sample Balance Loss. The models are
trained with BSDS500 train-val set and evaluated on BSDS500 test set with multi-
scale test.

μ 10 20 50 100 200 500 50 50 50 50

δ 2 2 2 2 2 2 0 1 2 3

ODS 0.821 0.820 0.821 0.820 0.820 0.819 0.819 0.820 0.821 0.820

OIS 0.836 0.837 0.837 0.836 0.834 0.835 0.834 0.836 0.837 0.837

5 Conclusion

We summarize the problems existing in manual labeling and propose a novel
method KDED, which includes a compact twice fusion network, a knowledge dis-
tillation based label correction strategy and a corresponding sample balance loss.
The accuracy of edge detection can be significantly improved without increasing
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the time of training and inference. More importantly, with the development of
the edge detection, the accuracy of KDED can be further improved by using
more advanced teacher networks.
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Abstract. Facial expression recognition (FER) has become increasingly impor-
tant in the field of human-computer interaction. This paper proposes an improved
method with attention mechanism to improve FER performance. Our approach is
grounded in two crucial observations. Firstly, as multiple categories share simi-
lar underlying facial characteristics, distinguishing between them may be subtle.
Secondly, recognizing facial expressions demands a comprehensive approach by
encoding high-order interactions among localized features from multiple facial
regions simultaneously. To address these challenges, we introduce our MAN
model consisting of three key components: Multi-branch stack Residual Network
(MRN), Transitional Attention Network (TAN), and Appropriate Cascade Struc-
ture (ACS). The TAN learns objectives to maximize class separability, while the
MRNdeploys attention heads to focus on various facial regions and generate atten-
tionmaps. Additionally, the ACSmodule provides a more reasonable construction
method for the model. Comprehensive experiments on three publicly available
datasets (AffectNet, RAF-DB, and CK+) consistently achieves better expression
recognition performance. Compared to the ResNet network, our approach yielded
an improved accuracy of 3.3%, 3.2%, 4.1% and 1.8% on the Affectnet7 dataset,
Affectnet8 dataset, RAF-DB dataset, and CK+ dataset, respectively.

Keywords: Multi-branch Stack Residual Network · Transitional Attention
Network · Appropriate Cascade Structure · Facial Expression Recognition

1 Introduction

Facial expression recognition (FER) is a critical field in computer vision that aims
to enable computers to automatically detect and interpret emotions conveyed through
human facial expressions. These expressions play a fundamental role in human com-
munication, conveying a wide spectrum of emotions and intentions. From the subtle
nuances of a raised eyebrow to the broad smiles of happiness, facial expressions are a
rich source of non-verbal cues that underlie our interactions and relationships.

Facial expressions have intrigued scholars, artists, and psychologists alike. They
serve as a powerfulmedium for the portrayal of emotions and thoughts in art and literature
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[1, 3]. In everyday life, they facilitate non-verbal communication, allowing individuals
to convey feelings and intentions effectively [2, 4]. Moreover, professionals in fields
such as behavioral analysis rely on facial expressions to discern hidden emotions and
assess psychological states [5].

The significance of facial expressions extends to various practical applications. For
instance, in the realm of healthcare, counseling psychologists can assess a patient’s
emotional state by continuously monitoring their facial expressions, aiding in the devel-
opment of tailored treatment plans. Furthermore, research has shown that the facial
expressions of elderly individuals with conditions like Alzheimer’s disease differ from
those of healthy individuals [6]. A robust facial expression classification method can be
a valuable tool for early diagnosis and intervention in such cases.

Several large-scale datasets exist for FER. Initial research postulated six typical
emotions, often referred to as basic emotions. The newest dataset includes neutrality
or contempt, expanding the number of facial expression categories to 7–8. The latest
research is more willing to test on multi-category datasets.

Despite significant progress in FER, several challenges persist. One notable chal-
lenge is discerning subtle differences between various facial expressions, especially in
time-series data [7]. In time-series scenarios, multiple expressions may share similar
underlying facial features, making precise recognition a complex task.

To address this challenge, various studies have employed attention mechanisms to
focus on local details within facial expressions. However, achieving a balance between
capturing subtle local changes andmaintaining overall performance remains a significant
obstacle.

While existing research in FER has made commendable strides, there is a gap in
effectively addressing multi-region feature extraction in the analysis of facial micro-
expressions. Current approaches often face challenges related to computational com-
plexity [9] and the management of numerous hyperparameters [10]. Additionally, they
sometimes struggle to effectively focus attention on all relevant regions of the face [8].

This paper aims to bridge this gap by proposing a novel approach: the Multi-Head
Cross-Attention Network for Facial Expression Recognition. This innovative approach
allows for attention to be distributed across multiple facial regions during feature extrac-
tion while efficiently managing computational resources. Prior studies have demon-
strated the effectiveness of attention mechanisms [12] in focusing on local details, but a
single attention mechanism may not suffice for comprehensive coverage of all relevant
facial features [11]. We draw inspiration from such work [13] and propose a multi-
head cross-attention network that fuses attention information from multiple locations,
ultimately enhancing the recognition of subtle facial expressions.

The primary contributions of our research can be summarized as follows:

• Efficient Gradient Information Extraction: We introduce innovative methods for
stacking multiple residual networks. This approach not only enhances the extraction
of gradient information but also reduces computation time, improving the overall
efficiency of facial expression recognition.

• Enhanced Feature Extraction and Differentiation: We proposed a multi-scale feature
extraction method and attention mechanism in TAN, which enhances the backbone
network’s performance and maximizes the difference between categories.
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• Innovative Cascade Structure:We adopted amore reasonable cascade structure called
ACS, which is inspired by the YOLOv7 paper, to improve accuracy when applying
the proposed structure to feature extraction architectures such as Resnet.

• Exceptional Performance: To validate our approach, we conducted rigorous evalu-
ations on established Facial Expression Recognition datasets. The results speak for
themselves,with remarkable accuracies of 63.2%, 58.6%, 85.6%, and 96.5%achieved
on AffectNet7, AffectNet8, RAF-DB, and CK+ datasets, respectively. These out-
comes underscore the effectiveness of our approach in the realm of facial expression
recognition.

The subsequent parts of the paper are dedicated to providing a detailed exposition
of our research. In Sect. 2, we conduct a review of literature related to the recognition
of facial expressions with a particular focus on real-time classification networks and
attention mechanisms. A explanation of our approach follows in Sect. 3. In Sect. 4, we
present the results of our experimental evaluation. Our findings are then summarized in
Sect. 5.

2 Related Work

2.1 Real-Time Classification Networks

Currently, state-of-the-art real-time classification networks are mainly based on Darknet
[14], ResNet [15], MobileNet [16] and Transformer [17], which are efficient. However,
these networks still have limitations in terms of network architecture, feature integration
method, detection accuracy, and training efficiency. More specifically, (1) a faster and
stronger network architecture is needed to improve processing speed and model per-
formance; (2) a more effective feature integration method is required to capture more
diverse and informative features; (3) a more accurate detection method is necessary to
reduce false positives and negatives; (4) a more efficient training method is needed to
speed up the training process and improve model convergence. We aim to address these
limitations by proposing a new method that focuses on improving the issues associated
with (1), (2), (3), and (4) mentioned above.

2.2 Attention Mechanism

The objective of the attention mechanism is to guide the network’s focus to where it is
most needed, playing a crucial role in visual perception [18]. When we employ convolu-
tional neural networks (CNNs) to process images, it’s desirable for the network to direct
its attention to the relevant regions rather than considering everything indiscriminately.
Manually specifying these attention areas is impractical. In recent years, researchers
have introduced attention mechanisms into deep CNNs.

For instance, SENet [19] focuses on channel-wise attention for the input feature
layer. It optimizes the network’s attention to specific channels, thereby enhancing its
performance.CBAM[20], on the other hand, combines both channel attention and spatial
attention mechanisms, yielding superior results compared to SENet. CBAM processes
the input feature layer and the attention mechanisms separately.
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ECANet [21] also employs the channel attention mechanism and can be viewed as
an improved iteration of SENet.

In recent years, several scholars have integrated the local attention mechanism into
the backbone networks for facial expression classification. For instance, Zheng [22]
introduced the Distraction Attention Network, a novel approach in facial expression
recognition. This network extracts robust features by employing a large-margin learning
objective to maximize class separability.

Fig. 1. Overview of our proposed MAN

3 Methodology

To enhance the quality of attention features, we propose a methodology composed
of three main components: the Multi-branch stack Residual Network (MRN), the
Transitional Attention Network (TAN), and the Appropriate Cascade Structure (ACS).

The MRN is responsible for extracting fundamental features from batches of facial
images while preserving gradient information and emphasizing class differentiation.
Subsequently, the TAN captures facial expression regions at various scales and explicitly
trains attention maps to selectively focus on different areas. Finally, these attention maps
are fused and employed to predict the expression category of the input image.

Our methodology incorporates a series of lightweight yet effective attention heads,
each consisting of a spatial attention unit and a channel attention unit, stacked sequen-
tially. The spatial attention unit utilizes convolution kernels of varying sizes, while the
channel attention unit enhances feature extraction, emulating a coder-decoder structure.
Both units seamlessly integrate into the input features. The overall framework of our
proposed approach is depicted in Fig. 1.

Formally, let xi ∈ X be the input vector in the input feature space X, and Y be
the corresponding label in the label space Y. For simplicity, the output features of our
backbone can be expressed as:

x′
i = F(ωr, xi) (1)
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where wr are the network parameters.
The learning objective is framed as a two-class classification problem. For each

sample xi, we employ the cross-entropy loss.

Ldeti = −(ydeti log(pi) + (1 − ydeti )(1 − log(pi))) (2)

Here, pi represents the probability produced by the network, indicating the likelihood
of sample xi being a face, while ydeti ∈ {0, 1} Denotes the corresponding ground-truth
label.

3.1 Multi-branch Stack Residual Network

In the literature on designing efficient architectures, the primary focus is on the num-
ber of parameters and computations required. Memory access costs are also taken into
account. Ma et al. [23] analyzed various aspects of model scaling in convolutional neu-
ral networks, including the ratio of input/output channels, the number of architecture
branches, and the influence of different elements and operations on inference speed.
Dollar et al. [24] considered activations in their model scaling methodology, emphasiz-
ing the significance of the quantity of elements in the output tensor of the convolutional
layer. The CSPVoVNet [25] in Fig. 2(b) is an innovation of VoVNet [26]. CSPVoVNet’s
architecture not only takes basic design issues into account, but also analyses the gradient
paths to make different weights learn more distinct features. The gradient examination
method makes inference more precise. The ELAN in Fig. 2(c) found that mastery of the
shortest and longest gradient paths yields improved learning and convergence in deeper
networks. In RepVgg’s training architecture, the author uses 3 × 3 and 1 × 1 Convolu-
tion obtains different gradient paths and multi-scale information, which are also used in
the proposed architecture. Referring to the above structure, in this paper, we propose an
ELAN-based variant whose main architecture is shown in Fig. 2(c).

The combined feature layer L includes l1f ∼ l4f from each gradient path. Where C
is the Concat operation for L.

L = C
(
l1f , l2f , l3f , l4f

)
(3)

3.2 Transitional Attention Network

The ProposedAttention Framework consists of twomain components: the Spatial Atten-
tion Unit and the Channel Attention Unit. Firstly, the Spatial Attention Unit extracts
spatial features from the input features, which are obtained through multi-scale feature
fusion. Next, the Channel Attention Unit generates channel features from the spatial
features. Finally, the attention features from both dimensions are integrated within the
Attention Framework. Figure 3 illustrates the operations of the Channel Attention and
Spatial Attention Units. The Channel Attention Unit employs global max and average
pooling, followed by a dense block, ReLU activation, another full connection, and the
sigmoid activation function. On the other hand, the Spatial Attention Unit conducts max
and mean pooling on the channel, concatenates the results, applies a 7 × 7 convolution,
and concludes with the sigmoid activation function.
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Fig. 2. Extended efficient layer aggregation networks

Formally, let C represent the channel attention heads, and M be the final attention
maps of TAN. The result of the cross-attention can be expressed as:

Mi = x × Ci(wc, x), i ∈ {1, k} (4)

where wc represents the network parameters.
Similarly, consider S as the spatial attention head andA as the output spatial attention

map, where N is the number of cross-attention heads. The resulting spatial attention A
can be expressed as:

Ai = ci × Si(ws, ci), i ∈ {1,N } (5)

where ws are the network parameters of Ci.

3.3 Appropriate Cascade Structure

Planned re-parameterized convolution is proposed in YOLOv7 [27]. When part of the
structure is directly applied to a feature extraction architecture, such as ResNet, a signif-
icant reduction in accuracy is observed. This can be attributed to the fact that RepConv
utilizes a combination of 3 × 3 convolution, 1× 1 convolution, and identity connection.
While this approach offers greater gradient diversity for various feature maps, it also
undermines the residual structure of ResNet. To address this issue, we propose three
feasible connection structures based on experimental results, as depicted in Fig. 4.
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Fig. 3. Structure of proposed Transitional Attention Network

Fig. 4. Three correct connection structures

4 Experiments

4.1 Implementation Details

We conducted training and validation of our classification network approach using
the RAF-DB dataset, starting with training the model from scratch. Subsequently, we
employed the trained model as a pre-training model for the Affectnet and CK+ datasets.
For this transfer learning process, we utilized the RAF-DB training set for model training
and the RAF-DB test set for validation and hyperparameter selection.

Our experimental code was implemented in PyTorch and executed on a workstation
equipped with an RTX 3090 24G GPU. The model underwent 200 training epochs, with
the multi-branch stack residual structure in TAN set to a default value of 3. To optimize
learning, we employed the learning rate reduction method known as cosine annealing.
Specifically, we froze the model’s parameters during the first 100 epochs of transfer
learning and then unfroze them for the last 100 epochs (Fig. 5).
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Fig. 5. Training stage

4.2 Ablation Studies

We evaluate the influence of MRN and TAN separately in Table 1. Our proposed method
significantly enhances the performance of the original structure.

Table 1. Ablation studies in MAN

MRN TAN ACS Accuracy

81.5%√ √
82.3%√ √
85.1%√ √
85.2%√ √ √
85.6%

4.3 Comparision with Previous Results

Based on the results presented in Table 2, it is evident that the method proposed in this
paper achieves a favorable balance between speed and accuracy.

Our method achieves results with accuracy of 85.60% on the RAF-DB dataset and
outperforms existing methods with an accuracy of 63.2% on AffectNet7. Furthermore,
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Table 2. Performance comparison of different methods

Methods Model_size Affectnet7 Affectnet8 RAF-DB CK+ FPS

Cbam_Resnet18 40.84M 62.6% 56.7% 85.1% 95.6% 65.69

MobilenetV2 [20] 8.8M 61.4% 55.6% 84.6% 95.9% 70.68

Resnet18 [19] 44.7M 59.9% 55.4% 81.5% 94.7% 66.64

MAN 28.7M 63.2% 58.6% 85.6% 96.5% 63.14

Improvement(compared
with Resnet18)

↓35.8% ↑3.3% ↑3.2% ↑4.1% ↑1.8% ↑5.3%

the CK+ dataset demonstrates comparable accuracy of 96.5%. These results demonstrate
the effectiveness of our method’s components and their competitiveness across datasets.

Figure 6 presents the recognition confusionmatrix of various algorithms in the RAF-
DB dataset. It is evident that compared to other algorithms, our proposed algorithm
achieves a higher recognition rate in a single performance. The expression with the
lowest recognition rate is Fear, but it still reaches 0.73, with Happy achieving the highest
recognition rate of 0.99.

Fig. 6. The recognition confusion matrix of various algorithms under the RAF-DB dataset

The proposed method in this paper was tested using the RAF-DB dataset. Figure 7
presents a comparison between the Resnet18 algorithm and the proposed algorithm.
It can be observed that the conventional Resnet18 algorithm has more error messages
when capturing motion information, and it even fails to capture emotions in some static
areas. In contrast, the proposed algorithm based on MAN has demonstrated a better
performance in distinguishing dynamic and static regions, leading to improved accuracy
in detecting emotions.

As can be seen from Fig. 8, by comparing the recognition results, we can clearly
see that the proposed improvement method in this article can provide greater confidence
to distinguish different types of emotions, especially when distinguishing difficult emo-
tional expressions such as sadness. In contrast, traditional Resnet has a high possibility
of false detection.
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Fig. 7. The extraction effect of 2 algorithms in RAF-DB dataset

Fig. 8. MAN recognition display

5 Conclusion

This paper introduces an enhanced method for facial expression recognition, incorpo-
rating structures: the Multi-branch stack Residual Network (MRN), the Transitional
Attention Network (TAN), and the Appropriate Cascade Structure (ACS). Specifically,
MRN utilizes diverse gradients to capture distinctive facial features, and its streamlined
architecture ensures efficient performance. TAN introduces an attention mechanism that
prioritizes multiple local regions, thereby enhancing expression recognition accuracy.
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In contrast, ACS optimizes the cascade structure, leading to a more efficient classifi-
cation process. Notably, experiments conducted on three different datasets demonstrate
the superior performance of our proposed approach. We believe that the method pre-
sented in this paper can provide valuable insights for future research on facial expression
recognition.
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Abstract. Blind image quality assessment (BIQA) remains challeng-
ing due to the diverse types of distortion and variable image content,
which complicates the distortion patterns crossing different scales and
aggravates the difficulty of the regression problem for BIQA. However,
existing BIQA methods often fail to consider multi-scale distortion pat-
terns and image content, and there has limited research on improving
the performance of quality regression models through specific learning
strategies. In this paper, we propose a simple yet effective Progres-
sive Multi-Task Image Quality Assessment (PMT-IQA) model, which
contains a multi-scale feature extraction module (MS) and a progres-
sive multi-task learning module (PMT), to help the model learn com-
plex distortion patterns and better optimize the regression issue to
align with the law of human learning process from easy to hard. To
verify the effectiveness of the proposed PMT-IQA model, we conduct
experiments on four widely used public datasets, and the experimen-
tal results indicate that the performance of PMT-IQA is superior to
the comparison approaches, and both MS and PMT modules improve
the model’s performance. The source code for this study is available at
https://github.com/pqy000/PMT-IQA.

Keywords: Blind image quality assessment · easy-to-hard effect ·
multi-scale feature · progressive multi-task learning

1 Introduction

With the popularity of smartphones and other camera devices in recent years,
a vast amount of images have been produced and play an increasingly impor-
tant role in people’s information interaction. However, these images could be
distorted (i.e. quality degradation caused by noise, lossy compression, etc.) by
various factors, including the professional level of the photographer, equipment
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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Fig. 1. Motivation diagram of the proposed PMT-IQA. We divide image quality assess-
ment into two parts, which are multi-scale vision system and human learning law based
image quality assessment.

performance, transmission and device storage, etc. Therefore, it is of great need
to assess the quality of images. Although people can subjectively evaluate the
image quality accurately and reliably, it is very limited in practical applica-
tions due to time-consuming and laborious [28]. Consequently, objective image
quality assessment (IQA) [9], which aims to explore models for automatically
evaluating the image quality in line with the human vision system (HVS), has
attracted much attention in the past few years [28] [25]. Among all the objec-
tive IQA methods, blind IQA (BIQA), also called no-reference IQA (NR-IQA),
approaches are the most challenging. “Blind” in this context refers to the fact
that no pristine images (i.e. undistorted reference images) are required during
the process of image quality evaluation. Yet much progress has been made on
this topic, it is still an open and challenging issue, and in this study, we are
committed to exploring the BIQA problem.

The diversity of distortion and variability in image content are the main
reasons why BIQA is full of challenges. On the one hand, they complicate the
distortion patterns, covering multiple scales, from local to global. On the other
hand, the complex input space aggravates the difficulty of the regression problem
for BIQA. However, existing works often fail to consider multi-scale distortion
patterns and image content. Some attempts have been made to design end-to-
end architectures for IQA. For example, Li et al. [15] extract features using
a pre-trained deep convolutional neural network (DCNN). It is evident that
DCNN learns global features due to the gradual expansion of the receptive field
in the convolutional layers as the network becomes deeper. However, most real-
world image data distortion patterns exist in local areas. Therefore, the global
features are not enough to capture the complex distortions. In addition, the
human learning process follows the law from easy to hard, which is known as
the easy-to-hard effect proposed by Pavlov [19] in 1927. However, existing BIQA
methods tend to solve the complex regression problem directly.

In this paper, we proposed a simple yet effective image quality assessment
architecture inspired by the multi-scale characteristics of HVS and the from easy
to hard law of human learning shown in Fig. 1. We name the proposed net-
work as Progressive Multi-Task Image Quality Assessment (PMT-IQA), since it
is designed to capture distortion-related patterns using a task transfer strategy
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simulating the from easy to hard human learning law. The idea behind the pro-
posed model is as below. Firstly, we extract global-to-local distortion-aware fea-
tures by designing a multi-scale semantic feature extraction module. Secondly,
inspired by the from easy to hard learning law, we build a progressive multi-task
learning scheme, which can gradually shift from an easy task (i.e. quality level clas-
sification) to a hard one (quality score regression). At last, we evaluate the per-
formance of the proposed PMT-IQA on several widely used public IQA datasets,
and the experimental results validate the effectiveness of the PMT-IQA model.

Fig. 2. Progressive Multi-Task learning Image Quality Assessment architecture. It
divides the task of IQA into two steps: Multi-Scale Semantic Feature Extraction and
Progressive Multi-Task learning.

2 Related Works

The development of deep neural network technology has greatly prompted the
research of BIQA problem in the past few years. Zhang et al. [30] proposed a
dual-branch network that adapts to both authentic and synthetic distortions.
Su et al. [22] introduced a self-adaptive hyper network for real-world distorted
images to address the challenges of diverse distortion types and various contents
in real-world images. To overcome the issue of weak cross-scenario capability
of BIQA models, Zhang et al. [31] presented a unified uncertainty-aware BIQA
model that cover both laboratory and wild scenarios. In addition, some latest
deep learning technologies, including contrastive learning [17], graph convolu-
tional neural network [23], and transformers [5], have also been used for BIQA
research. While these models have achieved impressive performance, they mainly
focus on network architecture design, but rarely study how to make the models
learn better. Furthermore, these existing models also rarely used multi-scale for
feature extraction.

Inspired by the easy-to-hard effect [19], we proposed a new learning scheme
that imitates the law of from easy to hard learning for BIQA. In fact, curricu-
lum learning [2], which has received a lot of attention in the past decade [24],
is a realization of this idea. It should be noted that curriculum learning simu-
lates the from easy to hard learning law in terms of training data, which is to
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train a machine learning model from easier samples to hard ones. However, as the
easy-to-hard effect indicates “Early experience with an easy version of a discrim-
ination task facilitates subsequent learning of a more difficult task” [19], our idea
is to simulate the from easy to hard learning law through progressive learning
of related tasks with different difficulty levels. We utilize the multi-task archi-
tecture in our implementation. Different from existing multi-task based BIQA
models [7,16], which simultaneously predict distortion type and image quality
score, the two tasks (i.e. quality level prediction and quality score prediction) in
our model are progressive. On the other hand, we employ dynamic task weights
rather than fixed weights to transit from quality level classification to quality
score regression. In summary, we proposed a novel progressive multi-task learn-
ing scheme simulating the from easy to hard learning law for BIQA.

3 Methods

3.1 Overview of the Proposed Model

The architecture of the proposed Progressive Mult-Task Image Quality Assess-
ment (PMT-IQA) model is presented in Fig. 2. It contains a multi-scale feature
extraction module (MS) and a progressive multi-task learning module (PMT).
The MS module is designed to extract image features with stronger representa-
tion ability by utilizing multi-scale information, and the PMT module is used
to simulate the from easy to hard learning law through a dynamically weighted
two-head multi-task structure. The proposed PMT-IQA model can be mathe-
matically represented as Eq. (1).

fθ(·) = gφ ◦ hψ(·) (1)

where fθ(·) represents the complete model with paramters θ, hψ is the MS mod-
ule, which obtains local-to-global distortions, and PMT module gφ learns com-
plex regression problems. The operator ◦ in Eq. (1) represents the composition
of modules gφ and hψ, where the output of hψ serves as the input of gφ. The
definition of the parameters θ = {φ, ψ} will be declared in the next section.

3.2 Multi-scale Semantic Feature Extraction

To characterize various distortions, we utilize convolutions to extract multi-scale
features (from local to global), each of which corresponds to a feature map si.
Assuming we have features on n scales, then we concatenate all features, as
shown in Eq. (2).

hψ(xi) = concat(s1, · · · sj , · · · , sn) (2)

More specifically, we use a pre-trained ResNet50 [6] as the backbone architecture
in PMT-IQA and collect feature maps from four stages of ResNet50. Then we
use 1 × 1 convolution and global average pooling for dimension alignment. The
output of MS module h(·) is fed into the PMT module for prediction.
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3.3 Progressive Multi-Task Image Quality Assessment

As introduced in Sect. 1, the diversity of distortion and variability of image con-
tent make the input space of quality scalar score regression issue complicated and
increase the difficulty of model learning. To address this challenge, we propose
a progressive multi-task learning scheme to mimic the from easy to hard human
learning process. Specifically, in addition to the quality score prediction task,
we introduce a relative simple quality-level classification task related to quality
regression. During the model training process, we dynamically adjust the weights
of the quality score prediction task and the quality-level classification task in the
learning objective function, aiming to progressively shift the model’s attention
from the quality-level classification task to the quality score prediction task.

For the quality-level classification task, we divide the range of scalar quality
scores into discrete sub-intervals, and let each sub-interval be a quality category,
which represents a specific quality level, for the quality classification task. Let
w be the interval length, [ymin, ymax] be the range of quality score, then we can
obtain K categories as:

K = � |ymax − ymin|
w

� (3)

For sample xi with scalar quality score yi, we can get the corresponding quality
category label yc

i ∈ Y = {1, · · · ,K} by mapping yi into the corresponding
discrete quality interval.

As shown in Fig. 2, the PMT gφ contains two parts: scalar image quality score
assessment module gφ1 : Rh → R and image quality level classification module
gφ2 : Rh → [0, 1]K . Both gφ1 and gφ2 are implemented using a simple Multi-
layer Perception (MLP), where gφ1 is composed of four fully connected layers
and gφ2 contains three fully connected layers and one softmax layer. ReLU()
is utilized as the activation function of the first 3 and 2 fully connected layers
of gφ1 and gφ2 , respectively. Suppose φ1 = {W

(φ1)
1 ,W

(φ1)
2 ,W

(φ1)
3 ,W

(φ1)
4 } and

φ2 = {W
(φ2)
1 ,W

(φ2)
2 ,W

(φ2)
3 }, where W

(φ1)
i and W

(φ2)
i are the parameters of the

i-th layer of gφ1 and gφ2 respectively, then for an input X (note that X is actu-
ally [X̂; 1] corresponding to real input X̂ as W

φj

i represents weight and bias),
gφ1 and gφ2 are defined as follows:

gφ1(X) = W
(φ1)
4 (ReLU(W (φ1)

3 (ReLU(W (φ1)
2 (ReLU(W (φ1)

1 X)))))) (4)

gφ2(X) = (
exp(o1)

∑K
i=1 exp(oi)

, · · · ,
exp(oK)

∑K
i=1 exp(oi)

) (5)

where oi is the i -th component of the output of the last fully connected layer of
gφ2 , which is defined as:

(o1, · · · , oK) = W
(φ2)
3 (ReLU(W (φ2)

2 (ReLU(W (φ2)
1 X)))) (6)

Given the definition of gφ1 and gφ2 , the objective loss function in PMT-IQA
can be defined in Eq. (7).

λ1Lr(x, y) + λ2Lc(x, y) (7)
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where Lr and Lc are the loss terms for the image quality score regression task
and image quality level classification task, respectively. Parameters λ1, λ2 > 0 are
dynamic hyper-parameters in the training procedure. In our implementation, we
use �1 loss (defined as Eq. (8)) for Lr and cross-entropy loss (defined as Eq. (9))
for Lc, respectively.

Lr(x, y) =
1
n

n∑

i=1

|yi − gφ1(h(xi))| (8)

Lc(x, y) = − 1
n

n∑

i=1

K∑

c=1

(yi)c log((gφ2(h(xi)))c) (9)

where (·)c in Eq. (9) denotes the c-th component of (·).
To simulate the from easy to hard learning law [19], we make the model

focusing on learning the classification task in the early stage of training, and
gradually concentrates on scalar quality score assessment with the progress of
training by dynamically adjusting the weights of the classification and regression
tasks as:

λ1(t) =
t

T + 1
ξ

λ2(t) = 1 − λ1(t)
(10)

where t represents the t-th epoch, T denotes the maximum epochs. ξ is a
trade-off to balance the two losses’ scale difference. We adopt the Adam opti-
mizer [10] to optimize the PMT-IQA parameters φ and ψ jointly.

4 Experiment

4.1 Experimental Setup

Datasets. We use four publicly available IQA datasets, including LIVE Chal-
lenge (LIVE-C) [4], BID [3], LIVE [20], and CSIQ [13], to evaluate each IQA
method. In these four datasets, BID and LIVE-C are authentic distortion
datasets, where BID contains 586 figures with realistic blurry distortions, and
LIVE-C includes 1162 real-world images collected by various cameras. In addi-
tion to authentic distortion datasets, we also evaluate PMT-IQA on two synthetic
image datasets LIVE and CSIQ, which contain 779 and 866 images with 5 and
6 individual distortions, respectively.

Evaluation Metrics. We select two commonly-used evaluation metrics, Spear-
man’s rank-order correlation coefficient (SRCC) [14] and Pearson’s linear corre-
lation coefficient (PLCC) [14], to evaluate the performances of IQA algorithms.
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The definition of SRCC and PLCC are presented in Eq. 11 and Eq. 12, respec-
tively. Both SRCC and PLCC range from -1 to 1, and a larger value indicates a
better performance.

SRCC = 1 − 6
∑

i d2i
n (n2 − 1)

(11)

PLCC =
∑

i (qi − qm) (q̂i − q̂m)
√∑

i (qi − qm)2
∑

i (q̂i − q̂m)2
(12)

where di denotes the rank difference between MOS and the predicted score of
the i -th image, n is the number of images. qi and q̂i are MOS (DMOS) and the
predicted score of the i -th image respectively, and qm and q̂m are average MOS
(DMOS) value and average predicted score for all images.

Implementation Details. We follow the experimental protocol and settings
in HyperIQA [22] for a fair comparison. Each dataset is divided into train and
test set according to 4:1. The quality scores are scaled into [0,1] to improve sta-
bility, as shown in Fig. 3. During training, we augment each training image by
randomly cropping and horizontally flipping ten times for LIVE-C and five times
for the other three datasets according to HyoerIQA [22]. A recently proposed
hyperparameter searching framework optuna [1] is employed to optimize hyper-
parameters and the values of hyperparameters of PMT-IQA on four datasets are
reported in Table 1. In addition, dropout [21] and weight-decay [12] strategies
are used to avoid over-fitting.

Fig. 3. SRCC and PLCC values of PMT-IQA on BID dataset in the training procedure.
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Table 1. The hyperparameters obtained by Optuna on the four test datasets.

Dataset LR Batch ξ Optimizer

BID 1.09e-4 12 0.9419 Adam
LIVE-C 4.72e-4 12 0.9841 Adam
LIVE 3.23e-4 12 0.9941 Adam
CSIQ 4.72e-4 12 0.8931 Adam

4.2 Performance Evaluation

We select fourteen representative BIQA methods as strong baselines, includ-
ing BRISQUE [18], ILNIQUE [29], AlexNet [11], ResNet50 [6], HOSA [26],
BIECON [8], SFA [15], PQR [27], DB-CNN [30], HyperIQA [22], UNIQUE [31],
CONTRIQUE [17], GraphIQA [23], and TRes [5], to evaluate the performance
of our proposed PMT-IQA model.

The SRCC and PLCC values of each method on the four test datasets are
listed in Table 2. From Table 2, we can find that the PMT-IQA approach outper-
forms all the comparison methods on BID and LIVE-C for both SRCC and PLCC
evaluation. Our PMT-IQA model achieves the second-best results on LIVE
dataset, only weaker than GraphIQA. For the other synthetic distortion dataset
CSIQ, PMT-IQA also obtains the best SRCC value (0.949) and competitive
PLCC value (0.951). In order to compare the performance of each method more
intuitively, we also provide the ranks of all methods (i.e. the numbers in paren-
theses in Table 2) and the average ranks of SRCC and PLCC of each method
(i.e. the last two columns of Table 2). The average SRCC and PLCC ranks of
the proposed PMT-IQA on the four test datasets are 1.25 and 2.00, respectively,
which are much better than the state-of-the-art methods GraphIQA [23] (aver-
age SRCC rank is 3.50, and 3.75 for average PLCC rank) and TReS [5] (average
SRCC rank is 4.00, and 3.75 for average PLCC rank). All these results indi-
cate tha our proposed PMT-IQA model obtains the best overall performance
compared to the comparison methods.

To verify the generalization ability of the proposed PMT-IQA model, we
further conducted several cross-database tests. In this test, a specific dataset
is used as a training set and a different dataset plays the role of test set. We
use four competitive methods, including PQR, DB-CNN, HyperIQA and TReS,
as baselines for performance comparison. The cross-database tests include four
settings: (1) train on LIVE-C and test on BID, (2) train on BID and test on
LIVE-C, (3) train on LIVE and test on CSIQ, and (4) train on CSIQ and test
on LIVE. The first two settings are for authentic distortion, while the last two
are for synthetic distortion. Table 3 presents the SRCC values of the comparison
methods and our proposed PMT-IQA model. We can see from the results that
the proposed PMT-IQA model significantly outperforms the compared methods
on all four cross-database tests.
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Table 2. The SRCC and PLCC values of various methods on BID, LIVE-C, LIVE
and CSIQ datasets and the average rank of SRCC and PLCC for each method. Best
performance in boldface and numbers in parentheses indicate corresponding ranks. We
report the median SRCC and PLCC in ten runs.

BID LIVE-C LIVE CSIQ Average Rank of
Methods SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

BRISQUE [18] 0.562(11) 0.593(11) 0.608(9) 0.629(13) 0.939(12) 0.935(11) 0.746(14) 0.829(10) 11.50(13) 11.25(12)
AlexNet [11] – – 0.766(10) 0.807(11) 0.932(13) 0.841(15) 0.766(13) 0.811(13) 12.00(14) 13.00(14)
ResNet50 [6] 0.583(10) 0.599(10) 0.824(9) 0.868(7) 0.947(10) 0.913(12) 0.823(9) 0.876(9) 9.50(9) 9.50(9)
ILNIQE [29] 0.516(13) 0.554(13) 0.432(11) 0.508(15) 0.903(14) 0.865(14) 0.806(11) 0.808(14) 12.25(15) 14.00(15)
HOSA [26] 0.721(9) 0.736(9) 0.640(8) 0.678(12) 0.946(11) 0.947(10) 0.741(15) 0.823(11) 10.75(11) 10.50(10)
BIECON [8] 0.539(12) 0.576(12) 0.595(10) 0.613(14) 0.961(8) 0.962(7) 0.815(10) 0.803(15) 10.00(10) 12.00(13)
SFA [15] 0.826(7) 0.840(7) 0.812(10) 0.833(10) 0.883(15) 0.895(13) 0.796(12) 0.818(12) 11.00(12) 10.50(10)
PQR [27] 0.775(8) 0.794(8) 0.857(3) 0.872(5) 0.965(6) 0.951(9) 0.873(8) 0.901(8) 6.25(7) 7.50(8)
DB-CNN [30] 0.845(6) 0.859(6) 0.851(5) 0.869(6) 0.968(5) 0.971(2) 0.946(3) 0.959(1) 4.75(6) 3.75(2)
HyperIQA [22] 0.869(3) 0.878(3) 0.859(2) 0.882(3) 0.962(7) 0.966(6) 0.923(5) 0.942(5) 4.25(4) 4.25(5)
UNIQUE [31] 0.858(5) 0.873(4) 0.854(4) 0.890(2) 0.969(2) 0.968(4) 0.902(7) 0.927(7) 4.50(5) 4.25(5)
CONTRIQUE [17] – – 0.845(7) 0.857(9) 0.960(9) 0.961(8) 0.942(5) 0.955(3) 7.00(8) 6.67(7)
GraphIQA [23] 0.860(4) 0.870(5) 0.845(7) 0.862(8) 0.979(1) 0.980(1) 0.947(2) 0.959(1) 3.50(2) 3.75(2)
TReS [5] 0.872(2) 0.879(2) 0.846(6) 0.877(4) 0.969(2) 0.968(4) 0.922(6) 0.942(5) 4.00(3) 3.75(2)
PMT-IQA (Proposed) 0.874(1) 0.894(1) 0.866(1) 0.893(1) 0.969(2) 0.971(2) 0.949(1) 0.951(4) 1.25(1) 2.00(1)

Table 3. SRCC comparison on cross-database tests. Best results in boldface.

Train on Test on PQR [27] DB-CNN [30] Hyper-IQA [22] TReS [5] PMT-IQA (Proposed)

LIVE-C BID 0.714 0.762 0.756 0.870 0.897
BID LIVE-C 0.680 0.725 0.770 0.765 0.782
LIVE CSIQ 0.719 0.758 0.744 0.738 0.766
CSIQ LIVE 0.922 0.877 0.926 0.932 0.934

4.3 Ablation Study

We conduct several subtle ablation studies on the four test datasets to further
verify the effectiveness of MS and PMT modules. The variants are as follows:

(1) ResNet: Pre-trained ResNet50 architecture on ImageNet, adding fully con-
nected layers for prediction (i.e., without MS and PMT).

(2) Type1: The entire architecture in Fig. 2 with only MS (i.e., without PMT).
(3) Type2: The entire architecture in Fig. 2 with MS and PMT using fixed λ1

and λ2, and we use λ1 = λ2 = 0.5 in our implementation based on test
experiments.

(4) PMT-IQA: The entire architecture PMT-IQA in Fig. 2 with MS and PMT
using dynamic task weights as Eq. 10.

We tune the hidden dimension to ensure variants have similar numbers
of parameters to the completed PMT-IQA by removing the performance gain
induced by model complexity for fairness. As shown in Fig. 4, we can see that
PMT-IQA achieves the best performance compared with the other three vari-
ants on all four test datasets. In addition, both MS and PMT modules can bring
performance improvement to the model. Compared with MS, PMT improves the
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Fig. 4. The ablation study on the BID, LIVE, LIVE-C and CSIQ datasets.

overall performance more significantly for PLCC evaluation on LIVE, LIVE-C
and CSIQ. Moreover, the comparison between the results of Type2 and PMT-
IQA shows that the strategy of dynamically adjusting the task weights to make
the network learn from an easy task to a complex task is effective. The novel
progressive shift of tasks in PMT-IQA is essential in the training stage. There-
fore, the ablation study results again verify the effectiveness of the proposed
PMT-IQA.

5 Conclusion

In this paper, we propose a simple yet effective progressive multi-task learning
model for blind image quality assessment. Our model contains a multi-scale
feature extraction module and a progressive multi-task learning module to help
the model learn complex distortion patterns by simulating the from easy to
hard human learning law. Extensive experimental results show that despite the
relatively simple architecture of the proposed PMT-IQA method, it can still
achieve superior or competitive performance compared to various baselines on
all the datasets.
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Abstract. Utilizing a multi-scale strategy to address the challenge of
significant variations in object sizes is a common approach in object
detection. However, this strategy often results in significant computa-
tional overhead on high-resolution feature maps, leading to increased
model complexity. This paper proposes a novel Reduced-resolution Head
for Object Detection (RHOD). It can be seamlessly incorporated into
most existing popular detectors, operating in a plug-and-play way. By
replacing high-resolution feature maps with lower-resolution ones for
regression and classification, our RHOD effectively eliminates the com-
putational costs on high-resolution feature maps. Combined with the
proposed Feature Fusion (FF), the final detection accuracy of the model
can approach the accuracy of the original detector. Experimental results
demonstrate that RHOD reduces the computational cost of the detector
by approximately 15%–40% without sacrificing accuracy. This reduction
in computational cost leads to a significant improvement in inference
speed, with an increase of 1.2–5.0 frames per second (FPS). The code
and models will be available at https://github.com/alpc128/RHOD.

Keywords: Computer vision · Deep learing · Object Detection

1 Introduction

The scale of objects on 2D images varies tremendously not only owing to their
natural properties, but also due to the perspective projection when we observe
them in the wild 3D world. As pointed out by [21], the smallest and largest 10%
of 2D objects on the COCO dataset [16] occupy 0.024 and 0.472 of the images,
respectively. Therefore, effectively addressing the significant scale variation of
2D objects is a fundamental challenge in object detection.

Existing approaches commonly employ a multi-scale pyramid strategy to
address the significant scale variations [23] of objects to be detected, such as the
Feature Pyramid Network (FPN) [14], which has become a standard architec-
ture in recent works [15,24]. Compared with works [2] that rely solely on a single
feature map to detect objects across various scales, FPN not only efficiently uti-
lizes the hierarchical structure of Covolutional Neural Networks (CNN) but also
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14327, pp. 165–176, 2024.
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assigns the tasks of object localization and classification to corresponding lev-
els of feature maps based on the object’s proportion in the image [2]. While
this multi-scale pyramid strategy demonstrates promising capabilities in deal-
ing with scale variation, it involves a trade-off between detection accuracy and
inference speed. Detectors utilizing the multi-scale pyramid strategy often incur
additional computational cost, which limits their applicability in scenarios such
as embedded devices and mobile phones.

Currently, there have been some lightweight methods [9,18] that focus on
researching smaller and lighter backbones. However, research specifically target-
ing the reduction of computational cost in the detection head remains limited.
While reducing the computational cost incurred by the backbone network is
important, addressing the computational cost introduced by the detection head
is equally significant. Our work aims to bridge the research gap by proposing a
detection head that effectively reduces computational cost without compromis-
ing detection accuracy.

Fig. 1. Performance comparison of different cropping methods to reduce the compu-
tational cost of detection head occupation. Compared with methods such as reducing
stacked network layers, reducing convolution channel, and using Depthwise Separate
convolution, our RHOD not only greatly reduces the computational cost and improves
the inference speed, but also maintains the accuracy of the detector.

To investigate how to prune this additional computational cost, this paper
conducts experimental analysis and compares the efficiency of various prun-
ing methods. It is found that commonly used pruning methods often lead to a
decrease in detection accuracy, see Fig. 1. Through further analysis of the distri-
bution of model computational costs, we find that the detection head’s compu-
tation cost accounts for a significant proportion on high-resolution feature maps,
more details see Fig. 2. Based on these observations as well as experiments, we
propose a novel Reduced-resolution Head for Object Detection (RHOD). Its
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core idea is to use small-resolution feature maps with rich semantic informa-
tion to predict objects that were traditionally assigned to high-resolution fea-
ture maps, thereby avoiding the extensive convolution operations performed on
high-resolution feature maps. However, this approach may introduce a certain
semantic gap between the feature map used to generate prediction results and the
target objects. To bridge this semantic gap, we propose a Feature Fusion (FF)
technique that combines high-resolution and low-resolution feature maps. The
combination of these two techniques enables our RHOD to reduce the model’s
computational costs by approximately 15%–40%, while maintaining and even
slightly enhancing the detection performance of the detector.

Our main contributions are summarized as follows:

– We compared various pruning methods and analyzed the unreasonable dis-
tribution of computational costs in the detect head of current mainstream
detectors.

– We proposed RHOD (Reduced-Resolution Head for Object Detection), which
significantly reduces the computational costs of detection models by using
low-resolution feature maps for prediction.

– Extensive experiments on MS-COCO [16] dataset demonstrated that RHOD
is a plug-and-play solution that effectively improves the inference speed of
various detectors.

2 Related Works

CNN-Based Detector. Object detection based on CNN is generally divided
into the family of two-stage detectors [7,20] or the family of one-stage detec-
tors [17,19]. Firstly, anchor boxes [15] or anchor points [10,24] are densely placed
on the image, and the location of each anchor or anchor point indicates the spe-
cific region which it focuses on [20]. Subsequently, based on these anchor boxes,
the detector encodes and decodes the image features through one or multiple con-
volutional layers, ultimately achieving object category inference and bounding
box localization. To enhance the model’s robustness to object scale variations,
CNN detectors commonly utilize FPN [14] to fuse the features from both shallow
and deep, thereby constructing a feature pyramid that contains rich semantic
information. After that, several works [6,22] have made improvements based
on FPN and have achieved promising results. FPN has gradually become an
essential component of most CNN-based detectors and takes a dominant role in
the development of modern detectors. However, detectors using FPN typically
incur larger computational cost, as this divide-and-conquer solution sacrifices
the inference speed of the detector. In other words, there is a trade-off between
inference speed and detection accuracy.

Lightweight Detector. In order to enable object detection models to run on
low-power and computationally limited platforms, a common practice in the
industry is to scale down the models [5,22] by reducing the number of network
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layers, decreasing network width, and pruning model parameters and computa-
tions. These practices represent the optimal trade-off between detection accuracy
and speed. MobileNets [9] introduced depthwise separable convolutions, which
replace standard convolutions with grouped convolutions and pointwise convolu-
tions to reduce model computational cost. ShuffleNetV2 [18] proposed a series of
practical methods to guide the design of more efficient detectors. Additionally,
while there have been many optimization studies [3,11] targeting the backbone
network of detectors, research specifically focused on designing the detection
head to reduce model computations and improve inference speed is relatively
limited. Light-Head R-CNN [13] effectively improves model inference speed by
pruning the second stage of the two-stage detector. Different from these works,
this paper proposes a novel detection head. Our experimental results demon-
strate that there is still room for optimization in terms of computations for
commonly used detection heads.

3 Method

3.1 Motivation and Analysis

FCOS [24] is a popular object detection with the classic “backbone-neck-head”
architecture. The backbone network takes input images and extracts various
features present in the images, while the neck usually incorporates FPN to fuse
features and generate feature maps at different resolutions. The head consists of
two branches with separate parameters but the same structure, handling object
bounding box regression and class prediction tasks. Each branch typically con-
sists of 4 stacked convolutional layers and 256 channels.

Heavy Head. We have conducted a statistical analysis and found that the
computational cost of FCOS is primarily concentrated in the backbone and
head. When employing ResNet-50 [8] backbone and setting the input size to
1280 × 800, the computation distribution is depicted in Fig. 1, indicates that
the computational cost on the head even surpasses that of the backbone. This
disproportionate ratio led us to believe that there is room for optimization in
the computation of the head.

Table 1. Results on COCO minival by using ResNet-50 backbone. FLOPS is counted
on the input size of 1280 × 800. FPS values are evaluated on a machine with a single
NVIDIA 2080 Ti and using a batch size of 1.

Method Layers Channel mAP AP50 AP75 APS APM APL #params GFLOPS/FPS

ATSS [26] 4 256 39.4 57.6 42.8 23.6 42.9 50.3 32.1 205.3/19.5
2 256 37.0 55.9 40.0 22.6 40.7 46.7 29.7 154.9/23.3
4 128 38.0 56.1 41.2 22.4 41.7 48.5 28.7 133.9/24.2
DW Conv 36.8 54.8 39.7 21.5 40.6 45.6 27.9 116.3/22.8
P4 to P8 37.6 55.3 40.5 20.5 43.1 50.0 31.9 115.1/25.6
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As shown in Table 1, we conduct several experiments to reduce the computa-
tional cost of detection heads and compare their accuracy and speed. The first row
is the performance of FCOS with ATSS label assignment and its overall computa-
tional cost. In the second row, we reduced stacked network layers in the head from
4 to 2, which resulted in a decrease in computational cost (−50.4GFLOPS) and an
improvement in inference speed (+3.8 FPS), but it also led to a decrease in detec-
tion accuracy (−2.4 mAP). In the third row, we reduced the convolution channel
in stacked network layers of the head from 256 to 128, significantly reducing the
computational cost (−71.4 GFLOPS), improving the inference speed (+4.7 FPS),
and also decreasing the accuracy (−1.4 mAP). In the fourth row, we replaced
the regular convolutions in the detection head with depth-wise separable convo-
lutions, while keeping the last convolutional layer in each branch unchanged. This
method maximized the reduction in computational cost (−89 GFLOPS), slightly
improved the inference speed (+3.3 FPS, since larger MAC [18]), but resulted in
a significant drop in model accuracy (−2.6 mAP).

Although these methods can crop the computational cost of the detection
head and increase FPS, they inevitably compromise the model’s representa-
tional capacity. Whether it is reducing the stacked network layers, decreasing
the convolution channel, or using depth-wise separable convolutions, the abil-
ity of detectors to capture complex patterns and features will be compromised.
In other words, these methods still involve a trade-off between computational
complexity and detection accuracy.

Fig. 2. Computational cost distribution of ATSS (left) and RHOD (right). The ATSS
detection head accounts for over 50% of the total, with the highest computational cost
observed on P3, contributing to approximately 37% of the entire model’s computation.
In comparison, our RHOD reduces the computation cost by 78.6 GFLOPS.

Computational Cost Distribution. Actually, the detection head incurs the
highest computational cost mainly on high-resolution feature maps, particularly
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P3. Denoting the output feature maps from the neck as P = {Pi ∈ R
H×W×C},

i indicates the pyramid level, typically ranging from 3 to 7. The downsampling
rate of the feature maps is 2i, meaning that the height (H) and width (W ) of
the feature map at level i are reduced by a factor of 1

2i compared to the input
image. Thus, P3 has the largest spatial size. On the other hand, all the feature
maps are processed equally through stacked convolutional network layers. It can
be seen from Fig. 2, P3 incurs the highest computational cost, accounting for
approximately 72% of the computation in the detection head.

The simplest way to eliminate this computational cost is to exclude the use
of P3 for detection and instead start the detection head from P4. The last row
in Table 1 represents the case where P4 to P8 are sent into the head and gener-
ates the final prediction output. This results in a significant reduction in com-
putational cost (−90.2 GFLOPS) and the highest increase in inference speed
(+6.1 FPS). Unlike the previous methods discussed for reducing computational
cost, this approach leads to a decrease in accuracy (−1.8 mAP), primarily due
to the performance drop of the model detecting small objects. Specifically, the
representative metric APs, which measures the detection performance on small
objects, decreases, while the performance of the model for large and medium
objects remains the same. We believe that this phenomenon is caused by two
factors: First, insufficient anchors/anchor points for predicting small objects,
leading to oscillation of the same predicted box between two or more ground
truth objects, ultimately resulting in poor detection performance. Second, the
absence of details reserved feature maps prevents the detector from accurately
regressing the position of small objects.

Fig. 3. An illustration of ours Reduced-resolution Head for Object Detection (RHOD).
The feature map of pyramid level i and i+1 is fused through feature fusion to generate
Gi, which has the same resolution as that of level i + 1. This fused feature map is
responsible for detecting objects at pyramid level i.

3.2 Reduced-Resolution Head for Object Detection

We propose a novel detection head that can be seamlessly incorporated into exist-
ing detectors in a plug-and-play way. From experimental results, our detection
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head achieves comparable performance to existing detectors with significantly
lower computational requirements. The whole structure is illustrated in Fig. 3.
It is important to note that our method is also effective for two-stage detectors.
For simplicity, we present an example using a one-stage detector.

We first allocate ground truth objects to feature maps from P3 to P7 accord-
ing to the label assignment strategy of ATSS [26]. Then, we use feature maps
from P4 to P8 for prediction. Unlike previous methods where each feature point
predicts a single object, we enable each feature point to predict four objects
corresponding to the feature map of previous layer. The final layer of regression
branch predicts a 16D vector that represents four bounding boxes. The output
of the regression is denoted as B̂, its size is H

2 × W
2 × 16, we then rearrange this

output to restore the resolution. Specifically, the feature point at position (x, y)
corresponds to the four points in the feature map of previous layer at positions
(2x, 2y), (2x, 2y+1), (2x+1, 2y), and (2x+1, 2y+1). By rearranging the predic-
tions, we obtain a new output B, its size is H ×W × 4. In summary, the process
can be described as follows:

B[2x+ i, 2y + j, t] = B̂[x, y, (2i+ j)t],∀i,j∈{0,1}, x∈ [0,
H

2
), y∈ [0,

W

2
). (1)

The output of the classification branch is processed as follows:

C[2x+ i, 2y + j, c] = Ĉ[x, y, (2i+ j)c],∀i,j∈{0,1}, x∈ [0,
H

2
), y∈ [0,

W

2
). (2)

In the end, we obtain the output with the same size as the original detector, so
there is no need to change the loss function. If the detector has additional aux-
iliary branches such as centerness [24] or IoU prediction [25], similar processing
needs to be applied to those branches as well.

To address the issue of insufficient localization ability for small objects in
the aforementioned method, we utilize the Pi and Pi+1 feature maps to generate
Gi, which has the same spatial size as Pi+1. This new feature map contains
information from the lower-level feature map and provides more fine-grained
features as well as clearer boundary and positional information for both the
classification and regression branches. Experimental results demonstrate that
using Gi improves the detection accuracy of the detector. Additionally, we have
also discovered that in our method, the fusion of the P3 in the neck module
is not necessary. Instead, we can directly use the C3 to predict, which saves
approximately 9.4 GFLOPS of computational cost for the model.

4 Experiments

Dataset and Evaluation. All experimental results were generated on the
COCO 2017 [16] detection dataset. Following common practices [4,24], we used
the trainval35k subset to train the models and minival subset to evaluate the
performance. Performance measurement follows the COCO Average Precision
(AP ) metric.



172 J. Zhuang et al.

Implementation and Trainning. Our RHOD is implemented in the MMDe-
tection framework [1]. Unless otherwise specified, ResNet-50 [8] is chosen as the
default backbone, and the input images are resized with the short side set to
800 pixels, while ensuring that the long side remains below 1333 pixels. The
training was conducted using 8 NVIDIA V100 GPUs, with setting the batch
size to 16 (2 images per GPU). Following [4,12,26], we used Stochastic Gradient
Descent (SGD) as the optimizer and the initial learning rate is 0.01, which was
reduced by a factor of 10 at the 8th and 11th epochs.

4.1 Ablation Study

We selected ATSS [26] as the baseline model for conducting ablation experi-
ments. Detectors were trained using the ResNet-50 [8] backbone with single-scale
training in 1× schedule (12 epochs). The detector’s performance was evaluated
on the COCO minival dataset. When calculating GFLOPS, we set the input size
to 1280 × 800. The FPS were obtained using the mmdetection framework and
the testing was conducted on the same machine using a single NVIDIA 2080 Ti,
with setting the batch size to 1.

Table 2. Ablation studies on COCO minival. FF: Feature Fusion.

Method FF C3/P3 mAP AP50 AP75 APS APM APL #params GFLOPS/FPS

ATSS – – 39.4 57.6 42.8 23.6 42.9 50.3 32.1 205.3/19.5
ATSS* – – 37.6 55.3 40.5 20.5 43.1 50.0 31.9 115.1/25.6
RHOD 38.3 56.8 41.6 22.6 42.1 48.7 32.5 118.3/25.0
RHOD Avg P3 38.8 57.3 42.1 22.5 42.7 49.6 33.9 133.1/24.2
RHOD Max P3 38.7 57.0 42.2 22.5 42.5 50.0 33.9 133.1/24.2
RHOD Conv P3 39.3 57.5 42.4 23.5 42.8 50.2 34.4 136.1/23.9
RHOD Conv C3 39.3 57.8 42.5 23.4 42.9 50.1 33.8 126.7/24.5

More Prediction Boxes. We first attempted to restore the model’s dense
box predictions to the same level as ATSS. As shown in Tab. 2, the first row
represents the performance of the original ATSS [26] model. For comparison
with subsequent experiments, we listed the results of predicting corresponding
objects using P4 to P8 in the second row. The follow row of the table represents
our use of P4 to P8 feature maps to predict ground truth assigned to P3 to P7

using the ATSS label assignment scheme. This helps to avoid training oscillation
and inference failures caused by a single anchor covering multiple ground truth
objects. From the results, we observed that the model’s performance improved
by 0.7 mAP compared to predicting objects using P4 to P8, especially in terms of
detecting small objects. The inference speed slightly decreased, as the increased
number of predictions impacted the overall FPS performance.
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Feature Fusion. In addition to increasing the number of predicted anchor
boxes, we also studied different ways to reduce the resolution. Predicting objects
using the Pi feature map to handle the responses of objects assigned to the Pi−1

feature map can result in a semantic gap between the predicted objects and the
ground truth. Therefore, we need to incorporate the Pi−1 pyramid level feature
map during prediction in the detection head. Experimental results show that
downsampling the Pi−1 feature map using max-pooling or avg-pooling for feature
fusion leads to suboptimal detector accuracy, which aligns with the findings
of [27]. We also compared the results of directly using the C3 feature map and
using the P3 generated by FPN. We found that these two approaches have almost
no difference in accuracy, but directly using C3 can save computational cost and
increase the FPS of the detector.

Table 3. Results on COCO test-dev using longer training schedules and different
backbones. ‘R’: ResNet.

Method Backbone Epoch mAP AP50 AP75 APS APM APL #params GFLOPS/FPS

ATSS R-50 24 42.4 60.6 46.3 25.5 46.5 52.8 32.1 205.3/19.5
RHOD R-50 24 42.5 60.7 46.4 25.4 46.6 52.9 33.8 126.7/24.5
ATSS R-101 24 43.6 62.1 47.4 26.1 47.0 53.6 51.1 281.4/15.1
RHOD R-101 24 43.5 62.0 47.4 26.2 47.1 53.5 52.8 202.8/17.6

Longer Schedule and Different Backbone. To provide a more accurate and
detailed comparison with the baseline, we also trained models using different
backbones for 24 epochs, with learning rate reductions at 16 and 22 epochs.
Following previous works [24,26], a multi-scale strategy was employed during
training where a random value between 640 and 800 was selected as the length
of the short side for image resizing. By uploading the models to the evaluation
server, we obtained the results on the COCO test-dev dataset, as shown in Tab. 3.
In the longer training schedule, our model achieved comparable accuracy to the
original ATSS model, but with faster inference speed.

4.2 Applied to Other Detectors

RPN of Two Stage Detectors. We attempted to apply RHOD to the Region
Proposal Network (RPN) of the two-stage detectors. Our experiments were con-
ducted on Faster R-CNN [20]. The model utilized feature maps from P2 to P6,
and ignores the computation cost of the ROI, the entire model consumed a
high computation cost of 192.6 GFLOPS. Specifically, the high-resolution fea-
ture maps with a downsampling rate of 4 contributed to a computation cost
of 75.5 GFLOPS in the neck and RPN. The first stage of the two-stage detec-
tor involves preliminary screening of candidate regions and rough estimation of
object positions. Precise object location and category information are obtained
in the second stage using features generated by Region of Interset (RoI). Here,
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the use of feature fusion doesn’t significantly enhance model performance, and it
may even sacrifice some speed. Therefore, feature fusion is not necessary in this
context. We directly used feature maps from P3 to P8 for prediction in the RPN.
The specific approach involves assigning each feature point in the RPN network
to generate candidate region predictions corresponding to the four feature points
produced by the next layer’s feature map.

Table 4. Comparing typical two-stage detectors with and without RHOD on COCO
minival by using ResNet-50 backbone.

Method mAP AP50 AP75 APS APM APL #params GFLOPS/FPS

Faster R-CNN 37.6 58.2 41.0 21.5 41.1 48.9 41.5 207.1/20.2
Faster R-CNN + RHOD 38.1 58.3 41.2 21.9 41.6 49.3 41.6 169.3/21.9
Mask R-CNN 38.2 58.8 41.4 21.9 40.9 49.5 44.1 260.1/17.1
Mask R-CNN + RHOD 38.4 59.0 41.9 21.8 41.5 50.1 44.2 222.4/18.3

As shown in Table 4 Our approach was able to save approximately 37.8
GFLOPS of computation cost, resulting in a 1.7 FPS improvement in the infer-
ence speed of Faster R-CNN. Furthermore, our method improved the accuracy of
Faster R-CNN by 0.5 mAP. This improvement may be attributed to the higher-
level feature maps containing better semantic information. Similar results were
observed in Mask R-CNN [7]. However, it is worth noting that the computation
cost of generating the P2 feature map from the neck is still required in the ROI
stage and cannot be replaced by C2, which limits the computational cost savings.
We will try to solve this problem in future work.

Table 5. Results on COCO minival by using ResNet-50 backbone.

Method mAP AP50 AP75 APS APM APL #params GFLOPS/FPS Reference

OTA 40.7 58.4 44.3 23.2 45.0 53.6 32.2 199.8/19.5 CVPR21
OTA* 40.7 58.5 44.2 23.0 44.9 53.8 32.2 199.8/19.5
OTA + RHOD 40.5 58.1 44.0 22.9 44.7 53.3 33.9 121.2/24.6
DW 41.5 59.8 44.8 23.4 44.9 54.8 32.1 205.3/19.8 CVPR22
DW* 41.3 59.7 44.6 22.8 44.6 55.0 32.1 205.3/19.8
DW + RHOD 41.2 59.5 44.5 22.5 44.5 55.2 33.8 126.7/24.8

Newer and Stronger Detectors. We also tested our RHOD on the newer
and stronger detectors [4,12]. OTA [4] optimizes the label assignment problem
in object detection by using optimal transport, while DW [12] introduces a novel
dual-weighted label assignment scheme to guide the training of the detector.
These more powerful detectors, however, mainly focus on improving detection
accuracy and lack consideration for the computational cost of the detectors. Our
RHOD is also effective on them.
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The first row in Table 5 represents the performance of these methods as
reported in the original research papers or code repositories, while the second
row shows the performance obtained by retraining these models in our environ-
ment. The experimental results show that when applying RHOD during the 1×
training schedule, it can approximate the accuracy of the original detector with
significantly lower computational cost and faster inference speed.

5 Conclusion

In this paper, we conducted an in-depth analysis of the computational costs of
current mainstream CNN detectors. We compared different methods for reduc-
ing the computational costs of the detection head and identified an unreason-
able distribution of computational costs within the detection head. To address
these issues, we proposed a new plug-and-play detection head called RHOD.
Experimental results demonstrate that our RHOD significantly reduces the com-
putational costs of the model and improves inference speed while maintaining
accuracy. However, there are limitations to RHOD. It may not uniformly reduce
computation costs across different detectors and the usage of RHOD could lead
to a slight increase parameters compared to the original detector. We plan to
address these issues in our future work.
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Abstract. Vehicle detection has become an important detection tar-
get for highways, but the traditional vehicle detection technology has
poor real-time performance and large model parameters. The algorithm
is based on YOLOv5, which introduces the improved network structure
Ghostnet-C in the backbone layer to simplify the network structure and
while increasing the detection speed of it. Subsequently, for further opti-
mize the structure of the model, GSConv + Slim-neck structure is intro-
duced in the neck layer. Finally, the CAS attention mechanism is used
in the neck layer, which is developed in this paper, to change the focus
of model predictions and get better results from the model. Compared
with original YOLOv5, W-YOLO we propose in the paper reduces the
amount of parameters by about 58.6%, the size of storage space by 58%,
and the computation by 72.2%, while the accuracy can reach 75.6%.
From the final results of experiments, we can discover that W-YOLO
can significantly reduce the amount of parameters, model size and com-
putation while guaranteeing accuracy, which can satisfy the requirements
of highway vehicle detection more easily.

Keywords: vehicle detection · YOLOv5 · lightweight · attention
mechanism

1 Introduction

Recently, As science continues to evolve, driverless and assisted driving tech-
nologies [1] are also making breakthroughs, and more and more vehicles are
appearing in daily life, which also leads to congestion and traffic accidents on
highways. Nowadays, video surveillance to understand the real-time traffic sit-
uation of highways and the size of the traffic flow is one of the effective ways
to relieve highway congestion and reduce traffic accidents [2]. With the gradual
complication of road conditions, effective and rapid detection of vehicle targets
in video surveillance to deduce the traffic flow in real time is an important part
of intelligent transportation research today [3].

At present, the emergence of deep learning-based vehicle target detection can
better realize highway vehicle detection, which have higher accuracy and effi-
ciency than traditional ways. Algorithms is subdivided into two categories based
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14327, pp. 177–188, 2024.
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on whether or not initial screening is performed, one or two stage. Two-stage
target detection usually uses region proposal(RP), and the common algorithms
are R-CNN [4], Fast R-CNN [5], Faster R-CNN [6], R-FCN [7], etc. These algo-
rithms will generally have higher accuracy, but will consume more time, which
affects the efficiency of target detection. One-stage target detection algorithm
uses the thought of regression to directly generate results after a single detection,
with common algorithms such as Retina-Net [8], SSD [9], YOLO series [10], etc.
These algorithms are more effective in real-time detection scenarios. The accu-
racy is slightly reduced compared to two-stage target detection algorithms, but
the rate of prediction is greatly improved [11].

In vehicle detection, Tao et al. [12] proposed RCNN based on stereo prior
for vehicle detection, combined RPN with Mask-branch mechanism and used
RGB images to improve the accuracy. However, due to using of RPN, which
is a two-stage target detection algorithm, it cannot meet our demand for fast
detection. Based on YOLOv3, WANG et al. [13] proposed SVD-YOLO, which is
incorporated a Ghostnet network structure, thus improving the scene segmen-
tation of objects such as vehicles in real-time driving scenarios, but YOLOv3 is
already a relatively backward YOLO series. Dong et al. [14] used the C3Ghost
and Ghost modules and introduced the CBAM attention mechanism to reduce
the floating point operations (FLOPs) based on YOLOv5. However, using only
C3Ghost and Ghost modules does not better convey the relevant information
of detected targets during feature fusion, so the accuracy improvement of the
detected target is not high.

According to above researches, this paper designs an improved YOLO-based
highway vehicle detection model called W-YOLO (Well-YOLO), and our contri-
butions are summarized in three areas: (1) In the YOLOv5 backbone network,
an improved GhostNet (GhostNet-C), which uses a small amount of parameters
for feature extraction, is substituted into the model to improve the detection
speed. (2) In the YOLOv5 neck layer, the structure of GSConv+Slim-neck is
substituted into the model to minimize model complexity. (3) In the feature
fusion, the improved CA attention (CAS) is designed and used in feature fusion
for improving the accuracy.

2 Related Work

2.1 YOLOv5 Model

YOLOv5 is derived from the YOLO series and it is the fifth generation algorithm,
which is improved from the YOLOv3 model. Among the YOLO series, YOLOv5
has a high detection accuracy while being more lightweight, and is the more
widely used model in the YOLO series [15]. There are four different obtain-
able versions of YOLOv5, which can be categorized as YOLOv5x, YOLOv5l,
YOLOv5m and YOLOv5s depending on the depth and width of the network.
The size of the model is reduced for each of the four versions in turn. How-
ever, all four models above have the same structure, with following four major
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components: Input, Backbone, Neck and Output, and their structures are
displayed in the Fig. 1.

Fig. 1. YOLOv5 network structure. By using an approach named Mosaic data enhance-
ment, YOLOv5 enrich the dataset and well enhance the ability and robustness of the
network in the input layer. In the backbone layer, YOLOv5 mainly uses the CBS mod-
ule as well as the C3 module for feature extraction and finally the SPPF module for
feature fusion, which enhances the feature map feature expression. The neck layer uses
a feature pyramid structure consisting of FPN+PAN [16], which enhances the network
feature fusion. The main part of the output layer is three Detect detectors, which enable
YOLOv5 to detect better.

2.2 The Improvement of YOLOv5

In the highway scenario, in order to achieve better vehicle detection, it is nec-
essary for the model to have good real-time performance. Therefore, based on
YOLOv5, this paper proposes a lightweight vehicle detection model called W-
YOLO. Figure 2 explains the diagram of W-YOLO structure.

As shown in Fig. 2, to lighten the model more, W-YOLO introduces a mod-
ified GhostNet in the backbone layer and uses GSConv+Slim-neck to reduce
model complexity in the neck layer. For the purpose of improving the loss of
accuracy in the lightweight model, W-YOLO uses CAS attention mechanism for
improvement of precision in the neck layer.

3 Method

3.1 Ghostnet-C

In order to lightweight the YOLOv5 model, W-YOLO improves the Ghostnet
network and replaces the original YOLOv5 Backbone. Ghostnet is a lightweight
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Fig. 2. Improved YOLOv5 network structure

network structure proposed by Han et al. [17]. Some of the formed feature maps
have high similarity, so Han believe that more similar feature maps can be gen-
erated by performing linear operations on one of them to achieve the purpose of
generating more feature maps with only a small number of parameters. Figure 3
shows the principle of Ghost module in Ghostnet network.

From Fig. 3, we are able to calculate that the normal convolution we usually
use in YOLOv5 is approximately s times more computationally intensive than
the Ghost convolution, so the Ghostnet network designed by Ghost-based module
can greatly model the computation cost. However, the original Ghostnet network
structure invokes the SE attention mechanism [18], which ignores the attention
problem on the feature graph space, while the CBAM attention mechanism [19]
considers the attention on the space and can achieve better results compared
with the SE attention mechanism. Therefore, W-YOLO improves the original
Ghostnet structure, and the improved GhostBottleneck structure is shown in
Fig. 4.

3.2 GSConv+Slim-Neck

In order to speed up the computation of prediction and better achieve real-time
vehicle detection, W-YOLO introduces the GSConv module and Slim-neck mod-
ule [20] in Neck. Since the GSConv module preserves as much as possible the
connectivity during the semantic information transfer of feature maps, the com-
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Fig. 3. The Ghost module. Supposing that the input size is h · w · c, and the output
one is h′ · w′ · c, the edge length of the convolution kernel is k. In this case, FLOPs
of conventional convolution are computed as n · h′ · w′ · c · k · k, while FLOPs of
the deeply separable convolutional Ghost module through Ghostnet are computed as
n
s

· h′ ·w′ · c · k · k + n
s

· h′ ·w′ · d · d, where d denotes the edge length of the convolution
kernel within Ghost module, s denotes how many new feature maps are generated per
convolved feature map. The ratio of boosted FLOPs can theoretically be calculated as
rs = n·h′·w′·c·k·k

n
s

·h′·w′·c·k·k+n
s

·h′·w′·d·d = c·k·k
1
s

·c·k·k+ s−1
s

·d·d ≈ s·c
s+c−1

≈ s.

Fig. 4. Improved GhostBottleneck network structure. When use = true, the improved
structure invokes the CBAM attention, and it is experimentally proven to achieve
better results compared to the original SE attention.
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putational cost of using GSConv instead of normal convolution in Neck is only
60–70% of that of normal convolution, while the accuracy of the model does not
decrease too much. On the basis of GSConv, it can be to design the GSbottle-
neck module, as shown in Fig. 5a, and then combine the one-shot aggregation
approach to design the VoVGSCSP module, as shown in Fig. 5b.

Fig. 5. GSbottleneck module and VoVGSCSP module

Since GSConv+Slim-neck can simplify the model structure while guarantee-
ing a certain accuracy, in W-YOLO, Neck is replaced with Slim-neck, which
greatly increases the speed of model operations.

3.3 CAS Attention Mechanism

To access key information of feature maps and improving the accuracy of image
information processing, W-YOLO introduces the CAS attention mechanism.
Currently, attention mechanism is used extensively on optimizing models. Hou
et al. summarized the traditional attention mechanism and proposed a more
efficient CA attention [21], which encodes both lateral and vertical location
information into spatial attention, localization and target identification. Figure 6
illustrates the difference between the traditional SE attention mechanism and
the CA attention mechanism.

However, the effect of channel C on attention is included in the CA attention
mechanism. When the effect of spatial attention is not as clear as that of channel
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Fig. 6. Comparison of SE attention and CA attention

attention, channel attention may have an effect on both co-attendance obtained
in the end. Therefore, as shown in Fig. 7, W-YOLO improves the CA attention
mechanism into the CAS attention mechanism.

From Fig. 7, the new CAS attention mechanism first performs a channel
attention on the feature map, followed by pooling the obtained features out
into a 1 · h · w feature map, and finally a cooperative attention operation. In
this way, the CAS attention mechanism separates the channel attention while
preserving the original spatial co-attention part, thus reducing the influence of
channel attention on spatial co-attention.

CAS attention first performs a channel attention, fusing the weights of chan-
nel attention into the feature map first, thus not affecting the weights of hori-
zontal attention and vertical attention, as expressed by follows:

x′
c(i, j) = xc(i, j) · gc (1)

After that, CAS attention is squeezed and feature maps are pooled by channel
dimension. Through this approach, we obtain a feature map of 1*h*w and then
encoded horizontally and vertically respectively. The equation is expressed as:

X(i, j) =
1
C

C−1∑

k=0

x′
c(i, j) (2)

zh(h) =
1
W

W−1∑

i=0

X(h, i) (3)

zw(w) =
1
H

H−1∑

j=0

X(j, w) (4)

Finally, CAS attention activates the codes, joins the two sets of codes along
the channel dimension, performs a 3 · 3 convolutional transformation, and then
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Fig. 7. The structure of CAS attention

separates the two sets of codes after the transformation and performs a 1 ·1 con-
volution as well as a sigmoid transformation. Finally, we multiply the obtained
result with the feature map that has been transformed by channel attention.
The equation is expressed as:

f = δ(F1([zh, zw])) (5)

gh = σ(Fh(fh)) (6)

gw = σ(Fw(fw)) (7)

yc(i, j) = x′
c(i, j) · gh(i) · gw(j) (8)

In addition, W-YOLO also tested whether to use the feature maps after
the channel attention transformation when performing collaborative attention
extraction. The experimental comparison shows that using the channel-attention
transformed feature maps for co-attentive extraction gives better results.

4 Experiment and Metrics

4.1 Experimental Environment and Data Set

We uses a Linux system with 1T of memory, Intel Xeon Gold 5117 CPU, NVIDIA
Tesla P100 GPU, 32G graphics card, CUDA version 11.6, and PyTorch for model
training as the experimental environment. The experiment uses vehicle datasets
captured from different locations and divides the datasets using a ratio of approx-
imately 8:2, with 4134 training sets and 1140 test sets. Some of data under
training are shown in Fig. 8.
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Fig. 8. Schematic diagram of train datasets

4.2 Metrics

To measure the effect, we use performance metrics such as mean Average Preci-
sion (mAP), the number of model parameters, the size of the storage space occu-
pied by the model, the number of Giga Floating-point Operations Per Second
(GFLOPS) and the number of frames per second (FPS) to judge the performance
of the model.

4.3 Experiment and Experimental Analysis

For the purpose of verifying the performance of W-YOLO, we use ablation exper-
iments to analyze. The same hyperparameters were used for the ablation exper-
iments, and final data obtained is all shown in Table 1. Among them, YOLOv5-
G represents the improved backbone network using the improved Ghostnet
based on YOLOv5, YOLOv5-GS represents the improved neck layer using
GSConv+Slim-neck based on YOLOv5-G, and W-YOLO is based on YOLOv5-
GS with the added improved CAS attention mechanism.
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Table 1. Ablation experiment results

model mAP/% Number of participants Storage Space/MB GFLOPS FPS

YOLOv5 77.4 46108278 92.7 107.6 74.07

YOLOv5-G 75.4 21820940 44.2 41.6 84.03

YOLOv5-GS 72.9 18924940 38.5 29.7 86.95

*W-YOLO 75.6 19097050 38.9 29.9 85.47

* proposed method

The experimental data above indicates that compared with original YOLOv5,
W-YOLO reduces the amount of parameters by 58.6%, the storage space size
by 58%, the computation by 72.2%, and the FPS by 11.4 frames/s, while the
accuracy decreases by only 1.8%.

For the purpose of validating the effectiveness of improved GhostNet struc-
ture, this paper uses the original YOLOv5 as a baseline and compares it with the
model adding the Ghostnet structure and the improved one, as shown in Table 2.
The model adding the Ghostnet structure is called YOLOv5-Ghostnet, and the
model after adding the improved Ghostnet structure is called YOLOv5-G.

Table 2. Improved Ghostnet validation experiment

model mAP/% Number of participants Storage Space/MB GFLOPS FPS

YOLOv5 77.4 46108278 92.7 107.6 74.07

YOLOv5-Ghostnet 72.5 21824934 44.2 40.5 84.75

YOLOv5-G 75.4 21820940 44.2 41.6 84.03

From the Table 2, we can see that YOLOv5-Ghostnet has significantly
reduced the model size and increased the speed of prediction, although the accu-
racy has been reduced. While using YOLOv5-G on this basis, the detection speed
do not change much, but the detection accuracy has increased, so lightweight of
the model can be better achieved by using improved Ghostnet structure.

Furthermore, for the purpose of validating the effectiveness of the improved
CA, CAS attention is now introduced based on the model YOLOv5-GS after the
above two improvement methods, and the common SE and CA attention mech-
anisms are improved into the model respectively for comparison experiments, as
shown in Table 3.

From Table 3, all three attention mechanisms bring some loss in detection
speed, but all of them can significantly improve the model accuracy. These three
experiments improve the model accuracy by 0.5%, 0.7%, and 2.7% respectively,
with the improved CAS attention mechanism showing a greater improvement
compared to the other two. In addition, the results for whether or not to use the
feature maps after the channel attention transformation when performing collab-
orative attention extraction are also responded in Table 3, where W-YOLOn rep-
resents the model that does not use the feature maps after the channel attention



Research of Highway Vehicle Inspection Based on Improved YOLOv5 187

Table 3. Improved CA attention mechanism validation experiment

model mAP/% Number of participants Storage Space/MB GFLOPS FPS

YOLOv5-GS 72.9 18924940 38.5 29.7 86.95

YOLOv5-GS-SE 73.4 18928524 38.5 29.7 86.95

YOLOv5-GS-CA 73.6 19057716 38.8 29.9 84.75

W-YOLO 75.6 19097050 38.9 29.9 85.47

W-YOLOn 73.6 19097050 38.9 29.9 85.47

transformation when performing collaborative attention extraction. By compar-
ison we can discover that the CAS attention mechanism performs co-attentive
extraction preferentially using the channel attention transformation better.

5 Conclusion

Aiming at the characteristics of traditional target detection methods under high-
way traffic environment such as insufficient detection accuracy and poor detec-
tion real-time, this paper, by introducing the improved Ghostnet, GSConv+Slim-
neck for lightweight, and then using the proposed CAS attention mechanism
to enhance the accuracy of image processing, carries out an improvement
on YOLOv5. The experimental data shows that W-YOLO reduces the size
from 92.7 MB to 38.9 MB, reduces the parameters by about 27.01 million, and
increases the FPS by 11.4 frames/s compared with the YOLOv5 model, which
effectively improves the vehicle detection speed in the highway scenario, while
the average accuracy decreases less. However, W-YOLO still has the problem of
missed detection for some small target vehicles. If we can improve the detection
rate of small target vehicle detection in future research, the model can achieve
better results.
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Abstract. Existing Weakly-supervised Few-Shot Temporal Action
Localization (WFTAL) methods often process feature snippets with lim-
ited information, resulting in prediction errors and poor localization per-
formance. A novel model called Spatial-Temporal Attention Network
with Boundary-check Algorithm (STN-BA) for WFTAL is proposed to
address this issue. STN-BA enhances the discriminability of snippet fea-
tures and has a particular fault tolerance mechanism. The proposed app-
roach focuses on two main aspects: (1) a spatial-temporal attention mod-
ule that establishes spatial-temporal relationships of action movement to
enrich the feature information of each video snippet and (2) the imple-
mentation of a boundary-check algorithm to correct potential localiza-
tion boundary errors. The network is trained to estimate Temporal Class
Similarity Vectors (TCSVs) that measure the similarity between each
snippet of untrimmed videos and reference samples. These TCSVs are
then normalized and employed as a temporal attention mask to extract
the video-level representation from untrimmed videos, enabling accu-
rate action localization during testing. Experimental evaluations of the
widely used THUMOS14 and ActivityNet1.2 datasets demonstrate that
the proposed method outperforms state-of-the-art fully-supervised and
weakly-supervised few-shot learning methods.

Keywords: Temporal Action Localization · Few-shot learning ·
Weakly supervised · spatial-temporal attention · boundary-check
algorithm

1 Introduction

Temporal Action Localization (TAL) [2,7–10,15,20,25,27] is a crucial aspect
of video comprehension that seeks to anticipate the initiation time, culmina-
tion time, and category of actions within an untrimmed video. Traditional
TAL models depend on having extensive sets of annotated training samples
for each individual class. However, collecting and making these annotated sam-
ples are not only very expensive but also unfeasible due to the existence of
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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an infinite number of potential action classes. To address these challenges,
recent research has focused on Weakly-supervised Temporal Action Localization
(WTAL) [4,14], Few-shot Temporal Action Localization (FTAL) [11,22,23], and
Weakly-supervised Few-shot Temporal Action Localization (WFTAL) [18,26]
methods. WTAL only requires the classification label for the action during train-
ing, while FTAL only necessitates a few fully supervised examples for each action
category. WFTAL combines the benefits of both approaches.

Weakly-supervised few-shot learning has been successfully applied to tem-
poral action localization, with recent approaches such as [18] and [26]. Zhang
et al. [26] introduced a multi-scale feature pyramid approach aimed at directly
generating variable-scale temporal features. Xie et al. [18] proposed a network
that focuses on learning to estimate similarity matrices. These matrices are har-
nessed in the creation of Temporal Class Activation Maps (TCAMs). However,
it is important to note that these networks may encounter challenges when pro-
cessing snippets that contain limited feature information. This can result in pre-
diction errors for the snippets and subsequently lead to decreased performance
in terms of localization accuracy.

We propose a novel model called Spatial-Temporal Attention Network with
Boundary-check Algorithm (STN-BA) for WFTAL to address this issue. Similar
to previous work [18] and [26], our model utilizes one/a few trimmed examples
of novel class actions at test time and a large number of base class videos with
only category labels during training, ensuring no overlap between the base and
novel classes. Our method initially utilizes a spatial-temporal attention network
to establish the motion relationship among snippets within the entire video. This
process enriches the feature information of each snippet, ultimately enhancing
the discriminability of snippet features. Furthermore, we introduce a boundary-
check algorithm to mitigate any potential decrease in localization performance
caused by prediction errors in particular snippets. This algorithm examines the
accuracy of predicted boundary snippets by evaluating their error rates. Subse-
quently, it corrects frequently mispredicted snippets by setting an error tolerance
threshold. The goal is to prevent the negative impact of prediction errors and
improve overall localization accuracy.

Contributions:

– We propose a new model incorporating a spatial-temporal attention network
to tackle the problem of limited information within video snippets.

– We introduce a boundary-check algorithm. This algorithm assesses the cor-
rectness of boundary snippets, identifying and correcting any boundary snip-
pets’ potentially erroneous predictions.

– We achieve state-of-the-art performance on the weakly-supervised and fully-
supervised few-shot benchmarks for THUMOS14 [5], and ActivityNet1.2 [3].

2 Related Work

Temporal Action Localization (TAL). TAL is the task of predicting the tem-
poral boundaries and class labels of action instances within untrimmed videos.
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Early approaches to action localization utilized deep networks in the localization
framework to accurately localize temporal boundaries, resulting in enhanced per-
formance. Some studies have focused on designing effective temporal proposal
schemes [2,8,10,15,20,27], while others have explored improvements in temporal
search methods [50, 51] or proposed better classifiers [7,9,25]. These methods
predominantly rely on fully supervised approaches, necessitating a large amount
of data labeled with action boundaries. However, collecting such data is chal-
lenging, expensive, and often subject to ambiguity when determining the bound-
aries of certain actions. Consequently, Few-Shot learning approaches have gained
increasing attention in this domain.

Few-Shot Temporal Action Localization (FTAL). Fully-supervised few-
shot learning has been applied to TAL [11,22,23]. Yang et al. The pioneering
work of Yang et al. [23] marked the inception of integrating few-shot learn-
ing into the domain of temporal action localization. Their approach involved
using a meta-learning strategy with several positively labeled and negatively
labeled videos to guide the localization process. Similarly, Xu et al. [22] employed
regional proposal networks to generate proposals with flexible boundaries,
enabling more accurate localization. Nag et al. [11] adopted a different localiza-
tion method. Their network first learned a similarity function, which was then
used to classify each snippet in the untrimmed video. Although these FTAL
methods integrate few-shot learning, they still rely on many videos with anno-
tated temporal action boundaries during the training process.

Weakly-Supervised Few-Shot Temporal Action Localization
(WFTAL). Recent research has focused on WFTAL [18,26]. This approach
streamlines the training process by relying solely on video-level annotations,
reducing the need for annotated temporal action boundaries. Zhang et al. [26]
pioneered a groundbreaking strategy centered around the direct construction of
a multi-scale feature pyramid. This pyramid serves as a mechanism for gener-
ating variable-scale temporal features, effectively enabling the model to capture
pertinent action-centric information across diverse temporal resolutions. Simi-
larly, Xie et al. [18] introduced a network that harnesses the power of similarity
matrices. Leveraging these TSMs, the network facilitates the creation of tem-
poral attention masks, which in turn facilitate the extraction of comprehensive
video-level representations from extensive untrimmed video datasets.

3 Method

In this paper, the problem of weakly-supervised few-shot temporal action local-
ization in untrimmed videos is further addressed. Our framework involves two
sets of input data: a sample set and a query set. The sample set comprises
videos that serve as examples for a few classes. Each class in the sample set
contains K-trimmed action instances, called the sample set S. The query set
Q = {xi}Nq

i = 1 consists of untrimmed videos xi with video-level annotations,
where Nq is the number of untrimmed videos. Our objective is to localize the
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Fig. 1. Overview of the proposed method: Given a query video xi and a sample set S, we
first extract their feature representations using the I3D network φ and spatial-temporal
attention network ψ. Then we gain the TSMs Mf by calculating pair-wise snippet
feature similarity scores. Then the TCSVs P̃c is obtained by the unnormalized similarity
generator δ. These TCSVs are then normalized and employed as a temporal attention
mask Ac

xi
to extract the video-level representation Xxi . The sample video-level feature

representation, denoted as XS , is derived by employing a temporal average pooling
operation on ψ(S). The classifier predicts video-level categories. Finally, a threshold is
set to determine the type of each snippet, and a bounds-checking algorithm is used to
correct possible errors in the segment.

classes’ actions in the sample set within these untrimmed videos. Following the
protocol established in previous works such as [16,18,23], the method adopts a
C-way K-shot episode training/testing setup. In each episode, from the training
set, we perform a random selection of C classes. For each of the chosen classes,
we sample K-trimmed action instances. These sampled instances are then com-
bined to constitute the sample set denoted as S. Within the query set Q, the
untrimmed videos are ensured to encompass at least one action instance. The
proposed method consists of four main parts: the feature extractor, the similar-
ity generator, the video-level classifier, and the post-processing module. Figure 1
visually depicts the comprehensive architecture of the model. Next, we will delve
into the specifics of each component of the approach.

3.1 Feature Extractor

The feature extractor is mainly composed of two network modules, the I3D [1]
network and the spatial-temporal attention network, where the I3D network φ
is employed as a pre-trained network for the extraction of fundamental video
features, similar to [12,13]. I3D extracts the RGB and TV-L1 optical flow [24]
information in the video snippet by using the two-stream network. We use every
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16 frames as a snippet and the outputs of the two-stream network are merged
to generate the fundamental video features. It has been shown in previous work
[2,19] that this strategy benefits video action localization. The spatial-temporal
attention network utilizes two non-local networks [17] with distinct weights to
establish the motion relationship between snippets in the query set and the
sample set videos. This approach is adopted due to the presence of substantial
background information in the query set videos, whereas the sample set videos
primarily contain action-related content. The non-local module consists of three
weighted matrices WQ, WK , and WV and calculating formula (1).

ψ(xi) = φ(xi) + SoftMax

(
WQ · WK

T

√
d

· WV

)
· σ (1)

where WQ = W1 · φ(xi), WK = W2 · φ(xi), WV = W3 · φ(xi), W1 W2 and W3

were three weighting matrix, σ denotes a learnable parameter, initialized to 0,
and d is the video feature dimension.

Given a query video xi, we divide the video into N snippets according to
a snippet of 16 frames. Each snippet by the I3D network φ encoding first, to
generate the initial encode vector φ(xi) = {φ(xi,n)}Nn=1. Given the sample set
with action examples and their labels, it is denoted by S = {(xi, yi)}c∗ki=1, where
“c” denotes the number of classes, and “k” signifies the number of samples per
class. Similarly, we split each video in the sample set S into snippets. Then each
snippet is encoded by the I3D network to generate the initial encoding vector of
the sample set φ(S) = {φ(xi, yi)}c∗ki=1. Then, a spatial-temporal attention network
ψ is used to enrich the feature information of each snippet. Subsequently, the
query video features ψ(xi) and sample set video features ψ(S) are generated
through two fully connected layers (FC). These FC layers have output sizes of
1024 and 128, respectively. Each layer is activated using the ReLU activation
function. Furthermore, to mitigate overfitting, a dropout layer is introduced
following the first FC layer.

3.2 Similarity Generator

The similarity generator consists primarily of the similarity calculation and the
unnormalized similarity generator δ. Given the query video feature ψ(xi) and
the sample set videos feature ψ(S), we calculate the TSMs (Temporal Similarity
Matrixes) Mf = {mf

i }c∗ki=1, where mf
i is the similarity scores between all snippets

of the query video and all snippets of the i-th sample set videos, and f is the
similarity metric. By performing a max-pooling operation along the rows of Mf ,
we obtain the similarity vector P f

c∗k for each snippet of the query video for the
sample video. By averaging the k-shot instances, we obtain the one-shot rep-
resentation P̄ f

c . We employ four different similarity vectors by utilizing various
similarity metrics for both spatial (RGB) and temporal (optical flow) dimensions,
which have been verified in [18] to be better than a single type of similarity met-
ric feature. The four similarity vectors are subsequently combined and fed as
inputs to the unnormalized similarity generator δ (similar to the unnormalized
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similarity generator by [18] contains batch normalization and FC layers). The
output Temporal Class Similarity Vectors (TCSVs) is given by formula (2).

P̃c = δ(P̄ ip,RGB
c , P̄ ip,OF

c , P̄ cos,RGB
c , P̄ cos,OF

c ) (2)

Where “ip” and “cos” denote dot product and cosine similarity calculation,
respectively, “RGB” refers to the spatial dimension, and “OF” refers to the time
dimension.

3.3 Video-Level Classifier

Classification. After obtaining the TCSVs P̃c, the application of the softmax
operator results in the acquisition of Temporal Class Attention Masks (TCAMs),
which are denoted as Ac

xi
∈ RN×c. Next, the TCAM for each class is integrated

into the query video feature ψ(xi) to obtain the attention features Ãc
xi

for each
action category in the query video. With the weighted temporal average pooling
[12] operation for each class on Ãc

xi
, we obtain a video-level feature representa-

tion Xxi
inRc×d of the query video xi for each class. Simultaneously, we apply

average temporal pooling to the sample set videos’ feature ψ(S) to obtain the
feature representation XS ∈ Rc∗k×d of the sample set videos. We further average
the k instances for computational convenience to obtain XS ∈ Rc×d. The final
classification score of the query xi is given by formula (3)

Ŷ c
xi

=
exp(− ‖ Xxi

(c, :) − XS(c, :) ‖2)∑C
i=1 exp(− ‖ Xxi

(i, :) − XS(i, :) ‖2)
(3)

Where Xxi
is the video-level representation of the query video for each class, X̄S

is the video-level representation for each class, and C is the number of categories.

Loss. Because we are working in a weakly-supervised context, our training is
restricted to utilizing classification labels at the video level. After the video
classifier obtains Ŷ c

xi
, we use Y c

xi
to represent the ground truth label of the query

video level. The classification loss is computed using the formula (4) to optimize
the network and improve the differentiation of video-level categories.

Localization. After the video classifier obtains the classification result of the
query video xi, we can transform the TCSVs P̃c into the similarity score P̃ of
the target category. A threshold is applied to the similarity scores in order to
decide whether each snippet should be classified as part of the foreground or
the background. The continuous foreground snippets are then combined to form
the localization result. However, to address the potential errors in predicted
boundaries arising from localization, we employ a boundary-check algorithm to
correct any potential errors in the predicted boundaries. Following the standard
practice in action localization, the proposed method predicts a set of action
instances denoted as (s, e, p), where s represents the predicted start time, e
represents the predicted end time, and p represents the predicted score of the



STN-BA: Weakly-Supervised Few-Shot Temporal Action Localization 195

action instance. The prediction score is computed by taking the average of the
similarity scores of all snippets within the start and end segments.

Loss = −
C∑

c=1

Y c
xi
log (Ŷ c

xi
) (4)

3.4 Localization and Boundary-Check Algorithm

Algorithm 1. Boundary error rate check algorithm
Input: start, end, scores[Nq], error_rate
Output: start, end
1: Given have predicted action instances: startandend, scores of query video snippets:

scores[Nq], and an errorrate to check whether the boundary is correct.
2: while left_flag ← True do
3: score ← scores[start − 1]
4: Threshold = score

average(scores(start,end))

5: if Threshold > Errorrate then
6: start = start - 1
7: else
8: left_flag ← False
9: end if

10: end while
11: while right_flag ← True do
12: score ← scores[end + 1]
13: Threshold = score

average(scores(start,end))

14: if Threshold > Error_rate then
15: end = end + 1
16: else
17: right_flag ← False
18: end if
19: end while
20: return start, end

Boundary-Check Algorithm. The boundary-check algorithm consists of two
components: the boundary error rate check algorithm and the fault tolerance
algorithm. The boundary error rate check algorithm is responsible for reassess-
ing the accuracy of the category (foreground or background) assigned to the
boundary snippets of the predicted action instances. It calculates the boundary
segment’s error rate to estimate the misclassification probability. The step-by-
step procedure is detailed in Algorithm 1.

The fault tolerance algorithm is crafted to rectify possible errors within snip-
pets situated between two action instances in an untrimmed video. By setting a
fault tolerance value, which represents the maximum allowable number of snip-
pets between two action instances, the algorithm analyzes the number of snippets
between each pair of consecutive action instances and corrects snippets that may
be incorrect.
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4 Experiment

4.1 Experiment Setup

Dataset. We assess the effectiveness of our approach using two widely employed
datasets: THUMOS14 [5] and ActivityNet1.2 [3]. The THUMOS14 dataset
encompasses 200 validation and 213 testing videos, featuring temporal anno-
tations for 20 distinct classes. Among its action instances, the short ones are
fractions of a second, and the long ones are several seconds. ActivityNet1.2
dataset comprises 4819 training videos and 2383 validation videos, encompassing
annotations for 100 activity classes.

Setup. Few-shot learning requires that classes cannot be repeated during
training and testing. Therefore, according to the setting of previous work
[11,18,22,23], in THUMOS14, We employ a subset of the validation set contain-
ing six classes as the base classes for training the network model. Subsequently,
the remaining 14 classes are considered novel classes for evaluating our weakly-
supervised few-shot temporal action localization network. For ActivityNet 1.2,
we split the 100 classes into 80/20 parts. The class division method we use is
sequential division.

Metric. We adopt the standard metric [11,18,21–23], mean Average Precision
(mAP) at different IoU thresholds (mAP@IoU) to evaluate our network. Specifi-
cally, on the THUMOS14 dataset, the mAP was evaluated at an IoU threshold of
0.5. In contrast, on ActivityNet1.2, the final mAP was computed as the average
of mAP assessed across ten evenly spaced IoU thresholds ranging from 0.5 to
0.95. Additionally, the prediction accuracy for the untrimmed video-level cate-
gories: top-1 and top-3, is also reported in our experiment.

Implementation Details. Our network is optimized using Adam [6] with an
initial learning rate of 10−4 and a 2x reduction in learning rate after 1000
episodes, a weight decay coefficient of 5 · 10(−4), an error rate is set to 0.75,
the error tolerance rate is set to 2 and a dropout rate of 0.5. We train 5000
episodes. We utilized an RTX 3090 graphics card for our experiments. In the
case of one-shot learning, the model’s training time was approximately 15min,
whereas, for five-shot learning, the training time was extended to about 40min.

4.2 Main Experimental Results

We conducted evaluations of our approach on both the THUMOS14 and Activ-
ityNet1.2 datasets. Table 1 displays a comparison between our approach and
other state-of-the-art methods, clearly indicating that our method outperforms
all existing few-shot temporal action localization methods, spanning both fully
and weakly supervised paradigms. To elaborate further, on the THUMOS14
dataset, our performance in terms of mAP@0.5 exceeds the current best per-
formance [18] by 4.68%. For the ActivityNet1.2 dataset, our performance in
mAP@0.5 surpasses the current best performance [18] by around 10%, and there
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is an improvement of approximately 8% in the mAP (avg) performance (average
mAP between mAP@0.5 and mAP@0.95).

Table 2 illustrates that, despite a minor increase in computational cost com-
pared to WOKB [18], our method delivers superior performance.

Table 1. Comparison of the proposed method with the state-of-the-art few-shot tem-
poral action localization method on THUMOS14 and on the ActivityNet1.2, Where
@1 denotes one-shot and @5 denotes five-shot

Supervision Method THUMOS14 ActivityNet1.2
mAP@0.5 mAP@0.5 mAP@0.5:0.95

Full CDC@1 [15] 6.4 8.2 2.4
Full CDC@5 [15] 6.5 8.6 2.5
Full Sl. Window@1 [23] 13.6 22.3 9.8
Full Sl. Window@5 [23] 14 23.1 10
Full QAT@1 [11] 9.1 44.9 25.9
Full QAT@5 [11] 13.8 51.8 30.2
Weak WOKB@1 [18] 13.93 45.76 31.4
Weak WOKB@5 [18] 14.2 52.59 35.3
Weak SPN@1 [26] 14.3 41.9 26.5
Weak SPN@5 [26] 16 45.0 28.8
Weak Ours@1 16.02 55.54 38.83
Weak Ours@5 18.92 57.92 40.17

4.3 Ablation Experiment

We conducted ablation experiments on our model to illustrate the effectiveness of
the two core components of our method: the spatial-temporal attention module
and the Boundary-check algorithm. For this section, we opted for the 5-way 1-
shot evaluation setup on the ActivityNet1.2 dataset. This decision was driven
by the better alignment of our method with the localization task characteristic
of the ActivityNet1.2 dataset.

Table 2. Comparison of the computational cost FLOPs (G) and Parameters (M) of
the different methods and their performance on ActivityNet1.2.

Method FLOPs Param mAP@0.5:0.95

WOKB [18] 2.07G 2.46M 31.4
Our 2.23G 2.85M 38.83
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Table 3. Ablation experiments of the spatial and temporal attention network, the
1-shot test is performed on the ActivityNet1.2.

Spatial Attention Temporal Attention mAP@0.5 mAP@0.5:0.95 Top-1 Top-2

× × 49.3 33.59 75.6 93.8
× √

53.23 36.86 79.6 95.1√ × 50.1 33.96 77.6 94.5√ √
55.84 39.22 80.8 97.7

The Impact of the Spatial-Temporal Attention Module on the Model.
Table 3 shows the performance disparities of our method when utilizing different
attention models. Notably, the integration of both temporal and spatial attention
into the model leads to a significant performance improvement. This outcome
unequivocally underscores the efficacy of the spatial-temporal attention model
in our approach.

Table 4. Ablation experiments of the boundary-check algorithm, the 1-shot test is
performed on the ActivityNet1.2.

error rate fault tolerate mAP@0.5 mAP@0.5:0.95

× 0 49.3 33.59
0.95 2 53.53 37.95
0.85 2 55.83 38.64
0.75 2 56.75 38.91
0.65 2 53.15 36.45
0.75 0 52.86 37.01
0.75 1 54.28 37.34
0.75 3 52.75 38.18
0.75 4 52.55 36.54

The Impact of the Boundary-Check Algorithm. We evaluated our method
under different error rates and fault tolerances values in Table 4. It is evident
that the localization performance mAP@0.5 and mAP (avg) is the best when
values of error rates and fault tolerances are 0.75 and 2. More specifically, when
the model uses the boundary-check algorithm and sets the befitting values of
error rates and fault tolerances, the model performs significantly better than
without the boundary-check algorithm. The fault tolerance is set at 0 express
not using the fault tolerance algorithm.
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Table 5. Training in one dataset testing in another dataset, showing the tempo-
ral action localization performance mAP (%) under different tIoU thresholds, THU-
MOS14 → ActivityNet1.2 means training on THUMOS14, on ActivityNet1.2 carry out
testing

tIoU mAP@0.5 Top-1 Top-3

THUMOS14 → ActivityNet1.2@1 30.85 57.95 90.4
THUMOS14 → ActivityNet1.2@5 43.3 73.6 96.76
ActivityNet1.2 → THUMOS14@1 11.8 65.8 95
ActivityNet1.2 → THUMOS14@5 21.1 82.56 98.06

4.4 Generalization Test

In our generalization testing, we employ the THUMOS14 dataset for training and
the ActivityNet1.2 dataset for testing. The THUMOS14 dataset predominantly
comprises athletic actions such as shot put and pole vault, while the Activi-
tyNet1.2 dataset primarily consists of common daily activities like handwashing
and mopping. Given the substantial disparities in action categories between these
two datasets, training on one and testing on the other allows us to substantiate
our model’s generalization performance.

Table 5 demonstrates our test results, indicating that even when we employ
different datasets for model training, a satisfactory level of performance can still
be achieved. Therefore, our model exhibits robust generalization capabilities.

5 Conclusion

This paper proposes a novel WFTAL method in video understanding. The
method focuses on constructing the spatial-temporal relationship of actions in
the video to ensure good generalization performance. The boundary-check algo-
rithm is employed to correct prediction errors and improve localization perfor-
mance. The experimental outcomes obtained from the THUMOS14 and Activi-
tyNet1.2 datasets showcase the efficacy of our proposed method. These outcomes
underscore the potential of our approach in the domain of video comprehension
and action localization.
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Abstract. Voxel-based 3D object detection methods have gained more
popularity in autonomous driving. However, due to the sparse nature
of LiDAR point clouds, voxels from conventional cubic partition lead to
incomplete representation of objects in farther range. This poses signif-
icant challenges to 3D object perception. In this paper, we propose a
novel 3D object detector dubbed SVFNeXt, a Sparse Voxel Fusion
Network that performs cross-representation (X) feature learning. It is
because cylindrical voxel representation considers the rotational or radial
scanning of LiDAR that we can better explore the inherent 3D geo-
metric structure of point clouds. To further enchance cubic voxel fea-
tures, we innovatively integrates the features of cylindrical voxels into
cubic voxels, incorporating both local and global features. We partic-
ularly attend to informative voxels by two additional losses, striking a
good speed-accuracy tradeoff. Extensive experiments on the WOD and
KITTI datasets demonstrate consistent improvements over baselines.
Our SVFNeXt achieves competitive results compared to state-of-the-art
methods, especially for small objects(e.g., cyclist, pedestrian).

Keywords: 3D object detection · Autonomous driving · Voxel fusion

1 Introduction

3D object detection is an indispensable component in AD perception system
and robotic domain. LiDAR-based 3D object detection has drawn the focus of
researchers due to the rich depth and geometry provided by LiDAR point clouds.
However, most methods primarily excel in large or densely sampled objects(e.g.,
car) while they often struggle to achieve satisfactory detection performance on
small and distant hard cases(e.g., cyclist, pedestrian).

Previous voxel-based methods [2–8] voxelize point clouds and perform 3D
sparse convolution on the voxels to extract features. However, due to the inher-
ent sparsity and varying density of LiDAR point clouds, detectors utilizing ordi-
nary cubic voxelization suffer from an increased number of empty voxels. This
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results in an incomplete representation of objects in the point clouds, miss-
ing object-level information. Additionally, the imbalanced points distribution in
cubic voxels inevitably introduces significant computational overhead.

Building upon the limitations of cubic voxelization, [9] introduces a cylindri-
cal voxelization approach. It partitions the point cloud in a manner that aligns
with the rotational or radial scanning pattern of LiDAR. Naturally, voxels should
be larger in regions where the point cloud becomes sparser. This voxel repre-
sentation preserves the spatial structure of objects, resulting in more compact
voxel features. It has been proven to exhibit superior performance in outdoor
point cloud semantic segmentation task. Prior to it, there have been explorations
of LiDAR-based multi-view fusion methods [10,11] applied to object detection.
These methods concatenate voxel/pillar features from bird’s-eye view and spher-
ical/cylindrical view, and then propagate the features to points through voxel-
point mapping to obtain point-level semantics.

From the above methods, they have the following drawbacks: 1) Traditional
LiDAR-based detectors that solely use cubic voxels suffer from information loss
due to inherent voxelization limitations, resulting in poor detection performance
on small objects. 2) Methods [10,11] that fuse multiple representations of LiDAR
point clouds employ a heavy voxel feature encoder (e.g., stacked PointNet) before
the 3D backbone, which increases time and memory consumption. Although
point-level features can provide fine-grained semantic information, they unavoid-
ably introduce detrimental background noise from different views.

To address the aforementioned issues, we present a simple yet efficient 3D
object detector, termed SVFNeXt, that effectively utilizes the complementary
information from LiDAR cross-representation learning through sparse voxel
fusion. Our method comprises three parts: Dynamic Distance-aware Cylindri-
cal Voxelization (DDCV), Foreground Centroid-Voxel Selection-Query-Fusion
(FCVSQF) and Object-aware Center-Voxel Transformer (OCVT).

Specifically, In the DDCV module, we adapt the cylindrical voxelization in
[9] with non-uniform distance intervals along the ρ-axis. Consequently, much
larger voxels are generated for distant regions. Furthermore, dynamic voxeliza-
tion [11] avoids hard-coding the number of points within each voxel, maximizing
points utilization without dropping any points, hence minimizing information
loss. The FCVSQF module employs the centroid of points within each voxel
as the query source and target instead of the voxel center, thus preserving the
original 3D geometry and accurately representing voxel features. In order to
save memory and prevent incurring background voxel noise, we focus on a few
important foreground cubic centroid-voxels for local features query and fusion in
cylindrical voxels. Additionally, we design a loss function to ensure the sampling
of foreground centroid-voxels. The OCVT module further enhances the refined
cubic voxel features by capturing long-range object-level global information via
transformer [12]. It specially attends to voxels surrounding the object center.

The three modules unite to develop the final enhanced cubic voxels for
compact and accurate detection. Extensive experiments on public benchmarks
demonstrate that SVFNeXt significantly boosts the detection performance due
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to sparse voxel fusion, especially on small and distant objects. Meanwhile, we
also show comparable results with the state-of-the-art methods on large objects
(e.g., car, vehicle).

2 Related Work

2.1 Voxel-Based 3D Detectors

Mainstream voxel-based methods [2–4,7,8,22] typically partition the point cloud
into cubic voxels and extract features using sparse convolutions. [2] utilizes more
efficient 3D sparse convolutions to accelerate VoxelNet [6]. [7] collapses voxels
into pillars along the z-axis and employs 2D convolutions to speed up. [3] refines
proposals with RoI-grid pooling in a second stage. [4,8] aggregate voxel features
using key points for box refinement. [22] addresses uneven point cloud density
by considering point density within voxels. Although the regular grid structure
of cubic voxelization enables efficient feature extraction with CNN, the receptive
field is limited by the convolutional kernel. In contrast, our method enlarges the
receptive field indirectly through cross-representation query.

2.2 Fusion-Based 3D Detectors

Fusion-based methods can be broadly categorized into multi-modal and multi-
representation fusion. The former absorbs data from different sensors (e.g.,
LiDAR and camera), and has been supported by numerous methods [13,15,16].
Some [13,15] encode features from different modalities separately and fuse at the
proposal-level or in the BEV feature map, while [16] employs attention mecha-
nisms for feature fusion and alignment. However, feature misalignment and the
additional branch may impact efficiency and real-time performance. The latter
usually fuses data from the same source (e.g., LiDAR). [10,11] attempt point-
level fusion of different views, but they may introduce noise and have limited
impact on the receptive field. Nevertheless, our approach selectively enhances
foreground centroid-voxels, with another alternative LiDAR representation to
expand the receptive field and leverage complementary information.

2.3 Transformer-Based 3D Detectors

Transformer [12] has recently demonstrated its superiority in 2D vision tasks.
Exploiting the permutation invariance of point clouds, applying transformer to
3D vision is a favorable choice. In pioneer works [17–21], attention mechanisms
are employed at different stages of the 3D detection pipeline (e.g., 3D backbone
[17–19], dense head [20], RoI head [21,22]) to learn contextual information. How-
ever, directly applying vanilla transformer to massive point clouds is infeasible
in terms of time and space. Therefore, we focus specifically on voxels near the
object center to capture long-range dependencies.
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3 SVFNeXt for 3D Object Detection

We propose a sparse cross-representation voxel feature fusion and refinement
method called SVFNeXt, integrating voxel-level features during the sparse fea-
tures extraction. Our objective is to make minimal modifications and provide a
simple and efficient plugin that can be easily incorporated into generic detec-
tion pipeline, as illustrated in Fig. 1. SVFNeXt consists primarily of three mod-
ules: Dynamic Distance-aware Cylindrical Voxelization (Sect. 3.1), Foreground
Centroid-Voxel Selection-Query-Fusion (Sect. 3.2), and Object-aware Center-
Voxel Transformer (Sect. 3.3).

Point Cloud

DDCV

Scatter

SpConv3D SpConv3D

FCVSQF

OCVT

Scatter

SpConv3DSpConv3D

FCVSQF

OCVT

2D Dense Feature

Height Compression

2D backbone

Voxelization 3D backboone

Cubic Voxelization

Cylindrical Voxelization

Dense Head(+RoI Head)

Post Processing

Fig. 1. A schematic overview of SVFNeXt.

3.1 Dynamic Distance-Aware Cylindrical Voxelization

To maintain the 3D geometric structure of objects in point clouds, adapt to the
rotational scanning manner of LiDAR and varying sparsity of point clouds, we
introduce dynamic distance-aware cylindrical voxelization, as shown in Fig. 2.
This technique converts points from Cartesian coordinate to Cylindrical coor-
dinate and partitions voxels unevenly along the ρ-axis without dropping any
points, unlike [9].

Given a point cloud Pcart = {(xi, yi, zi)}Np
i=1 defined in Cartesian coordi-

nate system, its Cylindrical coordinate representation is calculated as Pcyl =
{(ρi, ϕi, zi)}Np

i=1, where

ρi =
√

x2
i + y2

i ϕi = arctan(
yi
xi

) zi = zi (1)

where Np is the number of points in the point cloud.
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Dynamic voxelization [11] means points are assigned to the volume space of
the grid dynamicly based on their spatial coordinates. As for cylindrical points
set Pcyl and voxels set Vcyl, voxelization can be described as a bidirectional
mapping between points and voxels, formally,

Vcyl = {vj | Mv(pi) = vj , pi ∈ Pcyl,∀i}Mj=1 (2)

Mp(vj) = {pi | ∀pi ∈ vj , vj ∈ Vcyl} (3)

where M is the number of non-empty voxels, Mv(·) denotes mapping from point
to voxel, Mp(·) denotes mapping from voxel to point.

Fig. 2. Top-down view of regular(left, Δρ1 = Δρ2 = Δρ3) vs. distance-aware(right,
Δρ1 < Δρ2 < Δρ3) cylindrical voxelization.

Distance-aware cylindrical voxelization involves unequal partition across dif-
ferent ρ intervals along the ρ-axis in the Cylindrical coordinate system. Thus,
the farther away from the origin(i.e., LiDAR, O in Fig. 2), the sparser points,
the larger voxels, allowing more points to reside in, as shown in Fig. 2(b). Define
voxel size as Vs = (Δρ,Δϕ,Δz), discussed by cases,

Vs =

⎧⎪⎨
⎪⎩

(Δρ1,Δϕ,Δz), 0 � ρ < ρ1

(Δρ2,Δϕ,Δz), ρ1 � ρ < ρ2

(Δρ3,Δϕ,Δz), ρ � ρ2

(4)

where Δρ1 < Δρ2 < Δρ3, we can also term [0, ρ1) as close, [ρ1, ρ2) as medium
and [ρ2,+∞) as far.

3.2 Foreground Centroid-Voxel Selection-Query-Fusion

Various approaches [3,4,8,21] have been explored to determine the voxel center
as a representation of voxel feature position. However, they tend to treat vox-
els with different point distributions equally, inevitably misleading model and
overlooking important geometric details. Observed by [22], we adopt voxel cen-
troid as a position representative to achieve accurate feature querying. Besides,
centroid aligns well with our DDCV module, which captures the distribution
pattern of points within each voxel. Hence, we should first locate the centroid of
each voxel after initial cubic and cylindrical voxelization.
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Let’s assume cylindrical voxels set Vcyl = {vj = {I
vj

cyl, F
vj

cyl}}Mj=1, cubic voxels
set Vcub = {ui = {Iui

cub, F
ui

cub}}Ni=1, for each representation, I ∈ R
3 is the index

of voxel and F ∈ R
3+c is the corresponding voxel feature, c is the number of

channels of extra features(e.g., intensity, elongation). To illustrate, taking Vcyl

as an example, voxel centroid can be computed by taking the average spatial
coordinates of the points within the voxel. Specifically, for vj ∈ Vcyl, centroid

Cj
cyl =

1
N (vj)

∑
pj∈vj

pj (5)

where pj = (ρj , ϕj , zj), N (vj) is the number of points within the voxel vj . Thus,
for cubic voxels set Vcub, we can also compute voxel centroid Ci

cub the same way
as Eq. 5.

Fig. 3. The FCVSQF module. Initially, we locate the centroids and retrieve centroid-
voxel features of both representations at scale s. We then selectively fuse foreground
cubic centroid-voxels with cylindrical centroid-voxels by ball-query, resulting in FCs

cyl)p.
Finally, we fuse the pooled features with the selected foreground cubic centroid-voxel
features (FCs

cub)f , to generate refined cubic voxel features (FCs
cub)

r
f .

Centroid-Voxel Features Retrieval. After obtaining the voxel centroids from
two different voxel representations, we perform Scale and Group operations to get
centroids Cs

∗ ∈ R
n∗×3 and corresponding voxel(i.e., centroid-voxel) indices ICs∗ ∈

R
n∗×3 from feature map Fs

∗ ∈ R
N∗×cs from 3D sparse CNN at scale s. Then,

Search the whole sparse feature map Fs
∗ for centroid-voxels based on indices

and retrieve the associated voxel features FCs∗ ∈ R
n∗×cs , Here, ∗ = {cub, cyl},

n∗ < N∗, cs is the channels of voxel features. Formally, given the initial voxel
indices I∗, voxel centroids C∗ and downsample factors D = {1, 2, 4, 8} of feature
map F∗ at each scale,

FCs∗ = S2 (G (S1(I∗,Ds),C∗) ,Fs
∗) (6)

where s ∈ {1, 2, 3, 4}, S1 denotes Scale, G denotes Group, S2 denotes Search.
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Centroid-Voxels Selection-Query-Fusion. To obtain refined cubic centroid-
voxel features, it is crucial to select the foreground centroid-voxels for feature
aggregation. We focus on those that are important rather than all. Thus avoiding
background noise from cylindrical centroid-voxels, which offers no benefit to
detection. Unlike [17], which uniformly aggregates features from all non-empty
voxels. Moreover, our method ensures expanded effective receptive field while
maintaining high efficiency.

We follow the three steps: foreground cubic centroid-voxels selection, cross-
representation query, and fusion. Referring to Fig. 3, with centroid-voxels from
both representations involved, we focus more on the cubic one following the com-
mon practice, and the other as an auxiliary. Firstly, we select the top-k centroid-
voxels as the query source according to foreground scores. Then, perform MSG
ball-query [1] within the cylindrical centroid-voxels based on the related cen-
troids. This allows us to pool cylindrical features within a local range and pro-
vide more fine-grained geometric information. Finally, we fuse the pooled features
from cylindrical centroid-voxels with the selected foreground cubic centroid-voxel
features. As a result, we obtain the refined features.

Let’s assume that f, p, r denote foreground, pooled and refined, S,Q,F denote
Selection, Query and Fusion, respectively, {(FCs

cub)f , (FCs
cyl)p, (F

Cs
cub)

r
f} ∈ R

nf×cs ,
(Cs

cub)f ∈ R
nf×3, nf is the number of selected foreground cubic centroid-voxels.

Accordingly, the SQF part illustrated by Fig. 3 can be formulated as[
(FCs

cub)f , (Cs
cub)f

]
= S

(
SubM3d(FCs

cub),Cs
cub

)
(7)

(FCs
cyl)p = Linear

(
Q

(
(Cs

cub)f ,Cs
cyl,F

Cs
cyl

))
(8)

(FCs
cub)

r
f = F

(
(FCs

cub)f , (FCs
cyl)p

)
(9)

3.3 Object-Aware Center-Voxel Transformer

Previously, we obtain refined foreground cubic centroid-voxel features marked as
features of interest to attend. They include fine-grained features from another
more informative cylindrical representation, partially compensating for the loss
of object information represented by cubic voxels. However, they may poten-
tially lack interaction due to independent feature aggregation. Furthermore, it
is essential to incorporate global information into the feature for detecting small
and distant objects. Therefore, we propose OCVT, guided by the object center,
to effectively capture long-range context at object level, as shown in Fig. 4.

3D Sparse Heatmap Generation. Leveraging the selected foreground cen-
troids (Cs

cub)f from FCVSQF module, given each annotated bounding box Bk

centered at (xk, yk, zk), we calculate the distance between center of Bk and cen-
troid (x̂k

i , ŷ
k
i , ẑki ) situated at Bk in (Cs

cub)f . Then, a 3D Gaussian kernel is applied
to confine the heatmap response within the range of [0,1]. Formally,

Ĥi = exp
(

− (xk − x̂k
i )

2 + (yk − ŷk
i )2 + (zk − ẑki )2

2σ2
k

)
∈ [0, 1] (10)
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Fig. 4. The OCVT module. We first generate a 3D sparse heatmap based on Foreground
Centroid-voxels, then sample Center-voxels around object center according to heatmap
values, to perceive long-range object-level context with transformer encoder.

where σk is an object size-adaptive standard deviation [24], Ĥi is the heatmap
value generated at centroid i. Taking all centroids, we obtain the final target 3D
Sparse Heatmap Ĥ, calculating a loss with the predicted heatmap H. We thereby
can carefully choose centroid-voxels closely aligned with the object center.

Center-Voxel Transformer. We focus solely on a subset of centroid-voxels
closest to the object center to build object-level contextual dependencies, thereby
improving efficiency. Similar to the Selection part in Fig. 3, the location of top
K voxels based on the predicted heatmap scores will be taken out as the center-
voxels. We denote center-voxel features as (FCs

cub)ctr, center centroids as (Cs
cub)ctr,

they are then fed into Transformer encoder block:

(Fs
cub)ctr = T (Q,K,V) (11)

Q = Wq(FCs
cub)ctr + Epos,K = Wk(FCs

cub)ctr + Epos,V = Wv(FCs
cub)ctr (12)

where T denotes Transformer, Q, K, V are query, key, value features, Epos is
positional embedding transformed by a linear layer applied to (Cs

cub)ctr .
Eventually, we scatter (Fs

cub)ctr back to the 3D sparse feature map at scale s,
resulting in the enhanced cubic voxel features. The final enchanced features are
equipped with both rich local features from cylindrical voxels, and long-range
global contextual dependencies from object centers.

3.4 Loss Functions

The overall loss function comprises four components: foreground loss and
heatmap loss from the 3D backbone, RPN loss and RCNN loss (for 2-stage
models). We adhere to [3,4] for RPN loss Lrpn and RCNN loss Lrcnn. Regarding
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the FCVSQF module, we employ foreground loss Lfore computed by focal loss
[26] with BCE. For the OCVT module, we utilize sparse heatmap loss Lhm cal-
culated by smooth-L1 loss. The final loss is the weighted sum of the four parts
above: L = w1Lfore + w2Lhm + w3Lrpn + w4Lrcnn, the weights we used in our
experiments are [1, 1, 1, 1], respectively.

4 Experiments

4.1 Datasets

KITTI. The KITTI dataset contains 7481 training samples and 7518 testing
samples. Typically, the training data are divided into a train set with 3712
samples and a val set with 3769 samples. It uses average precision (AP) on easy,
moderate and hard levels as evaluation metric.

Waymo Open Dataset. The WOD dataset consists of 798 sequences for train-
ing and 202 sequences for validation. The evaluation metrics include average
precision (AP) and average precision weighted by heading (APH). We report
the results on both LEVEL 1 (L1) and LEVEL 2 (L2) difficulty levels.

4.2 Implementation Details

For the cubic voxelization, we follow PV-RCNN [4] settings (i.e., voxel size and
point cloud range) on both datasets. For the cylindrical voxelization, the ranges
are [0, 80] m, [−π/2, π/2] rad, and [ −3, 1] m along the ρ, ϕ and z axis,
respectively, with voxel size of (0.05 m, π/180 rad, 0.1 m) on KITTI. While on
WOD, the ranges are [0, 107.84] m, [−π, π] rad and [−2, 4] m along the ρ, ϕ
and z axis. The voxel size is (Δρ, π/360 rad, 0.15 m), Δρ varies as the DDCV
module illustrated: the ranges across distance are [0, 30.24) m, [30.24, 50.24) m,
[50.24, 107.84] m, where the Δρ is set as 0.09 m, 0.10 m and 0.15 m accordingly.

4.3 Main Results

KITTI. With [2–5] as our baselines, the experimental results on val and test set
are presented in Table 1 and Table 2, respectively. Our model exhibits notable
improvements in both 3D and BEV mAP(e.g., 1.17%, 1.67%, and 3.02% 3D
AP on Mod. level). Notably, our approach significantly enhances performance
for Ped. and Cyc. categories at the moderate difficulty while maintaining strong
capability for Car class. A visual comparison shown in Fig. 5 explains our method
can better detect, align and orient objects. Moreover, our method shows compet-
itive results on the test set and further verifys the effectiveness of our method.
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Table 1. Performance comparison of 3D/BEV detection with AP R40 on KITTI val
set. †: re-implemented by [27]. ‡: reported by [27]. SVF: Sparse Voxel Fusion.

Table 2. Performance comparison with different models on the KITTI test set for Car
and Cyclist. The top-2 best performances are highlighted in bold.

Models Car 3D (IoU = 0.7) Cyclist 3D (IoU = 0.5)

Easy Mod. Hard Easy Mod. Hard

SECOND [2] 83.34 72.55 65.82 71.33 52.08 45.83

PointPillars [7] 82.58 74.31 68.99 77.10 58.65 51.92

PointRCNN [14] 86.96 75.64 70.70 74.96 58.82 52.53

3DSSD [25] 88.36 79.57 74.55 82.48 64.10 56.90

PV-RCNN [4] 90.25 81.43 76.82 78.60 63.71 57.65

Voxel-RCNN [3] 90.90 81.62 77.06 – – –

PDV [22] 90.43 81.86 77.36 83.04 67.81 60.46

CT3D [21] 87.83 81.77 77.16 – – –

SVFNeXt(Ours) 88.40 81.69 77.09 83.49 66.45 59.60

Table 3. Performance comparison of 3D detection on WOD val set, training with 20%
train set. ‡: reported by [27]. SVF: Sparse Voxel Fusion.

WOD. We conduct experiments on the large-scale WOD and report the results
in Table 3 and Table 4 on the val set. As shown in Table 3, our method consis-
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Table 4. The detection results on WOD val set, training with full train set. †: re-
implemented by [27] with kernel size as 3 in 3D backbone.

Models Vehicle Pedestrian Cyclist ALL

L1(AP/APH) L2(AP/APH) L1(AP/APH) L2(AP/APH) L1(AP/APH) L2(AP/APH) L2(mAP/mAPH)

SECOND [2] 72.3/71.7 63.9/63.3 68.7/58.2 60.7/51.3 60.6/59.3 58.3/57.0 61.0/57.2

PointPillars [7] 72.1/71.5 63.6/63.1 70.6/56.7 62.8/50.3 64.4/62.3 61.9/59.9 62.8/57.8

Pillar-OD [11] 69.8/- -/- 72.5/- -/- -/- -/- -/-

VoxSeT [18] 76.0/- 68.2/- -/- -/- -/- -/- -/-

PDV [22] 76.9/76.3 69.3/68.8 74.2/66.0 65.9/58.3 68.7/67.6 66.5/65.4 67.2/64.2

CenterPoint-Voxel(SS) [5] 74.2/73.6 66.2/65.7 76.6/70.5 68.8/63.2 72.3/71.1 69.7/68.5 8.2/65.8

CenterPoint-Voxel(TS) [5] 76.6/76.0 68.9/68.4 79.0/73.4 71.0/65.8 72.1/71.0 69.5/68.5 69.8/67.6

PV-RCNN(anchor) [4] 77.5/76.9 69.0/68.4 75.0/65.6 66.0/57.6 67.8/66.4 65.4/64.0 66.8/63.3

PV-RCNN++(center) [8] 79.3/78.8 70.6/70.2 81.3/76.3 73.2/68.0 73.7/72.7 71.2/70.2 71.7/69.5

CenterFormer [20] 75.0/74.4 69.9/69.4 78.0/72.4 73.1/67.7 73.8/72.7 71.3/70.2 1.4/69.1

SWFormer [19] 77.8/77.3 69.2/68.8 80.9/72.7 72.5/64.9 -/- -/- -/-

VoxelNeXt† [23] 77.7/77.3 69.5/69.0 80.9/75.9 72.9/68.1 75.3/74.2 72.6/71.5 71.6/69.5

SVFNeXt(Ours) 78.1/77.6 69.8/69.4 81.2/76.2 73.2/68.5 75.8/74.6 73.0/71.9 72.0/69.9

Table 5. Effect of each component on WOD val set with [2] as baseline (blue), training
with 20% train set. DRCV: Regular voxelization in Fig. 2.

tently improves performance across all categories, similar to what we observe
in KITTI. Notably, our method significantly outperforms baselines on mAPH
(L2), with margins of 3.55%, 2.15%, 1.56%, and 2.63%, particularly for small
objects. Furthermore, we summarize the comparison between our approach and
state-of-the-art methods in Table 4.

4.4 Ablation Study

We conduct ablation studies on each proposed module shown in Table 5. The
unified effect of the three modules results in a significant gain of 3.6% mAPH
(L2) on both overall and far range (i.e., 50 m–inf).

DDCV. We observe that distance-aware voxelization (DDCV) outperforms reg-
ular voxelization (DRCV). The former shows improvements of 1.5%, 1.5% and
2.1% overall APH (L2) for Veh., Ped., and Cyc., respectively. This confirms the
capability of cylindrical voxels to provide richer information and refine object
representation.

FCVSQF. It utilizes foreground centroids for feature fusion, preserving origi-
nal geometric shape information. This optimization helps refine foreground voxel
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features and expands the receptive field through local query, particularly bene-
fiting sparse, small and distant objects. Notably, it brings a performance gain of
1.5% mAPH (L2) on far range.

OCVT. Guided by object center, it models long-range contextual dependencies
at object level with center-voxels, further refining the sparse voxel features. This
brings a slight performance gain of 0.7% and 0.9% mAPH (L2) on overall and
far range, respectively.

Fig. 5. A visual comparison of SVFNeXt vs. PV-RCNN on KITTI val set. Blue means
ground truth, and green means detection box.

5 Conclusion

In this paper, we propose SVFNeXt, a plug-and-play fusion-based 3D backbone
that can be applied to most voxel-based 3D detectors. As a rarely explored
approach, we address the limitations of conventional cubic voxels by leveraging
cylindrical voxels with more uniform points distribution, providing richer infor-
mation for accurate detection. Our centroid-based cross-voxel query and local
features fusion partially alleviate the issue of incomplete object representation
in cubic voxels, incorporating fine-grained features and enlarging receptive field.
What’s more, the object-level global information learning further refines feature
representations, benefiting the subsequent detection. Extensive experiments on
the public benchmarks serve as a compelling evidence of our model efficacy.

Note that our approach falls slightly short of the state-of-the-art methods
on larger objects in some case. Our subsequent endeavor involves delving into
model generalization to narrow this gap and enhance its performance.
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Abstract. Traffic sign recognition is a popular task in the field of com-
puter vision, but it faces challenges such as small object size, complex
scenes, and real-time requirements. In this paper, a model framework
is proposed to comprehensively improves the detection and recognition
of traffic signs. To address small objects, FlexCut data augmentation
is introduced, which generates non-repetitive sub-images through the
strategy of maximizing sample region cropping. This approach enhances
the detection ability of small objects. Additionally, PIoU loss function
based on keypoints is also investigated, which accurately guides the posi-
tion and shape of the bounding boxes by considering factors such as
overlap area, distance, aspect ratio, and geometric size. Furthermore,
the YOLOv5s network is enhanced by integrating the TransformerBlock
module, SimAM attention mechanism, and Decoupled detection head
to enhance the receptive field and feature extraction capability. In the
experiments conducted on the TT100K dataset,, the proposed YOLOv5T
achieves significant performance with an mAP@0.5 of 87.5% and an
mAP@0.5:0.95 of 66.1%. These results validate the effectiveness of the
proposed approach in addressing traffic sign recognition problems.

Keywords: Small object · Traffic sign recognition · Data
augmentation · Loss function

1 Introduction

Traffic signs are crucial for guiding and warning vehicles on roads. Various meth-
ods have been developed for traffic sign detection, which can be broadly classified
into four categories: traditional handcrafted features, machine learning, LIDAR-
based approaches, and deep learning methods. However, traditional approaches
have limitations in terms of accuracy, generalization, and robustness, making
them unsuitable for real-time applications. Although machine learning methods
can assist in fast detection, they often require manual feature engineering and lag
behind deep learning methods in terms of accuracy and real-time performance.
Recently, there has been growing interest in object detection algorithms based
on mobile laser scanning technology. However, these methods face challenges in
data collection, calibration, and standardization, which can result in higher costs
and pose as obstacles to their widespread adoption.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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To comprehensively improve the effectiveness of traffic sign recognition, an
innovative framework for traffic sign detection and recognition is proposed.
Firstly, FlexCut data augmentation method is introduced to specifically tackle
small object sizes. By maximizing the sample region cropping strategy and
extreme geometric shapes, non-repetitive sub-images containing all samples are
generated, the method generates non-repetitive sub-images that encompass all
the samples. This significantly improves the model’s detection capability for
small objects. Secondly, a keypoint-based PIoU loss function is proposed, which
takes into account the overlap area, distance, aspect ratio and geometric dimen-
sions between the object box and predicted box. This precise loss function accu-
rately guides the model in learning the position and shape of the object box.
Finally, the YOLOv5s network is enhanced by integrating the TransformerBlock
module, SimAM attention mechanism, and Decoupled detection head. This inte-
gration aims to improve the model’s receptive field and feature extraction capa-
bility, thereby effectively enhancing the accuracy of traffic sign detection and
recognition. The effectiveness of the proposed YOLOv5T model in addressing
key issues in traffic sign recognition is validated through experimental evalua-
tion on the TT100K dataset. The results demonstrate excellent performance and
accuracy at different IoU thresholds. The main contributes are as follows:

– FlexCut data augmentation method is introduced to enhance the detection
capability for small objects.

– PIoU loss function based on key points is proposed to accurately guide the
model in learning the position and shape of the object box.

– A model named YOLOv5T is designed by integrating the TransformerBlock
module, SimAM attention mechanism and Decoupled detection head to
improve the accuracy of traffic sign detection and recognition.

2 Related Work

2.1 Data Augmentation

The robustness of a model can be enhanced by effective data augmentation
through simulating realistic data scenarios, generating diverse equivalent data
from limited samples and increasing dataset diversity. Operations like rotation,
flipping, and aspect ratio adjustment introduces variations to single images.
Another approach involves combining contextual information from different
images, including Mixup [22], Cutout [4], CutMix [21], and Mosaic [2]. Mixup
blends two randomly selected images with weighted labels. Cutout removes
regions from an image to simulate object occlusion. CutMix replaces the cutout
region with a corresponding region from another image, and labels are allocated
based on the filled region’s proportion. YOLOv5’s Mosaic technique randomly
selects four images, applies scaling, crops, and combines them to create new
training samples.
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2.2 Loss Function

Early regression loss functions often used L1 norm, L2 norm, and other proxies.
UnitBox [19] proposed a cross-linked IoU loss function, which uses the over-
lap area between predicted and object boxes as a regression constraint. For
non-overlapping cases, Hamid Rezatofighi et al. introduced the generalized IoU
(GIoU) [10], which constrains the relative distance between the boxes. To address
the issue when the object box fully contains the predicted box, Zhaohui Zheng
et al. [23] introduced the distance-based IoU (DIoU), as GIoU fails to reflect the
actual situation in such cases. They further developed the complete IoU (CIoU)
[24], which incorporates overlap area, normalized center point distance, and
aspect ratio as constraints, resulting in improved accuracy and convergence speed
of bounding box regression. CIoU is an improvement over DIoU and reduces to
DIoU when the aspect ratios of the predicted and object boxes are consistent. In
current object detection tasks, IoU-based loss functions, including the popular
variant alpha-IoU [5], are extensively used for bounding box prediction.

2.3 Deep Learning For Small Object Detection

Li et al. [7] pioneered the use of GANs in small object detection, improving
traffic sign detection by generating high-resolution representations to bridge the
gap between small and large objects. Yang et al. [18] proposed a coarse-to-
fine approach to mitigate the loss of small details caused by downsampling in
traffic sign detection. Liu et al. [9] introduced IPGnet (Image Pyramid Guidance
Network) to incorporate rich spatial and semantic information at each layer. Leng
et al. [6] developed IENet (Internal-External Network) for robust detection using
both appearance and context. Yan et al. [15] proposed LocalNet, which focuses
on detailed information modeling to enhance small object representation. Lim
et al. [8] leveraged multi-scale features and additional contextual information.
Singh et al. [13] introduced SNIP (Scale Normalization for Image Pyramids)
for selective gradient backpropagation and scale normalization in multi-scale
training. Chen et al. [3] presented a feedback-driven data augmentation model
for small object detection. Yang et al. [17] proposed an end-to-end deep network
with a two-stage strategy for traffic sign recognition. Reveiro et al. [11] utilized
laser scanning for reverse calibration-based traffic sign detection.

3 Method

3.1 FlexCut Data Augmentation

The core idea of FlexCut data augmentation is to randomly group all sample
images within a batch (with 4 images per group), and then recombine the images
in each group using a strategy that maximizes cropping. This process is repeated
multiple times to generate diverse recombined image data. Figure 1 illustrates
the overall workflow of FlexCut data augmentation.
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Fig. 1. FlexCut Data Augmentation Flowchart

For each group of sample images with a size of N × N , denoted as Pt =
{P1, P2, P3, P4}, the minimum bounding box Bt = {Xt, Yt,Wt,Ht} that can
encompass the labels is defined, where (Xt, Yt) represents the center point coor-
dinates of the bounding box, and (Wt,Ht) represent its width and height. Our
objective is to extract, for each image within the group, a maximized sample
image of size N/2 × N/2 that contains all the labels while preserving their spa-
tial relationships.

While ensuring the inclusion of all labels, the size of the cropping box can
be determined using the following formula (Eq. 1):

Ktemp = max (N/2,W,H) (1)

Once the size of the cropping box is determined, it is necessary to establish the
central coordinates of the cropping box. At this point, the most extreme cropping
positions involve placing the cropping box at the bottom-right, bottom-left, top-
right, and top-left corners of the sample image. This leads to the constrained
range of cropping box center coordinates, as depicted in Eq. (2):

⎧
⎪⎪⎨

⎪⎪⎩

Xmax = min (X − W/2 + Ktemp /2, N − Ktemp /2)
Xmin = max (X + W/2 − Ktemp /2,Ktemp /2)
Ymax = min (Y − H/2 + Ktemp /2, N − Ktemp /2)
Ymin = max (Y + H/2 − Ktemp /2,Ktemp /2)

(2)

By randomly selecting values for X ′ ∈ [Xmin,Xmax] and Y ′ ∈ [Ymin, Ymax],
the maximized cropping box B′ = {X ′, Y ′,Ktemp,Ktemp} can be obtained. Crop-
ping of size Ktemp/2×Ktemp/2 can then be performed at the position with cen-
ter coordinates (X ′, Y ′), resulting in a maximized cropped image containing all
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labels. If Ktemp is greater than N/2, the maximized cropped image needs to be
proportionally resized to N/2 × N/2. Finally, by concatenating the resulting 4
maximized sample images, an augmented sample image of size N×N is obtained.
To enhance the diversity of the sample images, the FlexCut data augmentation
process can be repeated multiple times to generate a variety of sample image
data.

3.2 Keypoint-Based PIoU Loss Function

Considering that object detection tasks, especially for small object detection,
have higher requirements for bounding box regression, this paper aims to incor-
porate the geometric dimensions of the bounding boxes into consideration of the
loss function. Specifically, the loss function should fully consider four geometric
factors: overlapping area, distance, aspect ratio, and geometric dimensions, in
order to comprehensively evaluate the performance of the bounding boxes.

C

d
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f

C_boxBgt_box
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x
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(c)(d)

Fig. 2. Normalized distance, aspect ratio, and geometric dimensions

The Point-based Intersection over Union (PIoU) loss function can be defined
as Eq. (3):

LPIoU = λ + α + β (3)

In Eq. (3), the three terms, λ, α, and β, represent the overlapping area, distance,
and geometric dimensions/aspect ratio, respectively. β is a special term that
combines the geometric dimensions and aspect ratio with unified constraints.
The formulas for all the constraint terms are shown in Eq. (4):

⎧
⎪⎨

⎪⎩

λ = 1 − IoU

α =
ρ2(b,bgt)

c2

β = f2

g2

(4)
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In the equation, λ represents the constraint on the overlapping area, which is
the Intersection over Union (IoU) loss function. α represents the constraint on
the distance between the predicted box and the ground truth box. The variables
b = (x, y) and bgt = (xgt, ygt) denote the center points of the predicted box
B and the ground truth box Bgt, respectively. In Fig. 2(a) of the diagram, c
represents the diagonal length of the box C, which is the minimum bounding
box that encloses both the predicted box B and the ground truth box Bgt.ρ
denotes the Euclidean distance.

If we consider aligning the starting points of the predicted box B and the
ground truth box Bgt, as shown in Fig. 2(b) and 2(c) of the diagram, f can
represent the distance between the two boxes in terms of geometric shape dif-
ferences, and g is the diagonal length of the minimum bounding box. From this,
we can see that the key to the unified constraint on geometric dimensions and
aspect ratio lies in the constraint on f . If we further expand β, we can obtain
Eq. (5): ⎧

⎪⎪⎨

⎪⎪⎩

f2 = 4f2
1 = (wgt − w)2 + (hgt − h)2

g2 = 4g21 = max (wgt, w)2 + max (hgt, h)2

β = (wgt−w)2+(hgt−h)2
max(wgt,w)2+max(hgt,h)2

(5)

In the equation, w, h,wgt
g , and hgt

g represent the width and height of the predicted
box B and the ground truth box Bgt, respectively. If we align the center points
of the predicted box B and the ground truth box Bgt, as shown in Fig. 2(d) of
the diagram, eliminating the influence of the normalized distance represented by
the α term, we can observe that the β term remains unaffected. As one of the
loss terms, β ensures that the PIoU loss function does not degrade like GIoU or
DIoU under certain conditions.

3.3 The Proposed YOLOv5T

By implementing optimizations in three aspects of the YOLOv5 network archi-
tecture, we have designed an enhanced YOLOv5 model named YOLOv5T. In
the Backbone section, it integrates the TransformerBlock [1] module as the input
layer of SPPF to enhance the feature extraction capability. In the Neck section,
it introduces the SimAM [16] attention mechanism to improve feature repre-
sentation and generalization. In the Head section, it replaces the original three
independent detection heads with the Anchor-free Decoupled Head [16], which
comprehensively enhances the detector’s performance and its ability to perceive
object scales. The overall network structure of YOLOv5T is depicted in Fig. 3,
where the red box represents modules that are either optimized or newly added
based on the original YOLOv5 network structure.

Integrating the TransformerBlock into the BackBone structure strengthens
the capturing of relationships between input feature maps, thus extracting richer
contextual information and enhancing feature representation. The core of the
C3TR module is the TransformerBlock, which is primarily applied to the feature
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Fig. 3. YOLOv5T architecture

extraction part of the backbone network, replacing the previous C3 input mod-
ule of SPPF. The Transformer layer in the TransformerBlock relies on the self-
attention mechanism. The self-attention mechanism can capture global depen-
dencies within a sequence. In the self-attention mechanism, each element in
the input sequence can interact with other elements to determine its impor-
tance within the entire sequence. It can then reweight the inputs based on these
importance scores.

By applying the SimAM attention mechanism after each aggregation opera-
tion in the Neck section, it serves two main purposes. Firstly, it adaptively calcu-
lates the similarity between features, weights, and fuses features with high simi-
larity to enhance the feature representation and generalization capabilities. Sec-
ondly, the SimAM module itself does not introduce any additional parameters,
thereby improving the training and inference performance of the model without
significantly increasing computational complexity or the number of parameters.

For traffic sign detection, which belongs to the small object detection task,
it requires the detector to have high sensitivity to object sizes. The decoupled
detection head, compared to the original YOLOv5 detection head, achieves the
following two advantages: Firstly, by decoupling the classification and regression
tasks, it speeds up the model training process. Secondly, based on the anchor-
free approach, it better adapts to different sizes of object detection tasks, thus
improving the detection accuracy.
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4 Experiments

4.1 Dataset

We conducted comprehensive experiments on the TT100K dataset. This dataset
offers nearly 100,000 street view images, encompassing 30,000 instances of traf-
fic signs. These street view images capture a diverse range of lighting intensities
and weather conditions, while the capture angles closely resemble a driver’s per-
spective. Within the TT100K dataset, the traffic signs correspond to 45 distinct
categories. Each traffic sign instance is meticulously annotated with category
labels, bounding boxes, and pixel masks. The images boast a resolution of 2048
× 2048 pixels. Notably, approximately 42% of the traffic signs in the TT100K
dataset fall into the category of small objects, with a pixel area smaller than 32 ×
32. Consequently, performing tasks such as traffic sign detection and recognition
on the TT100K dataset presents a challenging endeavor.

4.2 Experimental Analysis

To validate the effectiveness of our designed YOLOv5T network, we conducted
ablation experiments on the TT100K dataset using the YOLOv5T network. The
objects of dismantling mainly included the combination of PIoU loss function
and FlexCut data augmentation, the Transformer module, the SimAM atten-
tion mechanism, and the anchor-free-based Decoupled detection head. The basic
network for comparison included the original YOLOv5s-org network and the

Fig. 4. Example Detection Results of YOLOv5s and YOLOv5T-Ours Models
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YOLOv5s-Base network, which includes the PIoU-based baseline loss and Flex-
Cut data augmentation method. The image input size for the dismantling exper-
iments was mainly 640 × 640, with some experiments conducted on images of
size 1280 × 1280 to assess the overall performance of the model.

The results of the dismantling experiments on the YOLOv5T network are
shown in Table 1. From the table, it can be observed that under the 640x640
image input condition, the combination of PIoU loss function and FlexCut
data augmentation achieved a 1.5% improvement in mAP@0.5 and a 0.7%
improvement in mAP@0.5:0.95. The network structure optimization based on
the Transformer module, SimAM attention mechanism, and Decoupled detec-
tion head achieved a combined improvement of 2.4% in mAP@0.5 and 0.9% in
mAP@0.5:0.95. The overall YOLOv5T model, when combined with the PIoU
loss function and FlexCut augmentation technique, achieved a 3.8% improve-
ment in mAP@0.5 and a 1.9% improvement in mAP@0.5:0.95 compared to the
original YOLOv5s model.

Table 1. Optimization ablation experiments of YOLOv5T on the TT100K dataset

Model Parameters (M) F1 mAP@0.5 (%) mAP@0.5: 0.95(%) Resolution

YOLOv5s-org 7.17 80.9 83.7 64.2 640 × 640

(CIoU+Mosaic) 7.18 91.1 93.8 73.9 1280 × 1280

YOLOv5s-org 7.17 81.9 84.9 64.5 640 × 640

(PIoU+Mosaic) 7.18 91.6 93.9 74.0 1280 × 1280

YOLOv5s-org 7.17 80.9 84.2 64.1 640 × 640

(CIoU+FlexCut) 7.18 91.2 93.9 74.0 1280 × 1280

YOLOv5s-Base 7.17 82.1 85.2 64.9 640 × 640

(PIoU+FlexCut) 7.18 91.7 94.3 74.6 1280 × 1280

Base+TransformerBlock 7.14 82.8 86.2 65.2 640 × 640

Base+SimAM 7.17 82.7 85.7 65.0 640 × 640

Base+Anchor free 8.90 83.1 85.9 65.3 640 × 640

YOLOv5T Ours(Base+all) improv.± 8.93 85.5 87.5 + 3.8 66.1 + 1.9 640 × 640

8.94 92.3 94.9 + 1.1 75.2 + 0.6 1280 × 1280

To evaluate the overall optimization effect of YOLOv5T, it was compared
with other models based on YOLOv5s, including YOLOv5s-A2 [20], SC-YOLO
[12], and CDFF-s [14]. The comparison results are displayed in Table 2, where the
experimental data for YOLOv5s-A2, SC-YOLO, and CDFF-s are sourced from
the original works. From the table, it can be observed that although YOLOv5T
model has some detection optimization advantages for traffic sign recognition
tasks, it suffers from the issue of having a larger number of network parameters,
which requires further optimization. However, it should be noted that the com-
parison was conducted under GPU limitations, which may affect the performance
comparison.

The YOLOv5s and YOLOv5T models were tested on the validation set, and
some detection results are shown in the figure. From the examples in the detec-
tion results, it can be observed that the YOLOv5T model has better capabilities
in detecting small objects compared to the YOLOv5s model. This can be seen in
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Table 2. Experimental Results for Traffic Sign Detection and Recognition Task

Model Parameters (M) mAP@0.5 (%) F1 FPS (f/s) Resolution GPU

YOLOv5s-org 7.17 83.7 80.9 76.9 640 × 640 RTX 2070S

YOLOv5s-A2 [20] 7.9 87.3 – 87.7 640 × 640 RTX 3060

SC-YOLO [12] 7.2 90.4 87.2 33.7 640 × 640 RTX3080

CDFF-s [14] – 90.13 – 62.5 608 × 608 Titan V

YOLOv5T − Ours 8.93 87.5 85.5 47.6 640 × 640 RTX 2070S

the specific comparison between Fig. 4(a-1) and Fig. 4(b-1). Additionally, there
is a slight improvement in the confidence level of traffic sign recognition. Please
refer to the comparisons between Fig. 4(a-2) and Fig. 4(b-2) for more detailed
information.

5 Conclusion

This research paper focuses on the field of traffic sign detection and recogni-
tion. Firstly, a FlexCut data augmentation strategy is proposed to maximize
the preservation of positive samples and image semantics. Secondly, a keypoint-
based PIoU (Position-sensitive Intersection over Union) loss function is intro-
duced to further accurately guide the position and shape of predicted bounding
boxes. Lastly, a traffic sign detection and recognition model named YOLOv5T is
designed based on the YOLOv5s network, which comprehensively optimizes the
performance of traffic sign detection and recognition. Experimental results on
the TT100K dataset demonstrate that YOLOv5T is a fast, lightweight, and high-
precision model. Based on the current experimental results, noticeable progress
has been achieved through a series of improvements. However, there are still cer-
tain limitations, as the experiments have been conducted solely on the TT100K
dataset. Subsequent research will involve conducting similar experiments on a
broader range of traffic sign datasets.
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Abstract. Multi-modal, multi-scale, and multi-dimensional (spatiotemporal) v-
ideo representation learning have each been studied adequately in its own form,
respectively, but rather in an isolated way from each other, not yet jointly. It is
well known in statistical machine learning that joint data distributions provide
new information that cannot be achieved by its individual components. There-
fore we propose M3T : a Multi-scale Multi-modal Multi-dimension (M3) joint
Transformer model for two-stream video representation learning, which is built
upon a two-stream multi-scale vision transformer backbone. M3T is densely aug-
mented with three attention modules, which are mutually orthogonal against each
other, at each down-sampling layer of the backbone. Experiments conducted on
the Kinetics 400 data set demonstrate the effectiveness of the proposed method.
The qualitative performance also demonstrates that our model can learn more
informative complementary representation.

Keywords: Multi-modal representation learning · Vision transformer · Video
classification · Self-supervision · Optical flow regression

1 Introduction

It is well known in existing video representation learning research, respectively, that:

– Multi-modal joint distribution provides new information that each individual com-
posing modalities cannot achieve;

– Multi-scale joint distribution provides new information that each individual com-
posing sampling resolutions cannot achieve;

– Multi-dimension (spatiotemporal) joint distribution provides new information that
each individual composing dimensions, cannot achieve, neither spatially, nor tem-
porally;

However, a further performance-driven potential from multiple distributions is ignored
in existing works, which is: the multi-modal + multi-scale + multi-dimension joint dis-
tribution also yields, secondarily, new information that each individual forms of its com-
posing sub-multiple distributions cannot achieve (Fig. 1).

To address the above absence in the current work, we propose M3T , which aug-
ments the hierarchical down-sampling backbones of the deep neural network with hor-
izontal and vertical cross-attentions, so as to facilitate the triple cross-complementary
representation learning of two-stream video data (Fig. 2 and 3).
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14327, pp. 228–233, 2024.
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Fig. 1. The dominant characteristics of real world actions vary across both scales and modalities,
both appearances and motions, both spatially and temporally, which naturally raise the need for
multi-scale multi-modal multi-dimension 3-fold representation learning methods.

2 The Proposed Method

The proposed M3T is built upon a two-stream multi-scale vision transformer backbone,
densely augmented with three attention modules, which are mutually orthogonal against
each other, at each down-sampling layers of the backbone:

Intra - Layer Cross - Attention (HA) firstly, in the horizontal direction within the
layer, focusing on the learning of cross - modal complementary relationships;

Fig. 2. The upper-level architecture of our proposed M3T , consists of two branches of MViT
[2] with identical internal structures but different input modalities. The internal structure of the
proposed layer-by-layer horizontal and vertical cross-attentions is only shown at the first layer
(subsequent layers remain the same and are thus omitted).

Fig. 3. How to decouple self- and cross-attention during the 3-fold (triple) joint distribute pre-
training of the two-stream data.
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Inter - Layer Soft - Attention (VA) secondly, in the vertical direction across stacked
layers, focusing on the learning of cross - scale complementary relationships;

Intra - Layer Self - Attention (SA) finally, with the help of the layer-by-layer self-
attention, which has already been self-contained by the standard vision transformer
backbone, without the need of any newly introduced modifications, the cross -
dimension complementary relationships within each modality, at each scale, both
the spatial stream and the temporal stream, can be learned;

2.1 Training Schemes

During pre-training, optical flow regression is used as a proxy task:

1. Firstly, extract 8 times down-sampling features for RGB and optical flow frames,
normalized by the color scale mapping of [0, 255], and then use the method we
proposed to construct two cost volumes.

2. At each iteration, generate supervisory signals by looking-up the difference between
the current flow estimate and the index within a pre-computed ground truth cost
volume: If the current flow estimate is f low = ( fx, fy), then the lookup center for
pixel location (h,w) becomes (h+ fy,w+ fx). Since there is no optical flow field
info provided in the original data set, the ground truth cost volume is approximately
extracted by a teacher model [7].

3. The flow estimated for the current frame, together with its contextual features, are
fed to the autoregressive decoder to produce flow updates, which are added to the
flow estimate for the next frame .

3 Experiments

3.1 Experimental Setups

On the encoding side, T = 16,32 frames are sampled at a fixed frequency per raw sam-
ple, and the corresponding optical flow fields are pre-computed. Each frame is further
spatially sampled by scaling the shorter spatial side to 256 pixels and using a center crop
of H×W = 224×224. The fusion of RGB and the stacked optical flows is performed
by non-maximum suppression (NMS) [8]. On the decoding side, the scores of the T
frames from the last layer are averaged as the final prediction for that sample. Both
pre-training and fine-tuning are trained with ADAM optimizer, with an initial learning
rate of 10−3, which decreases to 10−4 after entering the saturation. Training schedule
stops after nmax = 80 epochs and 2 augmentation repetitions. More detailed optimiza-
tion settings are consistent with the literature [5]. All models are trained on 8 Google
Cloud Nvidia Tesla V100 GPUs with a single 16 GB memory.

3.2 Results and Discussions

As shown in Table 1, the proposed M3T and its 2 size variants(Base / Large), 3 spatial
sampling resolution variants (LR / MR / HR), 2 temporal sampling resolution variants
(T = 16 / 32) achieve competitive overall classification accuracies, on the test split of
Kinetics-400 [4], under the conventional fine-tuning strategies, where all parameters
except the output layer are frozen upon the convergence of the pre-training.
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Table 1. The average classification accuracy (%) of the proposed M3T , with three different spa-
tial sampling resolutions (LR = 224× 224/MR = 256× 256/HR = 384× 384), two different
temporal sampling resolutions (T = 16×4/32×2), and MViT backbone variants of two differ-
ent parameter capacities, across all categories on the Kinetics-400 Val, compared with the S.o.t.a.
methods (best values highlighted in bold).

3.3 Visualizations

The layer-by-layer attention visualizations of M3T and its three ablated variants on
some representative frame samples on Kinetics 400 Val are shown in Fig. 4. It can be
observed that under the effect of cross-dimension, cross-scale, and cross-modality triple
orthogonal attention, the M3T shows a consistent improvement in terms of abstract
semantic understanding compared to the ablated groups on video content with different
characteristics:

– On video samples dominated by global shots from a far perspective, as selected in
the first example, “Wind Surfing”, “Riding Horse”, “Busking”, “Cliff Diving”, “Sky Diving”,
“Present Weather Forecast”, etc., M3T shows a tendency to shift the gravity center of
the vertical attention parameters to the upper layers of the backbone, and the self-
attention distribution of the bottom layer tends to be more even, compared with its
ablation counterparts;

– On video samples dominated by close-up shots, as selected in the second example,
“Eat Dough Nut”, “Changing Wheel”, “Petting Cat”, “Flipping Pancake”, “Grind Meat”, “Cut
Watermelon”, “Brush Hair”, “Dog Grooming”, “Frying Vegetable”, “Write”, etc., M3T shows
a tendency to shift the parameter center of gravity towards the bottom layer of the
backbone, and the self-attention distribution tends to show a higher local contrast
and a larger variance, compared with its ablation counterparts;

– On video samples dominated by static appearance or dynamic movement patterns,
as selected in the third example, “Triple Jump”, “Ski Jump”, “Drive”, “Hitting Baseball”,
“Golf Chipping”, “High Jump”, etc., M3T shows a tendency to shift the gravity center of
the horizontal attention parameters to one side of the backbone, compared with its
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Fig. 4. Attention visualizations of the proposed M3T (SA + VA + HA) and its three variants, on
Kinetics 400, which are: the two-stream MViT [2] backbone (SA), + Cross Modal Attention (SA
+ HA), + Cross Scale Attention (SA + VA). The color grid indicates the self-attention distribution
of the patch position relative to the class label [CLS], and the line thickness denotes the strength
of the cross-attention distribution connected to the corresponding patch location.

ablation counterparts, and the self-attention distribution of both sides tends to be
more distinct, to better capture the complementary information between two-stream
modalities that cannot be shared within each other.

4 Conclusions

With the aim at the exploration of the triple joint cross-complementing capability of
multiple scales, dimensions, and modalities, we propose M3T , whose effectiveness of
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learning complementary representations from the joint data distribution is verified on
Kinetics 400 [4], and qualitative analysis also shows that, the three attention modules
promote each other: with the assistance of horizontal and vertical attention, the highly
activated self-attentions tend to converge to visual/optical flow regions with more accu-
rate semantic associations, and vice versa. A main disadvantages of this work, for the
moment, is that the verification of the effectiveness of the proposed method is mainly
based on an empirical standpoint. We hope that interested researchers with a stronger
background in statistical machine learning and information geometry can offer a more
in-depth insight and push this work to a higher theoretical level. Further exploitations
may also include more diverse forms of joint distributions and more diverse scenarios
of down stream applications, which we leave for future efforts.

Acknowledgements. This paper is supported by the Innovation Team and Talents Cultivation
Program of the National Administration (No. ZYYCXTD-D-202208)
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Abstract. The susceptibility of current Deep Neural Networks (DNNs)
to adversarial examples has been a significant concern in deep learning
methods. In particular, sparse adversarial examples represent a specific
category of adversarial examples that can deceive the target model by
perturbing only a few pixels in images. While existing sparse adversarial
attack methods have shown achievements, the current results of spar-
sity and efficiency are inadequate and require significant improvements.
This paper introduces an adv-triplet loss and proposes a search attack
method to attack the Face Expression Recognition (FER) system with
minimal pixel perturbations. Specifically, we propose an adv-triplet loss
function and utilize its gradient information to generate pixels for adver-
sarial examples. Extensive experiments conducted on the CK+ and Oulu-
CASIA datasets demonstrate the superiority of our proposed method
over several state-of-the-art sparse attack methods.

Keywords: Adversarial examples · Facial expression recognition ·
Adv-triplet loss

1 Introduction

Deep Neural Networks (DNNs) have significantly succeeded in computer vision
tasks, including Facial Expression Recognition (FER), which is a challenging
task of automatic expression analysis. With the development of DNNs, FER has
been applied in various significant areas such as human-computer interaction [2],
surveillance [4] and self-driving cars [5].

Despite the success of current DNNs, they are shown to be vulnerable to
adversarial examples [1,3], which are carefully crafted images designed to fool
the targeted model by adding imperceptible perturbations to the original clean
images. Adversarial attacks are developing rapidly and have achieved remarkable
success in fooling DNN-based systems.

In this paper, we propose an adv-triplet loss search attack algorithm to attack
and examine the insecurity of current FER systems. We propose a new adv-
triplet loss function to perturb the output of FER models. A new adv-triplet
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14327, pp. 234–239, 2024.
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loss function is designed as a guide to search pixels requiring perturbed to gen-
erate adversarial examples. The triplet loss function [7] is suitable for nearest
neighbour classification, which can be employed for the FER system. The triplet
loss minimizes the distance between an anchor and a positive, both of which
have the same identity, and maximizes the distance between the anchor and a
negative of a different identity. On the contrary, in order to generate adversarial
examples that make the targeted model wrong, we aim to maximize the distance
between an anchor and the positive and to minimize the distance between the
anchor and the negative. Then, we select the optimal pixels to perturb based on
the gradient information of the adversarial triplet loss until a successful attack
is achieved. We conduct extensive experiments on two databases, including CK+
[6] and Oulu-CASIA [8], to verify the performance of our method.

2 Method

2.1 Problem Definition

We denote x as the source image and y as its corresponding ground-truth label.
A clean input x is classified as arg maxfc(x) = y, where fc(x) is the output logit
value for class c. An adversarial example xadv = x + r is generated by adding
perturbations to the source image and makes the source image x misclassified.

To get better sparsity, the sparse attack takes �0-norm as adversarial pertur-
bation distance calculation formula, which means finding the smallest number
of pixels needed to perturb. In this paper, we consider an untargeted attack. So
the objective of the untargeted attack and the perturbation under the �0-norm
constraint can be formulated as:

min
r

|r|0 subject to arg maxfc(xadv) �= y. (1)

Since Eq.(1) is an NP-hard problem, it can not be solved in polynomial time to
get an analytical solution. Then, we resort to finding an approximate optimal
solution through an iterative search algorithm. Figure 1 gives an overview of the
proposed Adv-Triplet loss Search Attack (ATSA) method.

Fig. 1. Overview of the proposed ATSA method.

2.2 Adv-Triplet Loss Function

To generate adversarial examples, we simultaneously aim to maximize the feature
distance between images of the same category and minimize the distance between
images of different categories.
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We have:
Ladv−tri = max( max

j �= a
j = 1, . . . , K

‖ f(xa
c ) − f(xj

c) ‖2
2

− ‖ f(xa
c ) − f(xi

c) ‖2
2 + Δ, 0)

(2)

where xa
c is the original image that we want to generate an adversarial example,

xj
c and xi

c are the images from different expression categories and the same
expression category of the same identity xc respectively, f(x) is the output logit
value after regularization of the targeted classification model and that means
‖ f(x) ‖22 = 1, K is the number of the total facial expression categories, ‖ · ‖22 is
the square of L2 norm used as the distance metric, and Δ is a margin threshold.
Equation (2) attacks in the form of triplet loss, where the distance of the easiest
distinguished pairs of images is encouraged to be small. In contrast, the distance
of the hardest distinguished pairs of images is encouraged to be large.

2.3 Adv-Triplet Loss Search Attack

We use a binary mask m to denote whether a pixel is selected and initialize m
with all zeros. In each iteration, we run a forward-backwards pass with the latest
modified image xadv

t to calculate the gradient of the adv-triplet loss function to
xadv
t . Moreover, the pixels with more significant gradient values are regarded as

contributing more adversaries.

gt = ∇xadv
t

L (
f

(
xadv
t

)
, f

(
xj

)
, f

(
xi

))
(3)

Overall, we use the gradient information of the loss function as guiding infor-
mation to generate adversarial examples heuristically. As the value of the loss
function decreases, the probability of success in generating adversarial examples
also increases.

In each iteration process, we add the first k unselected pixels into the tar-
geted perturbation pixels set, which contain the biggest gt values and change
corresponding values of binary mask m into 1. These selected pixels will not be
selected in the next iteration, which means we update all the selected pixels in
each iteration. In addition, k is a hyperparameter. If we want to get the best
sparsity, we can set it to 1, which means only one pixel is selected during each
iteration. We can also increase the value of k to speed up the generation of
adversarial examples.

Finally, we apply a scaled gradient to make the attack faster and update
xadv
t based on ĝt and binary mask m with the perturb step size ε, which limits

the maximum deviation of the perturbation. The entire process of the ATSA
method is outlined in Algorithm 1.

3 Experiments and Results

Datasets. We test our attack algorithm on deep convolutional neural net-
work architectures with the CK+ and Oulu-CASIA datasets. We use VGG19
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Algorithm 1. ATSA: Adv-Triplet Loss Search Attack
Input: Source image x0, targeted model f, maximum iterative steps Nmax,

perturbations threshold ε, select number k, binary mask m
Output: adversarial example xadv

Initialize: m ← 0, n ← 0, xadv ← x0

1: search pixels until find an adversarial example
2: while n < Nmax and xadv is not adversarial do
3: gt ← ∇xadv

t
L (

f
(
xadv
t

)
, f

(
xj

)
, f

(
xi

))
� Eq. (3)

4: g′
t ← gt · (1 − m)

5: d1, d2, . . . dk = argmaxk(|g′
t|)

6: md1,d2,...dk = 1
7: ĝt ← gt·m

|gt·m|
8: xadv

t+1 = Clipx

(
xadv
t − ε · ĝt

)

9: n ← n + 1
10: end while
11: return xadv

and ResNet18 as facial expression classification models and use 10-fold cross-
validation evaluation methods for training on the datasets. The input size of
both datasets is 44 × 44 × 3.

Evaluation Metrics. To evaluate our algorithm and compare it with related
works, we report the attack success rate (ASR), the average �p-norm (p = 0, 1,
2, ∞) of perturbations, and the average execution time.

3.1 Sparsity Evaluation

Results on CK+. The average �p-norm and the ASR of the generated pertur-
bation on the CK+ dataset of two different classification models are presented in
Table 1. The table shows that our algorithm can achieve a 100% attack success
rate on both the VGG19 and ResNet18 classification models. For σ-PGD0, under
the pre-defined sparsity number 300, it fails to attack with a 100% attack success
rate. In detail, the attack success rate of σ-PGD0 on the VGG19 and ResNet18
models are 51.57% and 48.35%, respectively, which are much lower than our algo-
rithm. In the meantime, our algorithm can achieve a 100% attack success rate
while only needing to perturb 65.31 pixels on the VGG19 model and 72.48 pixels
on the ResNet18 model. Since σ-PGD0 compute the standard deviation of each
color channel with two immediate neighbouring pixels and the original pixel, the
allowable perturbation values range of pixels is limited, so σ-PGD0 achieves lower
�2-norm and �∞-norm than our algorithm. Compared to other sparse adversarial
attack algorithms, our algorithm achieves the best �0-norm and �1-norm on both
models. This demonstrates the effectiveness of the proposed method. The Sparse-
Fool and our algorithm all achieve a 100% attack success rate. However, since our
algorithm adopts an iterative search method, our algorithm significantly outper-
forms the SparseFool with the lowest �0-norm, �1-norm, �2-norm and �∞-norm.
This also illustrates the superiority of our algorithm.
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Table 1. Statistics of attack success rate (ASR) and average �p-norms (p = 0, 1, 2, ∞)
of nontargeted attack on CK+ and Oulu-CASIA datasets.

Dataset Method VGG19 ResNet18

ASR �0 �1 �2 �∞ ASR �0 �1 �2 �∞

CK+ σ-PGD0 51.57 300.00 35.65 2.21 0.248 48.35 300.00 34.31 2.12 0.228

PGD0 94.79 100.00 69.64 7.29 0.978 88.24 100.00 67.67 7.94 0.980

SparseFool 100 70.86 38.47 4.08 0.866 100 84.99 33.03 4.31 0.877

ATSA(Ours) 100 65.31 23.54 2.54 0.667 100 72.48 27.29 3.10 0.742

Oulu-CASIA σ-PGD0 79.34 300.00 17.12 1.13 0.185 77.41 300.00 20.38 1.29 0.186

PGD0 100 100.00 46.25 5.45 0.908 98.24 100.00 53.14 6.13 0.967

SparseFool 100 124.96 62.17 4.92 0.648 100 108.62 48.22 3.94 0.761

ATSA(Ours) 100 81.97 26.67 3.92 0.678 100 80.37 28.86 3.09 0.743

Results on Oulu-CASIA. Experimental results of different sparse adversarial
attack algorithms on the Oulu-CASIA dataset are listed in Table 1. Seen from it,
our algorithm achieves a 100% attack success rate on both models. The σ-PGD0

also fails to attack with a 100% attack success rate on the Oulu-CASIA dataset
with a pre-defined sparsity number, larger than our algorithm. The PGD0 achieves
100% and 98.24% attack success rates on the VGG19 model and ResNet18 model,
respectively. However, our method achieves the same 100% attack success rate
with the least number of perturbed pixels. And the �1-norm, �2-norm and �∞-norm
of PGD0 are significant higher than our algorithm on both models.

3.2 Invisibility Evaluation

For adversarial examples, invisibility is a crucial evaluation. In Fig. 2, we show
some adversarial examples. The adversarial examples are generated under the
perturbations ε = 10 and the selected number k = 1. Compared with the original
images, these adversarial examples are almost identical and indistinguishable
from the human perception’s perspective. Furthermore, these examples of high
adversarial quality also show that our method has promising performance in
sparsity and invisibility.

Fig. 2. Adversarial examples for the CK+ dataset, as generated by our method on
the VGG19 model. The first row is the original images, and the second row is the
corresponding adversarial examples.
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Also, as can be seen in Fig. 2, from the second and the last adversarial sample
in the second row, the perturbations are concentrated around the critical area:
the corners of the mouth and the corners of the eye, which are the essential parts
in the FER. This demonstrates that our adv-triplet loss function has minimized
the distance of images from different categories, and it pays attention to the
expressive features used for facial expression classification.

4 Conclusion

In this paper, we address the vulnerability of current Facial Expression Recog-
nition(FER) systems by introducing an adv-triplet loss search attack method
to perturb the output of targeted models. By leveraging gradient information
from the adv-triplet loss, our method intelligently selects the most appropriate
pixels to perturb until a successful attack achieves significantly better sparsity
compared to existing state-of-the-art sparse adversarial attack methods. Further-
more, we highlight the importance of future studies focusing on dynamic image
sequences within the FER systems.
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Abstract. Visible-Infrared person Re-Identification (VI-ReID) is essen-
tial for public security. However, it poses a significant challenge due to the
distinct reflection frequencies of visible and infrared modalities, leading
to a substantial semantic gap between them. A novel modality-transform-
based Dual-X method is proposed to narrow the gap between modalities.
The modality generators in Dual-X will generate corresponding auxiliary
modalities for both visible and infrared modalities, which is achieved
through a lightweight channel-level transformation. The newly gener-
ated modality images complement the original modal information and are
concatenated into the network to facilitate modality-shared and capture
modality-specific features. In addition, as softmax is often overconfident
on most multi-modal data, an uncertainty estimation algorithm is intro-
duced to quantify the credibility of the model output while providing
classification probabilities. By providing reliable uncertainty estimations
and reducing uncertainty loss during training, the model’s predictions
can be more credible. Extensive experiments were conducted, and the
results demonstrated that the proposed approach outperforms state-of-
the-art methods by more than 3.7% accuracy on both SYSU-MM01 and
RegDB datasets, demonstrating the effectiveness of our approach.

Keywords: Visible-Infrared person Re-Identification · Pedestrian
Retrieval · Cross-modal Learning

1 Introduction

Person Re-Identification(ReID) is crucial for current intelligent surveillance sys-
tems and aims to identify specific queries from a vast gallery of camera acquisi-
tions. Most current ReID works focus only on visible cameras. But in practical
applications, visible-infrared cameras are more frequently used for more precise
imaging. This modal transition between infrared and visible leads to a large
amount of cross-modal data, resulting in a new person Re-Identification task
called Visible-Infrared Person Re-identification (VI-ReID).

Unlike single-modality ReID, VI-ReID aims to match person images of the
same identity from different modalities. A modality-transform-based learning
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14327, pp. 240–246, 2024.
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approach named Generative Adversarial Network (GAN) [1,10] is often used,
which can restore the missing color information by transforming infrared images
into visible ones. However, the high number of parameters in GAN and the lack
of corresponding cross-modal supervision can lead to unreliable generation qual-
ity. Inspired by Transitive Transfer Learning [9] in the field of transfer learning
and X-modal [5] in person Re-Identification, a cross-modal modality generator
called Dual-X is proposed to reduce the semantic gap between different modali-
ties. The design of the Dual-X modality reformulates the original Infrared-Visible
task as an Infrared-Xrgb-Xir-Visible task, and the lightweight structure configu-
ration ensures that it does not impose a significant computational burden on the
network. As shown in Fig. 1 (a), the physical properties of the two modalities
lead to a notable intermodal gap within the same category. By generating the
intermediate auxiliary modalities Xrgb and Xir, as shown in Fig. 1 (b), the gap
is effectively bridged, resulting in precise cross-modal matching.

Fig. 1. Illustration of Dual-X. Different shapes represent different categories; different
colors represent different modalities.

In traditional deep learning models, softmax is usually used as the output
of the network’s last layer. However, when facing multi-modal data with dis-
tribution shift, using the same softmax for embedding a shared space leads to
unreliable results due to different data distributions in the two modalities. Some
methods use distributions instead of deterministic weight parameters through
Bayesian Neural Networks (BNNs) to give uncertainty to deep models. How-
ever, in cross-modal data, high computational costs for BNNs and incomplete
prior knowledge can lead to inaccurate model predictions. Therefore, we pro-
posed an uncertainty estimation algorithm based on Evidence Deep Learning
(EDL) [7] to provide classification evidence while outputting prediction results.

The main contributions are summarized as follows:

• Generating an auxiliary Dual-X modality to reduce the semantic gap between
visible and infrared modality images;
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• Introducing an uncertainty estimation algorithm to reduce the classification
uncertainty caused by softmax and ensure the output of our model is credible;

• Our framework surpasses the state-of-the-art by more than 3.7% accuracy on
both the SYSU-MM01 and RegDB datasets.

2 Methodology

2.1 Overview

As shown in Fig. 2, a pair of visible and infrared images, denoted as V and I, with
their labels are fed into the modality generator of the Dual-X module, generating
two auxiliary modalities, namely Xrgb and Xir. Next, the two original and their
respective generated auxiliary modalities are combined and passed through the
ResNet-50 feature extractor to learn modality-shared features. For obtaining
more fine-grained local features, the shared features are divided into four parts,
as proposed by Sun et al. [8], to extract the local features for identity prediction
using the softmax function. Moreover, the classifier’s classification evidence is
mapped to the Dirichlet space to estimate the confidence of the predictions.

Fig. 2. Framework of the proposed Credible Dual-X Modality Learning method.

2.2 Dual-X Module

To address this challenge without imposing an excessive computational bur-
den on the network, we propose a progressive convolution approach, which
involves the generation of two auxiliary intermediate modalities, namely Dual-
X. The generator G in Dual-X comprises two 1× 1 convolutional layers and a
ReLU activation layer and can produce auxiliary modalities for both visible and
infrared images. These generated modalities provide supplementary information
for improving model learning with the original modalities. The transformation
can be mathematically represented as follows:

Xrgb = Grgb(V ), (1)

Xir = Gir(I), (2)
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2.3 Uncertainty Estimation Algorithm

To alleviate the issue of unreliable softmax output, an evidence-based uncer-
tainty estimation approach called Subjective Logic (SL) [2] is employed. This
approach maps the classification evidence to Dirichlet space to obtain the clas-
sification uncertainty. For a K-classification problem, SL assigns a classification
probability bk and an evidence-based uncertainty uk to each category, where
k in (1, ...K) represents the k -th category, and K denotes the total number of
categories. The equations for bk and uk are as follows:

bk =
ek
Sv

=
ak − 1

S
, (3)

uk = 1 −
K∑

k=1

bk =
K

S
. (4)

Through SL, evidence ek =< e1, ... ,eK > and the Dirichlet distribution
parameter ak =< a1,...aK > are connected, where ak is calculated as ak=ek+1.
The Dirichlet strength S is calculated as S=

∑K
i=1(ei + 1)=

∑K
i=1 ai.

3 Experiment and Analysis

3.1 Experimental Settings

Datasets. Two publicly available datasets are adopted in our experiments.
The SYSU-MM01 dataset comprises 491 identity-labeled images, consisting of
visible and infrared images. The model in SYSU-MM01 is tested under all-search
mode and indoor-search mode. On the other hand, the RegDB dataset includes
images of 412 pedestrian identities, with ten visible and ten infrared images for
each identity. And the evaluation in RegDB employs two query modes, namely
visible-to-infrared and infrared-to-visible.

Evaluation Metrics. In our experiments, three mainstream metrics are
adopted: the Cumulative Matching Characteristics (CMC) curve, the mean
Average Precision (mAP), and the mean Inverse Negative Penalty (mINP).

Implementation Details. The proposed method is implemented using the
PyTorch on a single TITAN Xp GPU. We adopt the ResNet-50 as our backbone
and augment it with a modified Part-based Convolutional Baseline (PCB) [8]
to extract local features as our baseline. SGD is adopted as our optimizer. The
input image is resized to 384 × 192, and each modality has a batch size of 4.

3.2 Ablation Study

This section presents a separate evaluation of the proposed components on both
SYSU-MM01 and RegDB datasets. The results are presented in Table 1.
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Table 1. Ablation experiments on SYSU-MM01 and RegDB datasets.

Settings SYSU-MM01(all) RegDB(V-I)

Rank-1 mAP Rank-1 mAP

Baseline 63.19 60.61 89.42 81.39

Baseline+Un 66.92 63.33 90.24 82.47

Baseline+Dual-X 69.17 64.80 91.60 84.79

Baseline+Dual-X+Un 70.04 65.38 93.05 89.23

3.3 Comparison with State-of-the-Art Methods

As presented in Table 2 and Table 3, our proposed method is benchmarked
against state-of-the-art techniques published in top-tier conferences such as
CVPR, ICCV, AAAI, and others, within the domain of VI-ReID in the last
four years.

Comparisons on SYSU-MM01. The results of the comparison on SYSU-
MM01 are shown in Table 2. Our proposed model exhibits significantly superior
performance than other methods.

Table 2. Comparisons with the state-of-the-art methods on SYSU-MM01.

Settings All search Indoor search

Method Venue Rank-1 Rank-10 Rank-20 mAP mINP Rank-1 Rank-10 Rank-20 mAP mINP

cmGAN [1] IJCAI2018 26.97 67.51 80.56 27.80 – 31.63 77.23 89.18 42.19 –

D2RL [11] CVPR2019 28.90 70.60 82.40 29.20 – – – – – –

AlignGAN [10] ICCV2019 42.40 85.00 93.70 40.70 – 45.90 97.60 94.40 54.30 –

X-Modal [5] AAAI2020 49.92 89.79 95.96 50.73 – – – – – –

DDAG [13] ECCV2020 54.75 90.39 95.81 53.02 39.62 61.02 94.06 98.40 67.98 62.61

cm-SSFT [6] CVPR2020 61.60 89.20 93.90 63.20 – 70.50 94.90 97.70 72.60 –

AGW [14] TPAMI2021 47.50 84.39 62.14 47.65 35.30 54.17 91.14 85.98 62.97 59.23

MCLNet [3] ICCV2021 65.40 93.33 97.14 61.98 47.39 72.56 96.98 99.20 76.58 72.20

MID [4] AAAI2022 60.27 92.90 – 59.40 – 64.86 96.12 – 70.12 –

FMCNet [15] CVPR2022 66.34 – – 62.51 – 68.15 – – 63.82 –

Ours – 70.04 95.78 98.58 65.38 50.11 75.82 97.81 99.42 79.58 75.71

Comparisons on RegDB. The comparison results on RegDB are illustrated in
Table 3. Our method demonstrates strong performance in both visible-to-infrared
and infrared-to-visible settings.
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Table 3. Comparisons with the state-of-the-art methods on RegDB.

Settings Visible to Infrared Infrared to Visible

Method Venue Rank-1 Rank-10 Rank-20 mAP mINP Rank-1 Rank-10 Rank-20 mAP mINP

HCML [12] AAAI2018 24.44 47.53 56.78 20.08 – 21.70 45.02 55.58 22.24 –

D2RL [11] CVPR2019 43.40 66.10 76.30 44.10 – – – – – –

AlignGAN [10] ICCV2019 57.90 – – 53.60 – 56.30 – – 53.40 –

X-Modal [5] AAAI2020 62.21 83.13 91.72 60.18 – – – – – –

DDAG [13] ECCV2020 69.34 86.19 91.49 63.46 – 68.06 85.15 90.31 61.80 –

cm-SSFT [6] CVPR2020 72.30 – – 72.90 – 71.00 – – 71.70 –

AGW [14] TPAMI2021 70.05 86.21 91.55 66.37 50.19 70.04 87.12 91.84 65.90 51.24

MCLNet [3] ICCV2021 80.31 92.70 96.03 73.07 57.39 75.93 90.93 94.59 69.49 52.63

MID [4] AAAI2022 87.45 95.74 – 84.85 – 84.29 93.44 – 81.41 –

FMCNet [15] CVPR2022 89.12 – – 84.43 – 88.38 – – 83.36 –

Ours – 93.05 97.70 98.99 89.23 80.80 90.63 97.91 99.08 83.45 68.96

4 Conclusion

This paper focused on the task of Visible-Infrared person Re-Identification (VI-
ReID). In order to tackle the challenge of cross-modal matching and reduce
the semantic gap between cross-modal images, a lightweight Dual-X module is
proposed that expands two-mode images into four-mode features with minimal
additional cost. Additionally, to mitigate the issue of unreliable softmax results in
multi-modal data, an evidence-based uncertainty estimation algorithm is intro-
duced, which maps the classification evidence to the Dirichlet space to obtain
the classification uncertainty. Moreover, by proposing an appropriate uncertainty
loss function, more classification evidence can be obtained to enhance the reli-
ability of predictions. The proposed method is extensively evaluated on both
SYSU-MM01 and RegDB datasets, demonstrating its outstanding performance.
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Abstract. It is essential for teachers to master students’ current learn-
ing status in online courses so that they can adjust teaching mode
and rhythm. To accurately describe students’ emotion changing dur-
ing studying online course, we propose a framework that combines
a light-weight facial expression recognition(FER) classification model-
MobileViT, which has been improved by modifying the fusion block
and enhanced by introducing knowledge distillation(KD), with an online
course platform. First of all, the face detecting, tracking and clustering
are applied to extract face sequence of each student. Then, an improved
MobileViT is used to extract emotional features in each frame of online
course for classification and prediction. Students’ facial images are col-
lected via the camera of their devices, analyzed using MobileViT, and
classified into 7 basic emotions. Our improved MobileViT is efficient
because it can be processed in real time on each student’s mobile device
which does not require to send their facial videos to teacher’s PC or
remote server. Finally, the proposed improved MobileViT is tested on
public face datasets RAFD, RAF-DB and FER2013 comparing with
some mainstream models. Experimental results indicate that our model
has competitive results and better efficiency than others.

Keywords: Facial expression recognition · Online education · Vision
transformer · Knowledge distillation

1 Introduction

Many schools and universities are adopting online education as one of the main
teaching methods [10]. However, online courses have been widely questioned as
they lack timely and effective communication or feedback between students and
teachers. Emotions are a fundamental part of humans, which are the most pow-
erful and universal signals used to convey emotional states and intentions [1].
Accurately recognizing facial expressions is of great research significance in edu-
cation. Most current facial expression recognition tasks typically use large-scale
deep convolutional neural networks and multimodal features of audio, faces and
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14327, pp. 247–253, 2024.
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body pose. To protect students’ privacy, the best solution is to process facial
videos directly on their own devices and only upload processed data rather than
raw videos of the learning process [9]. Therefore, an improved light-weight net-
work MobileViT is proposed for facial expression classification, which modifies
the fusion module and introduces the pre-trained deep neural network for knowl-
edge distillation.

2 Related Work

Facial expression is one of the most important ways for humans to express their
emotions. Researcher divided typical facial expressions into six categories: anger,
disgust, fear, happiness, sadness and surprise. Later, Matsumoto [7] provided
enough proofs for another universal facial expression. Commonly used pub-
lic facial expression datasets add neutral to these 6 typical facial expressions
to form 7 basic emotional labels, such as FER2013 [3] and RAF-DB [6] and
RAFD [5]. Transformers was originally proposed by Vaswani [13] for machine
translation. Vision Transformer(ViT) [2] applied transformers to computer vision
tasks for the first time. Later, Touvron [12] proposed a Data-efficient image
Transformer(DeiT) by introducing teacher-student distillation strategy. At the
same time, a hybrid architecture of vision transformers appeared. For example,
VOLO [15] proposes an outlook attention. Later, a light-weight hybrid archi-
tecture is adaptive to mobile devices, MobileViT [8], was proposed. Knowledge
distillation is a technique to transfer knowledge from a complex model to a sim-
pler one. One of the earliest works was proposed by Geoffrey Hinton [4] in 2015.
Due to the nature of label softening, distillation can also be considered as a
regularization strategy. The teacher’s supervision sometimes causes a misalign-
ment between the real label and the image [14,16]. So knowledge distillation can
transfer inductive biases in a student model by using a teacher model.

3 Method

A framework is proposed to analyze students’ emotions in online courses, which
is mainly composed of two parts: student side and teacher side, as shown in
Fig. 1. It is separated into two device platforms for individual processing, aiming
to ensure that students do not need record and upload personal learning videos
on their devices, which can prevent privacy leaks. Students can contribute to the
evaluation of the course only by providing their facial features. Besides, online
course or conference software cannot completely display the clear facial image of
all students in one frame, so students who agree to contribute their faces to help
the course evaluation in the learning state can be shown in online course meeting.
The improved MobileViT is focus on the fusion module. The local representation
in stead of the input features will be concatenated with global representation
as shown in Fig. 2. Output of the local representation can learn the low level
features of original input image, which can reduce the redundant information
carried by the original data. Theoretically, it can provide better image feature
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Fig. 1. Online course framework

Fig. 2. Improved MobileViT block

information for subsequent concatenating with global representation. Knowl-
edge distillation(KD) is introduced into MobileViT to obtain better performance
without changing the model size and parameter amount. Soft targets [11] can
be estimated by a softmax function as shown in Eq. (1). A temperature factor
τ is introduced to control the importance of each soft target.

p (zi, τ) =
exp (zi/τ)

∑
j exp (zj/τ)

(1)
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where zi is the logit for predicting the i-th class and j represents all the
classes to be predicted. The goal of student model is to fit the output of teacher
model as much as possible by minimizing the Kullback-Leibler(KL) divergence
between the softmax values of the teacher model and student model. Let Zt

and Zs be the logits of the teacher model and the student model. λ denotes
the coefficient balancing the KL divergence loss and the cross-entropy(CE) on
ground truth labels y, and ψ denotes the softmax function. The objective loss
function is defined as Eq. (2).

LTotal = (1 − λ)LCE (ψ (Zs) , y) + λτ2KL (ψ (Zs/τ) , ψ (Zt/τ)) (2)

4 Experiments Results

In this section, some analytical experiments are implemented on public facial
emotion datasets, i.e. RAFD, RAF-DB and FER2013. The results of MobileViT
using the modified fusion module compared with the original MobileViT are
shown in Table 1. Regardless of the size of the model, modifying the fusion
module all resulted in a certain level of improvement concerning classification
performance with almost no increasement of parameter count.

MobileViT with knowledge distillation is validated on RAF-DB, FER2013
and RAFD datasets. It can be found that the teacher model using the same archi-
tecture as the student model brings the best distillation benefits. So VOLO [15]
is chosen as teacher network. The results of comparing with several baselines
are shown in Table 2. To verify the efficiency of distillation based on teacher
models with different structure, networks with different structures are used as
teacher models including RegNet with a CNN architecture, CoAtNet with a
CNN, transformer hybrid architecture, VOLO with a Transformer and local
attention structure similar to MobileViT. The detailed comparative experimen-
tal results are shown in Table 3. VOLO as teacher model brought about the best
distillation benefits using the same architecture as the student model, although
the hybrid architecture of CoAtNet shows the highest prediction accuracy. So,
the structure of teacher model should be similar to the student model as possible.
Moreover, transformer with local attention structure is a more effective mech-
anism for image feature extraction, which considers the local representation of
the image and inherits the inductive bias of CNNs.
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Table 1. Comparing Original MobileViT with modified the fusion architecture.

Model Params Dataset

RAF-DB FER2013 RAFD

Top-1 Accuracy

MobileViT-XXS 1.268M 73.89% 57.51% 95.45%

MobileViT-XXS(Local) 1.296M 74.51% 57.94% 95.86%

MobileViT-XS 2.309M 75.36% 58.71% 97.10%

MobileViT-XS(Local) 2.398M 75.72% 58.92% 97.72%

MobileViT-S 5.566M 77.05% 60.30% 97.93%

MobileViT-S(Local) 5.797M 77.61% 60.41% 98.55%

Table 2. Comparing MobileViT via knowledge distillation with several models.

Dataset

RAF-DB FER2013 RAFDModel Params FLOPS Memory Model size

Top-1 Accuracy

EfficientNet-B0 5.247M 0.386G 77.99MB 20.17MB 74.28% 57.37% 95.45%

MobileNet v3-Large 1.0 5.459M 0.438G 55.03MB 20.92MB 72.62% 57.57% 93.79%

Deit-T 5.679M 1.079G 49.34MB 21.67MB 71.68%

ShuffleNet v2 2x 7.394M 0.598G 39.51MB 28.21MB 75.13% 58.30% 96.07%

EfficientNet-B1 7.732M 0.570G 109.23MB 29.73MB 73.47% 57.23% 94.20%

MobileViT-XXS&VOLO-D2 1.268M 0.257G 53.65MB 4.85MB 77.64% 60.50% 95.65%

MobileViT-XXS(Local)&VOLO-D2 1.296M 0.265G 53.65MB 4.96MB 78.75% 63.20% 96.69%

ResNet-18 11.690M 1.824G 34.27MB 44.59MB 79.40% 61.19% 98.14%

ResNet-50 25.557M 4.134G 132.76MB 97.49MB 80.15% 61.35% 97.72%

VOLO-D1 25.792M 6.442G 179.49MB 98.39MB 79.20% 60.62% 95.45%

Swin-T 28.265M 4.372G 106.00MB 107.82MB 77.18% 97.10%

ConvNeXt-T 28.566M 4.456G 145.73MB 109.03MB 73.63% 56.95% 94.00%

EfficientNet-B5 30.217M 2.357G 274.87MB 115.93MB 75.07% 58.90% 94.82%

EfficientNet-B6 42.816M 3.360G 351.93MB 164.19MB 75.29% 60.54% 95.24%

ResNet-101 44.549M 7.866G 197.84MB 169.94MB 79.60% 61.88% 97.93%

MobileViT-XS&VOLO-D2 2.309M 0.706G 135.32MB 8.84MB 78.75% 61.28% 97.72%

MobileViT-XS(Local)&VOLO-D2 2.398M 0.728G 135.32MB 9.18MB 79.79% 63.91% 98.34%

ConvNeXt-S 50.180M 8.684G 233.58MB 191.54MB 74.97% 58.74% 92.75%

VOLO-D2 57.559M 13.508G 300.40MB 219.57MB 79.40% 60.04% 97.72%

ResNet-152 60.193M 11.604G 278.23MB 229.62MB 79.63% 61.91% 97.93%

CoAtNet-2 73.391M 15.866G 589.92MB 280.23MB 82.89% 64.76% 98.96%

RegNetY-16GF 83.467M 15.912G 322.94MB 318.87MB 79.24% 62.68% 97.52%

MobileViT-S&VOLO-D2 5.566M 1.421G 162.18MB 21.28MB 81.03% 63.50% 98.96%

MobileViT-S(Local)&VOLO-D2 5.797M 1.473G 162.18MB 22.16MB 81.42% 65.19% 99.17%
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Table 3. MobileViT performance based on different architectures.

Teacher Model Dataset Teacher Model Dataset

RAF-DB FER2013 RAFD RAF-DB FER2013 RAFD

Top-1 Accuracy Top-1 Accuracy

RegNetY-16GF 79.24% 62.68% 97.52% RegNetY-16GF 79.24% 62.68% 97.52%

CoAtNet-2 82.89% 64.76% 98.96% CoAtNet-2 82.89% 64.76% 98.96%

VOLO-D2 79.40% 62.13% 97.72% VOLO-D2 79.40% 62.13% 97.72%

MobileViT(MViT)&KD MobileViT(MViT)(Local)&KD

MViT-XXS&RegNetY-16GF 76.17% 58.94% 96.89% MViT-XXS(Local)&RegNetY-16GF 76.14% 59.51% 97.52%

MViT-XXS&CoAtNet-2 77.05% 61.47% 96.07% MViT-XXS(Local)&CoAtNet-2 77.31% 61.49% 97.10%

MViT-XXS&VOLO-D2 77.64% 60.50% 95.65% MViT-XXS(Local)&VOLO-D2 78.75% 63.20% 96.69%

MViT-XS&RegNetY-16GF 77.41% 60.60% 97.31% MViT-XS(Local)&RegNetY-16GF 78.23% 60.71% 97.93%

MViT-XS&CoAtNet-2 78.36% 62.59% 97.52% MViT-XS(Local)&CoAtNet-2 79.50% 62.70% 98.34%

MViT-XS&VOLO-D2 78.75% 61.28% 97.72% MViT-XS(Local)&VOLO-D2 79.79% 63.91% 98.34%

MViT-S&RegNetY-16GF 78.78% 62.13% 98.14% MViT-S(Local)&RegNetY-16GF 79.89% 62.15% 98.76%

MViT-S&CoAtNet-2 79.34% 63.90% 98.14% MViT-S(Local)&CoAtNet-2 80.64% 64.08% 98.55%

MViT-S&VOLO-D2 81.03% 63.50% 98.96% MViT-S(Local)&VOLO-D2 81.42% 65.19% 99.17%

5 Conclusion

By modifying the fusion module and adding knowledge distillation, the perfor-
mance of the proposed MobileViT was improved. A good application embed-
ding this model into online courses is proposed, i.e., a framework of emotion
analysis for online course. This framework can be integrated into many exist-
ing online learning tools to quickly and accurately evaluate students’ emotions
during courses. Experiment results showed that teachers can find out whether
students are in negative emotions or confused in courses to improve their own
curriculum teaching programs and quality of online courses. Finally, the memory
usage and parameters of the improved MobileViT are relatively low by compar-
ing with baselines.
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Abstract. Achieving consensus among diverse opinions through multi-
round discussions can be a complex process. The advent of large language
models (LLMs) offers promising avenues for resolving this challenge,
given their prowess in understanding and analyzing human sentiments.
However, existing approaches typically focus on single-round discussion,
limiting their effectiveness in real-world discussion scenarios. In response
to this, we proposes a two-layer facilitation agent modeled a multi-round
discussion as a Markov decision process (MDP) to foster efficient agree-
ment. The model comprises a high-level reinforcement learning-based
agent, deciding the optimal facilitation action such as facilitation time
and facilitation prompt. In the low-level, a large language model that gen-
erates the facilitation message based on the facilitation action. Our agent
dynamically chooses facilitation moments, generates novel content, and
directs the discussion towards consensus. Our methodology was validated
across several different topic-based discussions, demonstrating excellent
performance in achieving agreement swiftly across all.

Keywords: Facilitation agent · Reinforcement learning · Large
language models

1 Introduction

Consensus building is pivotal for successful human collaboration and finds appli-
cations in domains like large-scale decision-making [5], multi-stakeholder public
policy formulation [11], and inter-laboratory comparisons [3], where it becomes
particularly crucial when ethical values clash [8]. Although attaining consensus
among varied opinions is challenging, advancements in artificial intelligence (AI)
have bolstered the consensus-building process. Facilitation agents exemplify this,
enhancing the process by condensing discussions, offering guidance, and promot-
ing efficient communication. Chatbots, for instance, facilitate multi-stakeholder
discussions, gathering ideas to address conflicting needs and encouraging stake-
holders to understand diverse perspectives [13].

Emerging large language models (LLMs) like the GPT-3 [2] present inno-
vative solutions, leveraging their profound ability to discern and assess human
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14327, pp. 257–268, 2024.
https://doi.org/10.1007/978-981-99-7025-4_23
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sentiments. Bakker et al. [1] exemplify this by fine-tuning a 70-billion-parameter
LLM to craft statements garnering widespread approval. Similarly, Ding and
Ito [6] introduced a self-agreement framework, enabling LLMs to independently
generate agreements, bypassing the need for human oversight.

However, these models typically consider a single-round case where the pro-
cess concludes once an agreement is generated. In real-world scenarios, achiev-
ing consensus often transpires through multiple rounds of discussions, escalating
the complexity of the task. In this paper, we consider to develop a facilitation
agent in multi-round discussions which faces two key challenges: 1) determining
the dynamic optimal facilitation action relative to different phases of discus-
sions and 2) devising an optimal policy to expedite users’ consensus. To tackle
these issues, this paper formulates multi-round discussion as a Markov Decision
Process (MDP) and introduces a novel two-layer facilitation agent. By formu-
lating the MDP, the paper leverages the principles of reward and punishment in
decision-making, enabling dynamic facilitation at any given discussion moment.

The high-level layer consists of a reinforcement learning (RL)-based agent
that intelligently determines the optimal facilitation timing. The second layer
features a large language model capable of generating agreements based on the
current state of the discussion. This two-layer structure aims to supersede the
limitations of existing facilitation agents and offer a more dynamic, efficient, and
effective facilitation process. The agent is trained to identify the most opportune
moments for facilitation, thus ensuring more impactful interventions.

Contrary to traditional facilitation agents, the LLM component of our agent
is not confined to the current content. It has the potential to generate new
content, offering innovative perspectives or solutions to augment the discussion.
Furthermore, it can steer the discussion towards a final agreement, a crucial func-
tion missing in many existing facilitation agents. This capability to shepherd a
discussion towards consensus while injecting new, relevant content renders our
facilitation agent a powerful instrument for productive discussions. We evalu-
ate our model’s performance on several different topic-based discussions. For
each topic, the proposed method demonstrates impressive efficacy. The results
affirm that our facilitation agent can expedite the consensus process among all
participants.

Our contribution are summarized as follows.

– We model a multi-user, multi-round discussion process as a dynamic decision-
making problem. The objective is to ascertain an optimal policy that enables
all users to reach an agreement with fewer discussion rounds.

– We propose a two-layer facilitation agent where the high-level module deter-
mines the type of facilitation required; subsequently, a lower-level LLM-based
module generates facilitation content in response to the high-level facilitation
command.

– We also furnish a standard Gym environment, readily compatible with various
RL frameworks. Also, we evaluate our model’s performance across various
topics, showing the proposed method’s commendable efficiency in each case.
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2 Related Work

The concept of applying facilitation agent for discussions has been explored and
demonstrated to be a promising avenue for enhancing online discussions. For
instance, Yang et al., [16] proposed method that utilizes a Case-Based Reason-
ing (CBR) application to foster crowd-scale deliberation. The CBR approach
mitigates the risk of flaming in online discussions by offering a structured and
objective methodology for analyzing and discussing cases.

In recent years, the development of the transformer model, unveiled in 2017,
has marked a significant milestone in the field of natural language process-
ing (NLP) [14]. Pretrained large language models predicated on this trans-
former model can be broadly divided into three categories: autoregressive mod-
els, masked language models, and encoder-decoder models [9]. Autoregressive
models such as GPT [12], make predictions for subsequent tokens based on the
preceding sequence. In contrast, masked models like BERT [4] employ a strategy
where a portion of the input text is obscured and the model is trained to pre-
dict the masked tokens based on the context. Encoder-decoder models, suitable
for tasks such as translation, encode the entire input sequence and decode it to
produce the output [7].

These Large Language Models (LLMs) have demonstrated significant poten-
tial in tasks requiring the reconciliation of diverse opinions. For instance, Bakker
et al. [1] explored a multi-user scenario, fine-tuning a 70B LLM to reach an agree-
ment among varying viewpoints. They focused on single-round discussions that
conclude once an agreement is generated. Similarly, Ding and Ito [6] introduced
a framework called “Self-Agreement” for fine-tuning LLMs to achieve consensus
among divergent opinions, independent of human-annotated data. In this frame-
work, the fine-tuning dataset, comprising diverse opinions and agreement sets,
is generated by GPT-3.

Traditional facilitation agents, which often produce predefined content or
seldom generate new material, may restrict participants in identifying potential
agreement candidates. While LLM-based models can produce novel facilitation
messages, they typically focus on single-round conversations, limiting their prac-
ticality in real-world discussions. To address these challenges, we have designed
an LLM-based facilitation agent tailored for multi-user, multi-round discussions
that aims to harmonize varied preferences.

3 Problem Formulation

3.1 Problem Description

The multi-round discussion problem initiates with a given topic and each user
is assigned a fundamental viewpoint related to it. Consequently, each user for-
mulates a statement grounded in their foundational standpoint. As illustrated
in Fig. 1, the topic is “what do you want to eat for dinner”, and a fundamen-
tal viewpoint is assigned to each user. For instance, Tom’s assigned perspective
is his dislike for fish, while David’s viewpoint reflects his preference for salads.
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Firstly, the user Tom initiates the discussion by sharing an opinion related to
the given topic. Following this, each user expresses their viewpoint, taking into
account the previously shared opinions.

A round is deemed complete when all users have expressed their opinions,
paving the way for the subsequent round. Beginning from the second round, we
commence the evaluation of each opinion in relation to the inputs (the viewpoints
of other users). This process allows us to compute a score vector [sc1t , sc

2
t , ..., sc

n
t ]

for round t, which quantifies the degree of alignment between each opinion and
the rest. With this score vector, we can define criteria to ascertain whether the
discussion should conclude. For instance, consensus might be considered achieved
when all scores exceed a predefined threshold δ, i.e., ∀i sci

t ≥ δ. This condition
implies that all participants’ opinions are sufficiently harmonized, indicating that
an agreement has been reached. The goal of multi-round discussions is to attain
a consensus among various opinions within the fewest possible number of rounds.

Fig. 1. A example of multi-round discussion process.

3.2 Formulation of Multi-round Discussion as a MDP

We formulate the multi-round discussion as an MDP as shown below.
State A round is defined as an event where all users express their individual
opinions. Each user utilizes their fundamental viewpoint, the opinions of other
users, and a potential facilitation message as inputs. Once all users have voiced
their opinions, the discussion transitions to the next round. At each round,
op = [op1, op2, ..., opn] is the opinion vector recording the current viewpoints
of all users. The agreement score function is fas : FM × OP → [0, 1] where
fm ∈ FM can be a facilitation message or a set of other users’ current opinions.
From this, we can compute an agreement score sci = fas(fm, opi) based on each
user’s opinion opi. This score reflects the user’s satisfaction with the current
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stage of discussion. In this paper, we employ gpt-3.5-turbo-0613 to evaluate an
agreement score. The prompt for evaluating agreement score includes two parts:
The first part is about system role: “I want you return a score between 0 and
1 to evaluate how agreement A match opinion OP. 0 means agreement A does
not reflect opinion OP and 1 means agreement A totally reflects opinion OP.
At each time I enter the agreement A: and user opinion OP:, then I want you
return the score in the format “score=()” ”. The second part is the specific
content of agreement A and user opinion OP. Through the experiment we found
that gpt-3.5 not only return the score but also return the reason of the score.

Therefore, we define the state of round t as:

st = [sc1t , sc
2
t , ..., sc

n
t ] (1)

This state comprises the opinions op of all users. We define an absorb state
sabs where an agreement is considered reached if

∀i ∈ n, sci ≥ δ (2)

Here, δ ∈ [0, 1] denotes the agreement score threshold. Determining the value
of δ presents a trade-off. If δ is set high, achieving consensus may become chal-
lenging, often requiring numerous steps to reach an agreement. Conversely, with
a lower δ, it might be simpler to achieve consensus compared to a higher δ
value. However, this could lead to participants being less satisfied with the final
agreement.

Action. The facilitation agent must decide whether to perform a facilitation
action. The action set is defined as A = {0, 1, 2} where a = 0 means no facil-
itation action is taken, and each user simply uses the other users’ opinions as
input, a = 1 signifies that the agent generates a facilitation message to all users,
and a = 2 prompts users for additional opinions. Selecting the optimal actions
can be challenging as it dynamically changes with the phase of the discussion.

Reward. The discussion’s objective is to reach the absorb state (agreement) as
quickly as possible. Hence, we define a reward function as

r(s, a, s′) =

{
ragreement if s′ is sabs

−unitr otherwise
(3)

where ragreement is a positive value which is much bigger than the value of unitr.

Objective Function. We consider a policy π : S × A → [0, 1] which is utilized
to select a facilitation action based on the current discussion state. That means,
given the current state s, the facilitation action a is determined according to pol-
icy π. Subsequently, influenced by the chosen facilitation action, the discussion
transitions to the next state following the transition function T . This process
continues until an agreement state (absorb) sabs is reached.

Consequently, we obtain a trajectory h = [s1, a1, s2, ..., sT , aT , sT+1] that
encapsulates the dynamic discussion process. Correspondingly, we calculate the
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discounted sum return R(h) =
∑

t γt−1r(s[t], a[t], s[t + 1]) of immediate rewards
along this trajectory. The objective of reaching an agreement as soon as possible
is transferred to optimizing the policy π that maximizes the expected discounted
sum return, defined as:

π∗ = arg max
π

Eπ[R(h)] (4)

Here, Eπ represents the expectation under policy π and γ denotes the dis-
count factor.

4 Algorithm

We have modeled the dynamic discussion process as a MDP. In this section, we
introduce a two-layer facilitation agent designed to learn an optimal facilitation
policy for multi-round discussions.

Fig. 2. The framework of the two-layer facilitation agent model.

Model Architecture. Our facilitation agent employs a two-layer architecture,
shown in Fig. 2. The high-level layer observes the current state of discussion and
instructs the lower-level facilitation agent accordingly. This high-level layer har-
nesses a Deep Q-Network (DQN), a form of reinforcement learning, to efficiently
steer the multi-round discussion process towards an agreement. By defining the
problem in terms of states, actions, and rewards, as detailed in the previous
section, we enable the DQN to learn the optimal policy regarding the timing
and necessity of the facilitation agent’s interjections.

Specifically, a DQN-based agent is used, which outputs the Q-values for each
action. The Q-value function Q : S × A → R, often used to learn the optimal
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policy for agents, assesses the quality resulting from taking particular actions in
given states [10,15]. This DQN accepts as input the opinion vector st at each
round, containing the scores reflecting user satisfaction with the current phase
of discussion. The Q-value function is defined as follows:

Q∗(s, a) = Eπ

[
R(h) | s[1] = s, a[1] = a

]
.

Q(s, a) represents the expected cumulative rewards, discounted over time, after
taking action a in state s. Consequently, an optimal strategy can be derived by
selecting the action that maximizes the Q-value.

The action to be performed by the facilitation agent is chosen based on an
ε-greedy strategy to maintain a balance between exploration and exploitation.
The agent will either generate and send a facilitation message or permit users to
take others’ opinions as input without facilitation. Over time, the agent learns
to select actions that lead to an overall higher reward, i.e., reaching the absorb
state faster. The DQN continues to guide the discussion process until the absorb
state sabs is reached, indicating that a consensus has been achieved among all
users. This state is defined by all scores surpassing a threshold δ, indicating the
alignment of all participants’ opinions. The discussion episode spanning multiple
rounds concludes either upon reaching the consensus state or after a predeter-
mined maximum number of discussion rounds.

Based on the decisions made by the high-level layer, the low-level module,
powered by a LLM, produces relevant prompts. We have established a fixed
correlation between facilitation actions and the ensuing prompts. For example,
when a = 1, the system produces a prompt steering the conversation towards
consensus, such as “Given the diverse viewpoints discussed, it appears we have
some common ground. Shall we delve into the areas of agreement and craft a
solution that encompasses these shared views?”. Although this mapping can also
be learned adaptively, it is not the main of this paper.

5 Evaluation

5.1 Evaluation Setting

Discussion Topics and Participants. This study thoroughly investigates four
distinct topics, each involving three discussants. For every topic, we designate
a unique character role for each participant, ensuring these roles reflect varied
perspectives related to the discussion theme. Example: For the topic “What do
you want for dinner?”, one of the discussants is role-playing as Tom. The char-
acter description for Tom is as follows: “Tom dislikes fish.” More comprehensive
information about the topics and the roles assigned to the discussants is provided
in Table 1.

Opinion Generation. Each discussant’s opinion, which serves as their initial
standpoint in the discussions, is generated using the gpt-3.5-turbo-0613 model.
We achieve this by inputting the designated character description and the state-
ments made by the other participants into the model. This approach ensures
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Table 1. The topic and viewpoint used in the evaluation.

Topic Name Viewpoint

Topic 1: What
do you want to
eat dinner?

Tom Tom does not like fish

David David is a restauranteur at the Jason’s Suchi restaurant
on Bruswick Street Fitzroy. He is always looking for
ways to make the process fo runing his business easier
for his custormers; David Bourne likes salad

Jenny Jenny does not like salad

Topic 2: The
pros and cons of
anonymity on
the Internet

Tom Tom believes that anonymity is important and necessary
to protect privacy. He is concerned that the absence of
anonymity may potentially suppress individual opinions
and actions

David David thinks that anonymity poses risks and requires
regulation. For example, it can lead to harassment,
defamation, fraudulent activities, and cybercrime

Jenny Jenny believes that a balance is required between
anonymity and real identities. Both have their
advantages and disadvantages, and appropriate
differentiation is necessary

Topic 3: The
proliferation of
AI-driven
autonomous
vehicles and the
risk of traffic
accidents

Tom Tom is optimistic about AI-driven autonomous vehicles,
believing they can greatly reduce traffic accidents
through advanced sensors and algorithms

David David is skeptical about AI-driven autonomous vehicles,
expressing concerns about technical glitches, hacking
vulnerabilities, and potential legal and ethical challenges

Jenny Jenny sees the potential of AI-driven autonomous
vehicles to improve road safety, but emphasizes the need
for robust regulations, comprehensive testing, and public
acceptance to address potential risks and ensure
responsible deployment

Topic 4: The
issues of privacy
and data
protection in
social media

Tom Tom strongly advocates for privacy and data protection
in social media, emphasizing the need for robust
regulations and user control to prevent misuse of
personal information

David David expresses concerns about privacy in social media,
but believes that users should take personal
responsibility by being cautious with the information
they share and using privacy settings effectively

Jenny Jenny recognizes the importance of privacy and data
protection in social media, calling for a collective effort
involving both users and social media platforms to
ensure transparency, informed consent, and secure data
practices
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that the generated opinions are aligned with the character roles while also being
influenced by the discussion’s dynamics.

Evaluation Metrics: The primary objective is to gauge the performance of our
two-layer facilitation algorithm. We do this by juxtaposing its efficacy against a
baseline - a random policy. In this random policy approach, the high-level agent
makes an arbitrary choice for the facilitation action a ∈ A. Subsequently, the low-
level agent utilizes this randomly determined action to generate the facilitation
prompt. The hyperparameters of the DQN are set as follows: learning rate =
0.01 and discount factor = 0.9.

5.2 Evaluation Results

For each experimental setup, we conducted simulations over 500 episodes, with
a maximum step limit of 10 per episode. If an agreement is not reached within
these steps, the episode is terminated. We gauge the performance of our model by
analyzing agreement scores for each setup, which demonstrate how these scores
evolve during the learning process. Figure 3 (a)-(d) presents the agreement scores
at the final round of each episode, displaying how scores generally increase as
the number of learning episodes progress. To illustrate, let’s consider topic 2 on
“The pros and cons of anonymity on the Internet.” For this topic, Tom, David,
and Jenny have the following beliefs:

– Tom believes in the necessity and importance of anonymity for privacy pro-
tection, and he fears that without it, individual opinions and actions might
be suppressed.

– David perceives anonymity as risky and needing regulation, as it could lead
to harassment, defamation, fraudulent activities, and cybercrime.

– Jenny asserts the need for a balance between anonymity and real identities.
She acknowledges the merits and demerits of both, and advocates for suitable
differentiation.

For the issue of anonymity on the internet, which is inherently divisive, the
contrasting perspectives of Tom, David, and Jenny signify the complexities of
real-world debates. Initially, the model faced challenges in fostering consensus.
However, by the end of the simulations, the agent adeptly navigated the nuances,
facilitating an agreement score beyond 0.9. This underscores the model’s capacity
to understand and handle multifaceted dialogues. While Topic 3 recorded an
average agreement score of 0.8, its performance exhibited some inconsistencies.
This variability could be attributed to the intricacies of the topic and the initial
exploration strategies of the agent. Yet, post the 15-epoch mark, the model
displayed heightened stability, emphasizing its capability to adjust to challenges
and uncertainties.

Figure 3 (e)–(h) provides a clear contrast between our proposed method and
a random policy. The initial performance overlap is anticipated, as the agent is
in its early exploration phase. However, the subsequent divergence, where our



266 S. Ding and T. Ito

Fig. 3. (a)-(d)The performance of agreement scores of three discussants in four topics.
(e)-(h) Comparison of the average agreement score between our proposed method and
random policy.



Reinforcement Learning Based Facilitation Agent for Consensus Building 267

facilitation agent markedly outperforms the random policy, is a testament to its
ability to learn and refine its strategies effectively.

The figures emphasize a pivotal observation: the agent not only improves its
agreement scores over time but also becomes increasingly consistent in achieving
high scores. This consistency is indicative of the model’s robustness and its
potential applicability in real-world scenarios.

These results highlight the effectiveness of our facilitation algorithm, which
progressively learns to steer discussions towards agreement within the given
round limit. Moreover, it demonstrates an enhanced stability and consistency
in performance over time.

6 Conclusion

We introduced a two-layer facilitation agent designed to help discussions reach
consensus. This agent uses deep reinforcement learning to guide interventions
and incorporates large language models to produce fitting prompts. Our tests
found that the agent consistently leads discussions towards agreement and out-
performs random strategies. While there are other single-agent RL algorithms
available, our paper focuses on a broader framework for deep reinforcement learn-
ing aimed at consensus building.

This facilitation agent has diverse applications: enhancing team discussions in
businesses, assisting conflict resolution, guiding online dialogues, and facilitating
group learning in education. As we employ AI in discussions, addressing biases
and ethical issues is crucial. Our agent, built on pre-trained LLMs, is aware of
these challenges. Moving forward, we plan to refine our model to ensure more
inclusive and balanced discussions, keeping in line with the principles of ethical
AI use.
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Abstract. Personalization of travel routes significantly impacts people’s quality
of life and production efficiency. The personalized route recommendation (PRR)
problem has personalized requirements and the goal of providing users with per-
sonalized route suggestions.Most of the existingwork focuses on improving either
the personalization or the availability of recommended routes, rather than both. In
response to the above problems, a Personalized-Neural-Network-Heuristic frame-
work (PNNH) is proposed, which can improve the personalization degree of the
recommended routes and ensure their availability simultaneously. The PNNH
framework consists of two stages: preference modeling and route recommen-
dation. In the preference modeling stage, a prediction component with Graph
Convolutional Network (GCN) as the core is constructed to learn the potential
preference characteristics in the user’s historical travel information, and then a
heuristic algorithm is constructed by using the evaluation value output by the pre-
diction component reflecting the transition probability, thus introducing the user
preference characteristics into its cost evaluation function. In the route recom-
mendation stage, an improved heuristic algorithm is used for route planning, and
the route planning results are recommended to users. A strategy of narrowing the
search scope for the heuristic algorithm is proposed, which can ensure that the
route reaches its destination. Based on the PNNH framework, a set of algorithms
can be constructed. TheNeuroMLR-Dijkstra-A* algorithm (NDA*) is constructed
and used in the experiment to evaluate the performance of the PNNH framework.
Experimental results demonstrate the superiority of the PNNH framework.

Keywords: Personalized recommendation · Route recommendation · A*
algorithm · Lipschitz embedding · Graph convolutional networks (GCN)

1 Introduction

Transportation is an essential part of people’s daily lives, and route choice is directly
related to life and production. The current route recommendation service is not per-
fect, which limits the development of life and production to some extent. Personalized
Route Recommendation (PRR) aims to generate user-specific route recommendations
in response to the user’s route request [1].
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Route recommendation services are broadly classified into two types: route recom-
mendation based on digital maps and route recommendation based on trajectory data.
The route recommendation service based on digital maps is the traditional navigation
service and can only provide users with route suggestions without discrimination. When
comparedwith the route recommendation service based on digitalmaps, the route recom-
mendation service based on trajectory data considers the users’ preference characteristics
and focuses more on the quality of the recommended routes. PRR is a type of one based
on trajectory data.

The related work on PRR focuses on extracting users’ personalized characteris-
tics and recommending routes based on personalized characteristics. In some studies,
machine learning is used to extract users’ personalized characteristics [2–4]. Many stud-
ies also use RNN to extract characteristics [5, 6]. Other studies used methods other than
machine learning, such as the Mixed Gaussian Model [7]. For another work focus, vari-
ousmethods for generating routes have been proposed in relatedwork [8–10].Most of the
above methods focus on considering more influencing factors in the evaluation process
of user preferences, which can achieve a high success rate of route recommendation, but
most of them ignore the improvement of the personalized degree of the recommended
route.

In recent years, embedding users’ personalized characteristics into the route recom-
mendation process by improving heuristic algorithms has become a research hotspot
of PRR. Related research has provided a variety of implementation methods [11–13].
Some of these studies use neural networks, such as MP neural cell model [14]. Most of
the above methods are devoted to improving the personalization degree of the recom-
mended route, but most of them ignore the routes’ availability, which represents whether
the route can reach the destination and be adopted by users.

At present, NeuroMLR (The Neural Approach to the Most Likely Route Problem)
neural network [15] outperforms comparable methods and comes closest to the idea
of this work. Jain et al. measured the prediction accuracy of the recommended route
using precision and recall, which resulted in an improvement in prediction accuracy
and the success rate of the recommended route to reach the destination. However, after
combining the NeuroMLR neural network with the classical graph search algorithm,
there is still room for improvement in the personalized degree of the recommended
routes. Some recommended routes have not yet arrived at their destination, and there is
still room for improvement in their availability.

In summary, the current PRR methods have the limitation of not simultaneously
improving the personalization degree of the recommended route and ensuring its
availability. To this end, this paper presents three contributions: (1) We propose a
Personalized-NN-Heuristic (PNNH) framework for individualized route recommenda-
tion by embedding graph convolutional networks (GCNs) into heuristic algorithms.
PNNH provides a general method for constructing the evaluation function of heuristic
algorithms using the evaluation values output by neural networks. Preference modeling
and route recommendation are completed via GCN and heuristic algorithms, respec-
tively. (2) A PRR algorithm based on the PNNH framework is proposed, namely the
NDA* (NeuroMLR-Dijkstra-A*) algorithm. The effect of the NeuroMLR neural net-
work is incorporated into the cost evaluation of the A* algorithm via evaluation metrics,
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making the routes superior. The A* algorithm’s iterative process is improved, ensuring
route availability. (3) A strategy of narrowing the search scope is proposed to improve
the success rate of route recommendation. The NDA* algorithm makes A* algorithm
only search for key nodes when it fails to directly recommend the route, thus ensuring
its availability.

2 Basic Concepts of PRR

Concept 1 (Road Network). The road network is abstracted as a directed graph, with
road intersections abstracted as nodes and sections between intersections abstracted as
edges. G represents the road network. V represents the set of nodes.

Concept 2 (Route). There are two ways to represent routes: nodes and edges. The edge-
based route expression is R(s, d) = {e1, · · · , ek−1} where ei = (vi, vi+1) represents the
ith edge on the route.

Based on the method of representing routes by edges and the first-order Markov
hypothesis, the expression of the route obtained by solving is given in Eq. (1). Among
them, Pr(ei|vi, d , t) represents the probability of edge ei on R, s ∈ V represents the
starting node, d ∈ V represents the ending node.

R∗(s, d) = arg max∀R∈G
∏|R|

i=1
Pr(ei|vi, d , t) = arg min∀R∈G

∑|R|
i=1

− log(Pr(ei|vi, d , t)) (1)

3 PNNH Framework

3.1 Design of PNNH Framework

PNNH framework divides the process of solving PRR into two stages: preference
modeling and route recommendation (Fig. 1).

Fig. 1. The structure of the PNNH framework.

Concept 3 (Preference Modeling). The conditional distribution of the conditional tran-
sition probability of the user’s trip in the road network G is extracted from the user’s
historical trajectory dataset D.

Concept 4 (Route Recommendation). Given the distribution of conditional transition
probability, a route R which maximizes the evaluation metrics is determined.
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DesignofPreferenceModelingStage. In the preferencemodeling stage, PNNHframe-
work uses an appropriate neural network model to learn the potential preference charac-
teristics in the user’s historical trajectory data and models the user’s preference charac-
teristics. PNNH framework uses the user’s preference model to construct the prediction
component of the algorithm. The output data of the prediction component can reflect
the transfer probability of the user in all transferable directions at the next moment. In
the preference modeling stage, PNNH framework personalizes route recommendation
service.

Design of Route Recommendation Stage. In the route recommendation stage, PNNH
framework adopts appropriate heuristic algorithm, uses user’s preference characteristics
to plan routes, and recommends the output results to users as route suggestions. PNNH
framework embeds the prediction component into the heuristic function of heuristic
algorithm. The heuristic algorithm utilizes the output data of the prediction component
to calculate the heuristic function, which introduces the user’s preference characteristics
into route planning. In the route recommendation stage, PNNH framework improves the
personalization degree of the recommended route.

3.2 Evaluation of PNNH Framework

The performance of PNNH framework cannot be directly evaluated, so an algorithm
instance is constructed based on PNNH framework, and the evaluation of PNNH frame-
work is achieved by evaluating the performance of the algorithm. In our work, Neu-
roMLR neural network [15], which has excellent performance in similar methods and is
the closest to the idea of this paper, and A* algorithm in heuristic algorithms are selected
to construct NDA* algorithm. By comparing the results of route recommendation using
NDA* algorithm and using each component of NDA* algorithm alone, it is proved that
the route recommended by NDA* algorithm has a higher degree of personalization and
its availability is ensured, and thus demonstrates the superiority of PNNH framework.

4 NDA* Algorithm Based on PNNH Framework

In this paper, the NeuroMLR neural network is incorporated into the A* algorithm to
generate the NDA* algorithm. NDA* algorithm represents the general performance of
the algorithmbased on thePNNHframework and can be used to evaluate the performance
of PNNH framework.

4.1 Preference Modeling Based on NeuroMLR Neural Network

In the PRR problem, the probability that the user selects the next road segment to pass
when transferring, viz., the distribution of the transfer probability, reflects the user’s pref-
erence characteristics. The algorithm models the preference characteristics of users by
estimating the distribution of transition probability, and then realizes the personalization
of recommendation results.
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According to Eq. (1), the conditional transition probability Pr(e|curr, d , t) needs
to be modeled, where e = (curr, v), curr ∈ V represents the current node. Due to the
unknown real distribution of transition probability in G, this paper estimates the real
distribution of transition probability by accessing D, where D is the sample extracted
from the real distribution. In this paper, NeuroMLR neural network is used to model the
transition probability [15].

NeuroMLR neural network is composed of graph convolutional networks (GCNs)
and Lipschitz embedded, which can learn node attributes. GCN transmits information
learned during the training process to less accessed or not accessed nodes via the
message-passing mechanism, allowing the algorithm to generalize. Principal compo-
nent analysis (PCA) is used to express the traffic situation in the road network at time
t in a low dimension, and multilayer perceptron (MLP) is used to estimate the transfer
probability. The neural network adopts the end-to-end training method, and integrates
v, curr, d and the characteristics of traffic conditions at t time.

4.2 Route Heuristic Algorithm

The optimal route is the one with the maximum value of evaluation metrics from the
starting node to the endingnode. The route planning component composedofNeuroMLR
neural network provides alternative routes for the algorithm to provide alternative routes
for the algorithm to filter out the curr for the next iteration.

In this paper, different evaluation metrics are used to construct the heuristic function.
The expression of the heuristic function is shown in Eq. (2). Among them, Precision
represents precision, Recall represents recall, w1 represents the weight of Precision, w2
represents the weight of Recall, w1 and w2 satisfy the relationship w1 + w2 = 1.

H (n) = w1 ∗Precision + w2 ∗Recall (2)

In terms of improving the success rate of path recommendation, if the recommended
route fails to reach the ending node d when the A* algorithm is terminated, NDA*
algorithm will ensure that the generated route can reach the destination by narrowing
the search range of A* algorithm. The main steps are shown in Table 1.

5 Experimental Validation and Result Analysis

This paper designs experiments to compare the NDA* algorithm with the algorithm
using the NeuroMLR neural network algorithm, the classical graph search algorithm,
and the algorithm composed of the combination of the classical graph search algorithm
and the A* algorithm. NDA* algorithm performs the best in terms of Precision, Recall,
and success rate. The superior performance of NDA* algorithm can prove the superiority
of the PNNH framework.

5.1 Experimental Setup

Datasets. This paper uses four real datasets and road network information extracted
from OpenStreetMap [16]. The dataset includes taxi trajectory datasets from Beijing
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Table 1. The main steps of recommending after narrowing the search scope.

(BJG) [17], Chengdu (CHG) [18], Harbin (HRB) [19], and Porto (PT) [20]. The value
of the function τt(e) of the average time taken to pass through road segment e at time t is
defined as the average time taken by all vehicles passing through road segment e in the
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hour preceding time t. After data preprocessing, the statistics of the dataset are shown
in Table 2.

Table 2. Datasets and processed datasets.

Dataset Number of
nodes

Number of
edges

Number of
trajectories

Average
trajectory
length/km

Average
number of
edges in the
trajectory

Beijing
(BJG)

31,199 72,156 1,382,948 7.39 36.08

Chengdu
(CHG)

3,973 9,255 3,600,503 4.54 22.93

Harbin
(HRB)

6,598 16,292 1,133,548 10.92 56.81

Porto (PT) 5,330 11,491 1,426,312 5.27 51.07

Evaluation Metrics. In the experiment, Precision, Recall and success rate are selected
as evaluation metrics. The route generated by the algorithm is R∗.

On the one hand, in order to evaluate the personalization degree of the route recom-
mended by the algorithm, the experiment uses Precision and Recall as the evaluation
metrics and takes the real route R extracted from the testing set as the standard to calcu-
late the evaluation value of route R∗ on the above two evaluation metrics. The formulas
for calculating Precision and Recall are given in Eq. (3) and Eq. (4). Among them, δ(e)
represents the length of edge e.

Precision =
∑

e∈(R∩R∗) δ(e)
∑

e∈R∗ δ(e)
(3)

Recall =
∑

e∈(R∩R∗) δ(e)
∑

e∈R δ(e)
(4)

Precision is the evaluation metric for the recommended result R∗, which reflects how
many segments of the recommended route will be selected by users when they actually
travel; Recall is the evaluation metric for the route R actually selected by the user, which
reflects how many road segments are recommended in the route actually selected by the
user. The larger the values of Precision and Recall, the closer the recommended route R∗
is to the actual route R selected by users, that is, the higher the degree of personalization
of the route.

On the other hand, to evaluate the availability of the route, the experiment takes
success rate as the evaluation metric and calculates the proportion of routes that can
reach the destination in the recommended routes of the algorithm to all routes. The
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formula for calculating the success rate is given in Eq. (5).

success rate = 100%×
the number of routes recommended by the algorithm to reach the destination

the total number of routes recommended by the algorithm

(5)

The success rate is an evaluation metric for a specific dataset, which reflects the
ability of any route recommended by the algorithm to meet the basic navigation needs
of users in terms of the dataset. The higher the success rate, the less the recommended
route cannot meet the basic navigation needs of users due to the failure of recommended
route. That is, the stronger the availability of the route.

To complete the difference analysis, we use independent samples T-test with p-value
to determine whether there is a significant difference in the evaluation metrics between
baseline algorithms and NDA* algorithm. The smaller the p-value, the more significant
the difference.

Parameters. The parameters of the NeuroMLR-Dijkstra component and the
NeuroMLR-Dijkstra algorithm are selected by following the way of [15].

5.2 Baselines

The NDA* algorithm is tested and its performance is compared with that of NeuroMLR-
Dijkstra algorithm, NeuroMLR-Bellman-ford algorithm, Dijkstra algorithm, Bellman-
ford algorithm, A* algorithm, Dijkstra-A* algorithm, and Bellman-ford A* algorithm.

TheNeuroMLR-Dijkstra algorithm and theNeuroMLR-Bellman-ford algorithm can
represent the general performance of the algorithm composed of the combination of
NeuroMLR neural network and classical graph search algorithm. According to Jain et al.
[15], the NeuroMLR-Dijkstra algorithm can represent the most advanced level of PRR
algorithms. Dijkstra algorithm, Bellman-ford algorithm and A* algorithm can represent
the general performance of classical graph search algorithms. Dijkstra-A* algorithm and
Bellman-ford-A* algorithm are constructed in the same way as NDA* algorithm. The
above two algorithms can represent the general performance of the algorithm composed
of classical graph search algorithm and A* algorithm.

5.3 Experimental Results and Analysis

Evaluation of Overall Effect. Table 3 shows the evaluation values of NDA* algorithm
and baselines on evaluation metrics Precision and Recall when taking 2000 samples
from the test set. The bolded data represent the highest values in each set of samples.
Each benchmark algorithm is T-tested against the NDA* algorithm, and the p-value is
indicated in parentheses. Due to space limitations, values less than 0.05 are omitted
and not shown. Most of the Table 3’s p-values are less than 0.05. When the p-value is
less than the significance level of 0.05, a substantial difference exists, which means the
performance of NDA* algorithm has been greatly improved in comparison with baseline
algorithms.
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Table 3. Evaluation results of eight algorithms on four datasets.

Algorithms Precision/% Recall/%

BJG CHG HRB PT BJG CHG HRB PT

NDA* 77.03 90.96 69.87 75.28 82.68 91.65 56.30 77.20

NeuroMLR-Dijkstra 75.58
(0.150)

87.35 65.77 78.17 74.23 84.75 48.20 70.53

NeuroMLR-Bellman-ford 75.58
(0.127)

87.35 65.77 78.17 74.23 84.75 48.20 70.53

Dijkstra 63.57 74.93 63.40 60.18 64.50 74.21 47.08 57.33

Bellman-ford 63.57 74.93 63.40 60.18 64.50 74.21 47.08 57.33

Dijkstra-A* 65.63 79.26 53.37 65.30 79.63 87.69 50.62 75.98
(0.202)

Bellman-ford-A* 79.63 80.98 54.81 67.52 81.44
(0.148)

89.07 51.54 77.21
(0.995)

A* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

By comparing the evaluation values inTable 3, it can be seen that theNDA*algorithm
produces the majority of the highest values. When using the same set of samples, the
Precision and Recall of the NDA* algorithm are basically greater than those of the
baseline algorithms.

The test results for other sample sizes are shown in Fig. 2. In Fig. 2, the abscissa
represents the number of samples and the ordinate represents Precision or Recall. Each
line represents an algorithm’s Precision or Recall for a certain number of samples. The
higher the line, the better the algorithm’s performance. The red line represents the NDA*
algorithm. Taking (a) as an example, the numerical value represents Precision and the
highest points are 80.42, 78.11, 73.40, 75.61 and 79.63, four of which are obtained by
NDA* algorithm. Most of the highest points in each column are red. As a whole, the red
line is at the top. The same is true for the other figures. The above results show that the
NDA* algorithm has the highest Precision and Recall, indicating the highest degree of
personalization.

The reachability of NeuroMLR-G, CssRNN, and DeepSt is calculated by the exper-
iment in reference [15]. The concept of reachability is related to the success rate in this
paper. Table 4 shows the success rate of the above algorithms and the NDA* algorithm.
The bold data shows the highest success rate attained on each dataset.

Using BJG as an example, the success rates of NeuroMLR-G, CssRNN, and DeepSt
are 99.1%, 91.7%, and 8.7%, respectively, which are lower than the NDA* algorithm’s
success rate of 100%. The same is true for HRB. The above experimental results show
that the strategy of narrowing the search scope improves the success rate, thus ensuring
the availability of the routes recommended by the algorithm.

Effectiveness of Heuristic Algorithm. In Table 3, the Precision and Recall of
NDA* algorithm are basically greater than those of NeuroMLR-Dijkstra algorithm,
NeuroMLR-Bellman-ford algorithm, Dijkstra algorithm and Bellman-ford algorithm
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Fig. 2. Curve of the variation of evaluation results with the number of test samples.

Table 4. Success rate of four algorithms on two datasets.

Datasets Success rate/%

NDA* NeuroMLR-G CssRNN DeepSt

BJG 100.0 99.1 91.7 8.7

HRB 100.0 99.1 95.3 8.1

under the same set of samples. The above experimental results indicate that compared
to the algorithm composed of NeuroMLR neural network and classical graph search
algorithm, and the classical graph search algorithm, the recommended route of NDA*
algorithm is closer to the route actually selected by the user and has a higher degree of
personalization.

Effectiveness of Neural Networks. In Table 3, the Precision and Recall of NDA*
algorithm are basically greater than those of Dijkstra-A* algorithm and Bellman-ford-
A* algorithm under the same set of samples. The above experimental results show that
compared with the algorithm composed of the classical graph search algorithm and
A* algorithm alone, using NeuroMLR neural network to model preferences effectively
improves the personalization degree of recommended routes.

Universality of PNNH Framework. In Table 3, when using the same set of samples,
the routes recommended by the Dijkstra-A * algorithm and Bellman-ford-A* algorithm
outperform the routes recommended by the Dijkstra and Bellman-ford algorithms. The
above experimental results show that comparedwith the classical graph search algorithm,
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the route recommendedby the algorithm formedby the combinationof the classical graph
search algorithm and the A* algorithm has a relatively higher degree of personalization.
This conclusion further proves that the performance of the algorithm constructed by
PNNH framework is superior to that of the participating algorithms used alone, and the
PNNH framework is universal.

6 Conclusion

At present, the PRRmethod needs to be improved inmany aspects, such as not improving
the personalization degree of recommended routes and ensuring their availability at the
same time. In response to themain problems in current PRRmethods, this paper proposes
a PNNH framework.

In the fields of AI applications such as intelligent driving and robot route planning,
the PNNH framework can use neural networks and heuristic algorithms pertinently
to constitute corresponding algorithms. In practice, users’ choice of routes is influ-
enced by multiple factors, and their preferences and demands may vary depending on
the scenarios. In future work, this paper will focus on the corresponding relationship
between user behavior and its influencing factors, and realize the dynamic adjustment
of decision-making factors for route recommendation, so as to improve the flexibility
and personalization degree of the recommended route.
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Abstract. Incomplete hybrid information systems (IHISs) contain
hybrid data (e.g., categorical data, numerical data) and incomplete data.
With the development of big data, IHISs widely exist in various practical
applications. Due to the heterogeneity of hybrid data and the complex
semantics of incomplete data, effectively processing the IHIS has become
a significant challenge. The established indiscernibility relations of the
existing studies for dealing with IHIS over-amplify the uncertainty of
missing values, which may achieve unsatisfactory results. In this paper,
we propose an approximate supplement-based neighborhood rough set
model (AS-NRSM) to deal with the data of IHISs. Specifically, we pro-
pose a method to approximate supplement missing values with known
values or constructed interval values, and the original IHIS is becoming
the constructed IHIS*. Then, we formulate a novel similarity function to
construct the improved neighborhood tolerance relation and the corre-
sponding neighborhood tolerance classes. Finally, we design two exper-
iments on 5 UCI data sets by introducing three performance metrics.
Experimental results illustrate that the proposed AS-NRSM has higher
classification performance than the two representative models.

Keywords: Incomplete data · Hybrid data · Neighborhood rough
sets · Incomplete hybrid information systems

1 Introduction

With the fast development of the information era, more and more data in the
real world show heterogeneous and incomplete. For example, the medical records
contain categorical data, e.g., blood type (O, A, B, AB), gender (Male, Female)
and marital status (Married, Unmarried), and numerical data, e.g., blood lipid
(mmol/L), body temperature (◦C) and height (cm). In addition, due to some
unpredictable factors like human omission or equipment failure, missing data
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will occur occasionally. At present, in the fields of data mining and knowledge
discovery, methods of efficiently processing these heterogeneous and incomplete
data have become a research hotspot.

Rough set theory is an effective tool for addressing vague and uncertain issues,
and has been used successfully in many realms [6,8,12,19–21]. The classical
rough set model can only deal with complete and categorical data in information
systems (ISs) based on equivalence relation. ISs with incomplete and hybrid data
are called incomplete hybrid information systems (IHISs), which exist widely in
practical applications. Thus, many investigations have extended the rough set
model to process the information systems with hybrid data [1,3,11,14,18] and
incomplete data [9,10,13,15] separately.

Recently, there has been an increasing interest in simultaneously consider-
ing hybrid data and incomplete data [2,5,16,22,23]. Huang et al. [5] given two
pseudo-distance functions according to two semantics of missing value (i.e., “lost
value” and “do not care”) in IHISs. For only one semantic of missing value,
namely, “lost value”, Ge et al. [2] proposed an improved neighborhood rough
set model (NRSM) in an IHIS to process the missing data. Zhang et al. [22]
proposed an attribute reduction algorithm in IHIS by introducing the Dempster-
Shafer evidence theory in the distance function. Wang et al. [16] proposed the
decision-theoretic rough set model in IHIS with image and employed it in a med-
ical diagnosis example. However, in these models, missing values are generally
considered to be equal to all known values in the corresponding domain. Intu-
itively, the lost value should be similar to part of values in the corresponding
domain, rather than be equal to all known values. Therefore, the existing models
amplify the uncertainty of lost values, which may acquire unreasonable classifi-
cation results. The specific analysis and statement of the problem are presented
in Sect. 2.

To better describe the uncertainty of lost values and improve the classi-
fication performance in IHIS, we propose an Approximate Supplement-based
Neighborhood Rough Set Model (AS-NRSM). Considering the heterogeneity of
categorical and numerical data, we firstly approximately supplement lost values
with known categorical or interval values, to avoid the uncertainty amplification
caused by the above-mentioned models. Then the IHIS is becoming a constructed
IHIS* with only one semantic (i.e., “do not care”). In the constructed IHIS*, we
define the corresponding similarity function to simultaneously deal with three
data types: categorical, numerical, and the replaced interval values. Then, we
construct the AS-NRSM based on the similarity function. Finally, two experi-
ments are designed and implemented to verify the effectiveness of the proposed
AS-NRSM.

The main contributions are presented as follows. (1) To describe the uncer-
tainty of missing values as accurately as possible, we propose a method of approx-
imate supplement for the lost values in the original IHIS. (2) To address three
types of data in the constructed IHIS*, we define a novel similarity function
to measure the similarity between objects. (3) We design an algorithm of AS-
NRSM and introduce three performance metrics into the AS-NRSM to verify the
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performance of the proposed model. This paper is organized as follows. In Sect. 2,
some basic notions of IHIS are reviewed and a specific analysis of the existing mod-
els is given. In Sect. 3, we give a method of approximating supplements and discuss
the similarity function in IHIS*. The AS-NRSM will be established eventually. In
Sect. 4, several experiments are carried out on 5 UCI data sets to compare the
performance of the proposed method and two existing methods. Finally, the con-
clusion of this paper and the possible future works are presented in Sect. 5.

2 Preliminaries

In this section, we briefly review some concepts about IHIS. Then, we shortly
analyze the irrationality of two existing NRSMs when processing some cases in
IHIS.

2.1 Incomplete Hybrid Information Systems (IHISs)

An IHIS can be denoted as Ω = (U,A, V, f, ?, ∗), where A = AC ∪AN , AC ∩AN =
∅, and A is a non-empty finite set of attribute, AC and AN are the categorical
and numerical attribute sets, respectively. “?” and “*” denote two semantics of
missing values, namely, “lost value” and “do not care”.

Table 1. Ω = (U, A, V, f, ?, ∗)

UUU a1a1a1 a2a2a2 a3a3a3 a4a4a4 a5a5a5

x1 S A 0.6 0.8 0.9

x2 M * * 0.2 0.5

x3 * C 0.3 0.2 0.6

x4 ? B ? 0.2 ?

x5 S ? 0.1 ? 0.1

x6 M ? ? ? ?

x7 M ? ? ? ?

x8 M * * 0.9 0.1

Example 1. We use Table 1 to illustrate an IHIS, where U = {x1, · · · , x8}, A =
{a1, · · · , a5}. For categorical attribute set AC = {a1, a2}, Va1 = {S,M} and
Va2 = {A,B,C}, we have some objects with missing values, e.g., f(x3, a1) = ∗,
f(x4, a1) =?. For numerical attribute set AN = {a3, a4, a5}, Va3 , Va4 , Va5 ∈ [0, 1],
there are some missing values, e.g., f(x2, a3) = ∗, f(x4, a3) =?.

To cope with the numerical data, the theory of neighborhood rough sets (NRSs)
is introduced [1,4,17]. For numerical attribute AN , through a neighborhood
radius δ ∈ [0, 1]. The neighborhood relation N δ

AN is defined by:

N δ
AN = {(x, y) ∈ U2 | ∀a ∈ AN , da(x, y) ≤ δ}, (1)
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where da(x, y) is the distance of x and y on the attribute a ∈ AN . For any x ∈ U ,
the neighborhood class N δ

AN (x) is defined by:

N δ
AN (x) = {(x, y) ∈ U2 | ∀a ∈ AN , (x, y) ∈ N δ

AN }. (2)

In IHIS, Huang et al. [5] proposed Three-Way Neighborhood Decision Model
(TWNDM). Ge et al. [2] constructed an Improved Neighborhood Rough Set
Model (INRSM). The lost value can be equivalent to any one of the known values
in the corresponding domain in TWNDM and INRSM. The specific analysis of
the two models are given in Example 2.

Example 2. Consider the IHIS in Example 1, we assume the neighborhood radius
δ = 0.2, the neighborhood classes N δ

A(x) are respectively constructed based on
TWNDM [5] and INRSM [2] as Table 2.

Table 2. Neighborhood classes

Method TWNDM INRSM

Nδ
A(x1) {x1} {x1, x6, x7}

Nδ
A(x2) {x2, x3, x5, x6, x7} {x2, x3, x5, x6, x7}

Nδ
A(x3) {x2, x3, x6, x7} {x2, x3, x4, x5, x6, x7}

Nδ
A(x4) {x2,x4x4x4,x5x5x5, x6, x7} {x2, x3,x4x4x4,x5x5x5, x6, x7, x8}

Nδ
A(x5) {x4x4x4,x5x5x5} {x3,x4x4x4,x5x5x5, x6, x7, x8}

Nδ
A(x6) {x2, x3, x5,x6x6x6,x7x7x7, x8} {x1, x2, x3, x4, x5,x6x6x6,x7x7x7, x8}

Nδ
A(x7) {x2, x3, x5,x6x6x6,x7x7x7, x8} {x1, x2, x3, x4, x5,x6x6x6,x7x7x7, x8}

Nδ
A(x8) {x6, x7, x8} {x3, x4, x6, x7, x8}

We note that TWNDM and INRSM are not very reasonable when dealing
with the following two special cases.

(1) The lost values of two objects always alternate. As shown in Table 1, for
∀a ∈ A, objects x4 and x5 always satisfy two conditions: (1) if f(x4, a) 	=?
then f(x5, a) =?, (2) if f(x5, a) 	=? then f(x4, a) =?. Intuitively, objects x4

and x5 are unlikely to be similar. Hence, it is unreasonable to classify x4 and
x5 into the same neighborhood class. However, by TWNDM and INRSM,
we have x4 ∈ N δ

A(x5) and x5 ∈ N δ
A(x4).

(2) If two objects have the same or similar known values under very few
attributes, and the rest values are all lost. As shown in Table 1, objects
x6 and x7 have only one known value in a1, and the rest of their values
are all lost values. The possibility that x6 and x7 to be similar is very low.
Therefore, it’s unreasonable to classify x6 and x7 into the same neighbor-
hood class. Still, we have x6 ∈ N δ

A(x7) and x7 ∈ N δ
A(x6) by TWNDM and

INRSM.



AS-NRSM in Incomplete Hybrid Information Systems 285

Herein, the lost value is assumed to be equivalent to all known values in
the corresponding domain, which increase the uncertainty of the lost value, and
further leads to unreasonable classification results. This problem has been expli-
cated and shown in Example 1 and 2. In the following, we propose an approxi-
mate supplement method for solving this problem.

3 Approximate Supplement-Based NRSM

3.1 Approximate Supplement in IHIS

In this subsection, we propose the method of approximate supplement in IHIS.
Let x be an object with the lost value “?” in IHIS. Then the lost value will be
approximately supplemented by the known categorical value or a constructed
interval value.

In an IHIS, ∀a ∈ AN , let V †
a = {v1

a, v2
a, v3

a, · · · , vn
a } be a known value set of

attribute a, and n = |V †
a | be the number of known values in attribute a. For any

a ∈ AN , we have the standard deviation in attribute a:

Stda =

√∑n
i=1(vi

a − AVGa)2

n
, (3)

where AVGa is the average value of V †
a , i.e., AVGa =

∑n
i=1 vi

a/n.

δa =
Stda

λ
, (4)

where λ is a parameter for the neighborhood radius.

Definition 1. Suppose Ω = (U,A, V, f, ∗, ?) is an IHIS, A = AC ∪AN . For any
x, y ∈ U , the distance function in the categorical attribute a ∈ AC is defined by

da(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x = y ∨ f(x, a) = f(y, a);
0, f(x, a) = ∗ ∨ f(y, a) = ∗;
0, f(x, a) =? ∨ f(y, a) =?;
1, otherwise.

(5)

And the distance function under the numerical attribute a ∈ AN is defined by

da(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, x = y ∨ f(x, a) = ∗ ∨ f(y, a) = ∗;
δa, (f(x, a) =? ∧ f(y, a) ∈ V †

a )
∨(f(x, a) ∈ V †

a ∧ f(y, a) =?)
∨(f(x, a) =? ∧ f(y, a) =?);

|f(x,a)−f(y,a)|
|max(a)−min(a)| , otherwise,

(6)

where max(a) and min(a) are the maximum and minimum values in attribute
a.

In Eq. (6), when two objects have a lost value “?” or a do not care value
“*”, the distance between them is no longer considered to be 0, but is considered
to be δa. Intuitively, two objects have a slim probability to be equal under the
numerical attribute in these cases. Therefore, the neighborhood radius δa is
introduced.
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Definition 2. Let Ω = (U,A, V, f, ∗, ?) be an IHIS. The distance function under
the attribute set A is defined as follows:

dA(x, y) =
∑|A|

k=1 dak
(x, y)

|A| , (7)

where | · | denotes the cardinality of a set.

Definition 3. Let Ω = (U,A, V, f, ∗, ?) be an IHIS, for any a ∈ A, we have

Xc(a) = {x|x ∈ U, f(x, a) 	= ∗ ∧ f(x, a) 	=?}, (8)

where the complete class Xc(a) denotes the set of all objects with known values
in attribute a.

For any x ∈ U , we can easily find an object from Xc(a) which is the most
similar to x, i.e.,

sim(x) = {y ∈ Xc(a) | min(dA(x, y))}, (9)

where min(dA(·)) means the minimal distance under the attribute set A. When
f(x, a) =? and a ∈ AC , the known categorical value of the object which is the
most similar to x can be used to supplement the “lost value”, i.e.,

f∗(x, a) = f(sim(x), a). (10)

When f(x, a) =? and a ∈ AN , a constructed interval value is used to replace the
“lost value”, i.e.,

f∗(x, a) = [max(0, f(sim(x), a) − δa),min(f(sim(x), a) + δa), 1], (11)

where f∗(x, a) ∈ [0, 1] when a ∈ AN . By approximately supplementing the lost
value “?”, we can maintain the uncertainty of the lost value “?” to some extent.

Example 3. We continue with the IHIS in Example 1 and assume λ = 2.
For all of the “lost value” in IHIS, such as f(x4, a1) =? and f(x6, a3) =?,
we have sim(x4) = x2 and sim(x6) = x3, according to Eqs. (7), (8) and
(9). Therefore, we can obtain f∗(x4, a1) = f(x2, a1) = [M ][M ][M ] and f∗(x6, a3) =
[f(x3, a3) − δa3 , f(x3, a3) + δa3 ] = [0.197, 0.403][0.197, 0.403][0.197, 0.403] to instead of “?”, respectively,
according to Eqs. (10) and (11). Similarly, we can approximately supplement all
of the “lost value” in IHIS to get a constructed IHIS* as shown in Table 3.

3.2 Construction of AS-NRSM in IHIS*

The constructed IHIS* contains four types of data: (1) the categorical attribute
values; (2) the crisp value under the numerical attribute; (3) the “do not
care” value, i.e., “*”; (4) the supplemented interval value under the numeri-
cal attribute. In this subsection, a novel similarity function is given for dealing
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Table 3. A constructed IHIS*

UUU a1a1a1 a2a2a2 a3a3a3 a4a4a4 a5a5a5

x1 S A 0.6 0.8 0.9

x2 M * * 0.2 0.5

x3 * C 0.3 0.2 0.6

x4 [M] B [0, 0.203][0, 0.203][0, 0.203] 0.2 [0.346, 0.654][0.346, 0.654][0.346, 0.654]

x5 S [B] 0.1 [0.04, 0.36][0.04, 0.36][0.04, 0.36] 0.1

x6 M [B] [0.197, 0.403][0.197, 0.403][0.197, 0.403] [0.04, 0.36][0.04, 0.36][0.04, 0.36] [0.346, 0.654][0.346, 0.654][0.346, 0.654]

x7 M [C] [0.197, 0.403][0.197, 0.403][0.197, 0.403] [0.74, 1][0.74, 1][0.74, 1] [0, 0.254][0, 0.254][0, 0.254]

x8 M * * 0.9 0.1

with three types of data in the constructed IHIS*, i.e., (1), (2) and (4). Moreover,
considering (3) in IHIS*, we would discuss the neighborhood tolerance relation
and neighborhood tolerance classes based on the defined similarity function.
Consequently, we propose AS-NRSM in the constructed IHIS*.

Considering the supplemented values in categorical attributes are known cat-
egorical values, and in numerical attributes, they are interval values within a
width of 2δ, we proposed the following similarity function.

Definition 4. Let Ω = (U,A, V, f, ∗) be a constructed IHIS*, x, y ∈ U , the
similarity function under attribute a ∈ AC ∪ AN is defined by

S∗
a(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, a ∈ AC ∧ f(x, a) = f(y, a);
0, a ∈ AC ∧ f(x, a) 	= f(y, a);
1, a ∈ AN ∧ |f(x, a) − f(y, a)| ≤ δa;
2�min(|vl

x−vr
y|,|vl

y−vr
x|)

(vr
x−vl

x)+(vr
y−vl

y)
, a ∈ AN ∧ (vl

x 	= vr
x ∧ vl

y 	= vr
y)∧

|f(sim(x), a) − f(sim(y), a)| ≤ 2δa;

1 − |f(x,a)−(vl
y+vr

y)/2|
(vr

y−vl
y)

, a ∈ AN ∧ (vl
x = vr

x ∧ vl
y 	= vr

y)∧
(vl

y ≤ f(x, a) ≤ vr
y);

0, otherwise,

(12)

where | · | denotes the absolute value.
Herein, vl

x and vr
x are the left and right endpoints of the interval f(x, a),

respectively. When vl
x = vr

x, f(x, a) is a crisp value in the original IHIS. When
vl

x < vr
x, f(x, a) is an interval value in the constructed IHIS*. To more intuitively

understand the proposed functions for the similarity of interval values in Eq.
(12), the possible overlapping interval between the two objects with two interval
values is shown in Fig. 1-(a), one interval value and one crisp value is shown in
Fig. 1-(b).

In the light of tolerance relation [7], we give the neighborhood tolerance
relation based on the defined similarity function as follows.
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Fig. 1. The possible overlapping interval of two different cases.

Definition 5. Let Ω = (U,A, V, f, ∗) be a constructed IHIS*, δa is a neighbor-
hood radius. For ∀a ∈ A, neighborhood tolerance relation NT δ

a is defined by

NT δ
a = {(x, y) ∈ U2 | S∗

a(x, y) ≥ ζ ∨ (f(x, a) = ∗ ∨ f(y, a) = ∗)}, (13)

where ζ ∈ [0, 1] is a threshold for similarity and NT δ
a satisfies symmetry and

reflexivity.
Definition 6. Let Ω = (U,A, V, f, ∗) be a constructed IHIS*, for ∀a ∈ A, the
neighborhood tolerance class of any object x ∈ U is defined by

NT δ
a (x) = {y ∈ U | (x, y) ∈ NT δ

a }. (14)

The neighborhood tolerance class under the attribute set A is defined by

NT δ
A(x) = {y ∈ U | ∀a ∈ A, (x, y) ∈ NT δ

a } =
⋂
a∈A

NT δ
a (x). (15)

Example 4. We continue with Example 3 and suppose ζ = 0.2. According to
Eqs. (13), (14) and (15), we can build neighborhood classes of every object as
follows:

As shown in Table 4, the neighborhood classes of TWNDM, INRSM are far
looser than AS-NRSM:

(1) Objects x4 and x5 are in the same neighborhood class, i.e., x4 ∈ N δ
A(x5), x5 ∈

N δ
A(x4) in TWNDM and INRSM, but by AS-NRSM they are irrelevant.

(2) Objects x6 and x7 are in the same neighborhood class, i.e., x6 ∈ N δ
A(x7), x7 ∈

N δ
A(x6) in TWNDM and INRSM, but by AS-NRSM, they are irrelevant.

According to analysis in Example 2, the possibility that objects x4 and x5,
x6 and x7 belong to the same neighborhood class is very low. By the method
of AS-NRSM, these objects are classified into the appropriate neighborhood
tolerance classes, namely, the classification based on AS-NRSM we proposed is
more reasonable. The algorithm of AS-NRSM can be described as follows:
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Table 4. Neighborhood classes of three methods

Method TWNDM INRSM AS-NRSM

Nδ
A(x1) {x1} {x1, x6, x7} {x1}

Nδ
A(x2) {x2, x3, x5, x6, x7} {x2, x3, x5, x6, x7} {x2, x3, x4, x6}

Nδ
A(x3) {x2, x3, x6, x7} {x2, x3, x4, x5, x6, x7} {x2, x3}

Nδ
A(x4) {x2,x4x4x4,x5x5x5, x6, x7} {x2, x3,x4x4x4,x5x5x5, x6, x7, x8} {x2,x4x4x4}

Nδ
A(x5) {x4x4x4,x5x5x5} {x3,x4x4x4,x5x5x5, x6, x7, x8} {x5x5x5}

Nδ
A(x6) {x2, x3, x5,x6, x7x6, x7x6, x7, x8} {x1, x2, x3, x4, x5,x6, x7x6, x7x6, x7, x8} {x2,x6x6x6}

Nδ
A(x7) {x2, x3, x5,x6, x7x6, x7x6, x7, x8} {x1, x2, x3, x4, x5,x6, x7x6, x7x6, x7, x8} {x7x7x7, x8}

Nδ
A(x8) {x6, x7, x8} {x3, x4, x6, x7, x8} {x7, x8}

Algorithm 1. The Algorithm of AS-NRSM

Input: (1) An IHIS Ω = (U, A, V, f, ∗, ?), where U = {xi, xj | 1 ≤ i, j ≤ n} and
A = {ak | 1 ≤ k ≤ m}; (2) The neighborhood radius parameter λ.

Output: Neighborhood tolerance classes NT δ
A(x).

1: for 1 ≤ k ≤ m do
2: for 1 ≤ i ≤ n do
3: if f(xi, ak) �= “?” ∧f(xi, ak) �= “*” then
4: f(xi, ak) ∈ V †

ak
; // V †

ak
is the known values set in attribute ak;

5: Compute the neighborhood radius δak ;
6: for 1 ≤ i ≤ n do // Approximately replacing the lost values by Definition 3;
7: for 1 ≤ j ≤ n do
8: if ∀ak ∈ A, f(xi, ak) =? then
9: According to Equations (7), (8) and (9), compute dA(xi, xj), Xc(ak) and

sim(xi);
10: According to Equations (10) and (11), replace the lost value by

f∗(xi, ak);

11: for 1 ≤ i ≤ n do // calculating the distances by Definition 4;
12: for 1 ≤ j ≤ n do
13: for 1 ≤ k ≤ m do
14: According to Equation (12), compute d∗

ak
(xi, xj) in IHIS*;

15: According to Definition 5, compute NT δ
a ;

16: According to Definition 6, compute NT δ
a (x) and NT δ

A(x).

The time complexity of Algorithm 1 is O(mn2).

4 Experiments and Analysis

4.1 Performance Comparisons of Different Algorithms

To better reflect the performance of the proposed algorithm, we conducted sim-
ulation experiments. The 5 data sets are downloaded from the University of
California at Irvine (UCI) data sets (http://archive.ics.uci.edu/ml/) and dis-
played in Table 5. The applicability and performance of TWNDM, INRSM and
AS-NRSM were evaluated for different types of data.

http://archive.ics.uci.edu/ml/


290 X. Meng et al.

Table 5. The description of data sets

No. Datasets Objects Conditional attributes (A) Decision attribute (d)

Categorical(AC) Numerical(AN ) Total(|A|)
1 Segment 2310 0 19 19 1

2 Heart 270 0 12 12 1

3 Annealing 798 9 6 15 1

4 MPG 398 4 5 9 1

5 Abalone 4177 1 8 9 1

We constructed three levels of missing values in the complete data set, that
is, (1) Replacing 0%, 5%, and 10% known values as the low-missing level. (2)
Replacing 15%, 20%, and 25% known values as the medium-missing level. (3)
Replacing 30%, 35%, and 40% known values as the high-missing level. Especially,
the missing values are composed of “lost value” and “do not care” values with
a ratio of 4:1 when carrying out AS-NRSM and TWNDM algorithms. Besides,
all of the missing values are “lost value” when performing INRSM algorithms
because the semantic of “do not care” is not considered in INRSM.

Herein, we introduce three metrics for measuring the neighborhood class
quality, namely, Precision (P ), Recall (R) and F1-score (F1). When the classifi-
cation is too loose, it will get low P and F1 and high R. When classification is
too strict, R and F1 will be low, and conversely, P will be high. We apply the
three metrics to the 5 data sets of Table 5, the experimental results are shown
in Table 6. We can get P of AS-NRSM is 0.95 ± 0.05 in the low-missing level of
the Segment data set, where 0.95 is the average performance in 0%, 5%, and
10% missing values and 0.05 is the standard deviation. Similarly, we can obtain
the average performance metrics of algorithms at the medium-missing level and
high-missing level. Herein, the optimal metrics are highlighted in bold. It is
observed that three metrics: P , R and F1 of three algorithms decrease with the
level of missing values increase. However, as the level of missing values increases,
the F1 of TWNDM and INRSM is lower than AS-NRSM in most data sets.

Table 6. Performance comparison by three algorithms in different data sets.

Data sets

Missing Level
AS-NRSM TWNDM INRSM

P R F1 P R F1 P R F1

Low 0.95 ± 0.050.95 ± 0.050.95 ± 0.05 0.95 ± 0.05 0.95 ± 0.050.95 ± 0.050.95 ± 0.05 0.88 ± 0.12 0.96 ± 0.040.96 ± 0.040.96 ± 0.04 0.91 ± 0.08 0.80 ± 0.06 0.95 ± 0.01 0.87 ± 0.03

Segment Medium 0.82 ± 0.050.82 ± 0.050.82 ± 0.05 0.82 ± 0.05 0.82 ± 0.050.82 ± 0.050.82 ± 0.05 0.60 ± 0.06 0.90 ± 0.01 0.73 ± 0.04 0.62 ± 0.05 0.93 ± 0.000.93 ± 0.000.93 ± 0.00 0.75 ± 0.02

High 0.70 ± 0.020.70 ± 0.020.70 ± 0.02 0.68 ± 0.06 0.69 ± 0.040.69 ± 0.040.69 ± 0.04 0.35 ± 0.07 0.85 ± 0.01 0.50 ± 0.07 0.49 ± 0.06 0.90 ± 0.010.90 ± 0.010.90 ± 0.01 0.68 ± 0.03

Low 1.00 ± 0.001.00 ± 0.001.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.010.99 ± 0.010.99 ± 0.01 0.93 ± 0.08 1.00 ± 0.001.00 ± 0.001.00 ± 0.00 0.96 ± 0.04 0.98 ± 0.02 0.91 ± 0.02 0.94 ± 0.02

Heart Medium 0.98 ± 0.010.98 ± 0.010.98 ± 0.01 0.97 ± 0.00 0.97 ± 0.010.97 ± 0.010.97 ± 0.01 0.49 ± 0.19 0.99 ± 0.010.99 ± 0.010.99 ± 0.01 0.65 ± 0.17 0.83 ± 0.08 0.88 ± 0.01 0.85 ± 0.05

High 0.90 ± 0.020.90 ± 0.020.90 ± 0.02 0.96 ± 0.01 0.93 ± 0.010.93 ± 0.010.93 ± 0.01 0.15 ± 0.08 0.98 ± 0.000.98 ± 0.000.98 ± 0.00 0.25 ± 0.12 0.63 ± 0.04 0.86 ± 0.01 0.73 ± 0.02

Low 1.00 ± 0.001.00 ± 0.001.00 ± 0.00 0.98 ± 0.020.98 ± 0.020.98 ± 0.02 0.99 ± 0.010.99 ± 0.010.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.020.98 ± 0.020.98 ± 0.02 0.99 ± 0.010.99 ± 0.010.99 ± 0.01 0.96 ± 0.03 0.89 ± 0.02 0.93 ± 0.02

Annealing Medium 0.99 ± 0.000.99 ± 0.000.99 ± 0.00 0.93 ± 0.010.93 ± 0.010.93 ± 0.01 0.96 ± 0.010.96 ± 0.010.96 ± 0.01 0.99 ± 0.000.99 ± 0.000.99 ± 0.00 0.92 ± 0.01 0.96 ± 0.000.96 ± 0.000.96 ± 0.00 0.89 ± 0.02 0.86 ± 0.01 0.87 ± 0.02

High 0.98 ± 0.00 0.93 ± 0.010.93 ± 0.010.93 ± 0.01 0.95 ± 0.000.95 ± 0.000.95 ± 0.00 0.99 ± 0.010.99 ± 0.010.99 ± 0.01 0.92 ± 0.01 0.95 ± 0.000.95 ± 0.000.95 ± 0.00 0.82 ± 0.02 0.82 ± 0.01 0.82 ± 0.01

Low 0.96 ± 0.030.96 ± 0.030.96 ± 0.03 0.99 ± 0.010.99 ± 0.010.99 ± 0.01 0.97 ± 0.020.97 ± 0.020.97 ± 0.02 0.94 ± 0.06 0.96 ± 0.05 0.95 ± 0.05 0.87 ± 0.02 0.81 ± 0.02 0.83 ± 0.02

MPG Medium 0.85 ± 0.060.85 ± 0.060.85 ± 0.06 0.88 ± 0.02 0.86 ± 0.040.86 ± 0.040.86 ± 0.04 0.78 ± 0.04 0.89 ± 0.010.89 ± 0.010.89 ± 0.01 0.83 ± 0.02 0.83 ± 0.01 0.77 ± 0.01 0.80 ± 0.01

High 0.74 ± 0.03 0.82 ± 0.03 0.78 ± 0.030.78 ± 0.030.78 ± 0.03 0.67 ± 0.03 0.86 ± 0.020.86 ± 0.020.86 ± 0.02 0.76 ± 0.03 0.77 ± 0.020.77 ± 0.020.77 ± 0.02 0.73 ± 0.01 0.75 ± 0.01

Low 0.89 ± 0.100.89 ± 0.100.89 ± 0.10 0.94 ± 0.05 0.92 ± 0.08 0.89 ± 0.100.89 ± 0.100.89 ± 0.10 0.96 ± 0.060.96 ± 0.060.96 ± 0.06 0.95 ± 0.050.95 ± 0.050.95 ± 0.05 0.76 ± 0.04 0.96 ± 0.000.96 ± 0.000.96 ± 0.00 0.86 ± 0.02

Abalone Medium 0.82 ± 0.030.82 ± 0.030.82 ± 0.03 0.86 ± 0.01 0.84 ± 0.030.84 ± 0.030.84 ± 0.03 0.75 ± 0.03 0.87 ± 0.03 0.80 ± 0.03 0.63 ± 0.03 0.95 ± 0.000.95 ± 0.000.95 ± 0.00 0.79 ± 0.02

High 0.72 ± 0.030.72 ± 0.030.72 ± 0.03 0.85 ± 0.03 0.78 ± 0.000.78 ± 0.000.78 ± 0.00 0.64 ± 0.00 0.86 ± 0.02 0.74 ± 0.01 0.55 ± 0.02 0.94 ± 0.010.94 ± 0.010.94 ± 0.01 0.75 ± 0.01
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Due to F1 being a more comprehensive metric than P and R to evaluate the
performance of the algorithms, we choose F1 as the judging metric. To make a
more intuitive comparison of different algorithms, we take 0% - 40% of missing
values as x-axis to observe the metric F1 changes of three algorithms, as shown
in Fig. 2. The performance F1 of the three algorithms decreases with the increase
of missing ratio, while the proposed algorithm AS-NRSM can achieve optimal
performance in most datasets.
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(e) Abalone

Fig. 2. F1-score of algorithms in different ratios of missing values

In order to explore the influence of different neighborhood parameters λ on
the classification performance, we conduct a comparative experiment in a low
missing level. Specifically, we move λ from 1 to 5 with a step of 0.5 to compare the
F1 performance of three algorithms under different δ neighborhoods constructed
by λ.
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(d) MPG
1 2 3 4 5

60

80

100

 AS-NRSM
 TWNDM
 INRSM

F1
-s

co
re

 o
f t

hr
ee

 a
lg

or
ith

m
s (

%
)

(e) Abalone

Fig. 3. F1 of algorithms in different neighborhood parameter λ

As shown in Fig. 3, the performance F1 of INRSM is sensitive to parameter
λ, which decreases as the λ becomes larger in (a) Segment, (c) Annealing, (d)
MPG and (e) Abalone, and increases as the parameters become larger in (b)
Heart. In addition, the F1 of AS-NRSM and TWNDM in the 5 data sets are
basically synchronous floating. Still, it’s observed that AS-NRSM can achieve the
optimal performance F1 in most data sets, and is more stable than the other
two algorithms.

5 Conclusion and Future Work

Recently, a few studies have emerged to focus on dealing with incomplete hybrid
data in IHISs. However, the indiscernibility relations of the existing studies are
too loose, and may lead to unreasonable classification results. To describe the
uncertainty of missing values as much as possible and enhance the performance
of classification, we proposed the Approximate supplement-based Neighborhood
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Rough Set Model (AS-NRSM). First, the lost values in IHIS have been approx-
imately replaced by the known values or interval values. Then we obtained a
constructed IHIS* with only one semantic from the original IHIS. Next, we
defined a novel similarity function for the constructed IHIS* which contains
three types of data. Then, the AS-NRSM is constructed for an IHIS*. Finally,
comparative experiments are carried out to prove the performance of AS-NRSM.
In the future, we will extend our work to a more comprehensive and realistic
data environment to validate the effectiveness of the model.
Acknowledgements. This work is supported by the National Natural Science Foun-
dation of China (62072320) and the Natural Science Foundation of Sichuan Province
(No. 2022NSFSC0569, No. 2022NSFSC0929).
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Abstract. Facial expression recognition is pivotal in computer vision
and finds applications across various domains. In this paper, we pro-
posed a self-supervised learning approach for precise facial expression
recognition. Our approach leverages recent advancements in diffusion
models, specifically the Classification and Regression Diffusion (CARD)
model. To enhance the discriminative capability of our model, we inte-
grate the Convolutional Block Attention Module (CBAM), an effective
attention mechanism, to extract pertinent and discriminative feature
maps. Furthermore, we capitalize on unlabelled data by using the sim-
ple contrastive learning framework of self-supervised learning (SSL) to
extract meaningful features. To evaluate the performance, we conduct
extensive experiments on the FER2013 dataset, comparing our results
with existing benchmarks. The findings reveal significant performance
improvements, achieving 66.6% accuracy on the FER2013 dataset. The
quantitative results demonstrate the efficacy of our proposed SSL-based
model in achieving accurate and robust facial expression recognition.

Keywords: Diffusion models · Convolutional block attention ·
Self-supervised learning · Facial expression recognition

1 Introduction

Facial expression detection from images is critical in comprehending human emo-
tions and behaviour and finding applications in diverse fields such as human-
computer interaction [1], affective computing, psychology, and social robots [2].
To create intelligent systems capable of real-time perception, understanding [3],
and response to human emotions [4], precise and effective recognition and under-
standing of facial expressions are vital. Extensive research has been devoted to
the advancement of robust and automated techniques for facial expression recog-
nition. The progress in computer vision and deep learning has played a pivotal role
in achieving significant breakthroughs in this area. The ability to identify crucial
facial features and classify expressions from static photos has attracted consider-
able attention from both academia and industry. Recently, researchers have pro-
posed various approaches [5–8] on the FER2013 dataset to improve the overall
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14327, pp. 294–306, 2024.
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performance. Mao et al. [7] proposed to improve the performance of the FER2013
dataset by integrating focal loss [9] and CosFace loss [10] into the ResNet-18
model. The experimental results demonstrate that using CosFace loss improves
the validation accuracy to 61.88% compared to 60.73% with traditional cross-
entropy. Similarly, Luo et al. [5] focuses on designing a data augmentation method
to improve the performance of the FER2013 dataset. The data augmentation
approach implemented in the study leads to a significant improvement in per-
formance. However, it is noted that the ResNet18 [11] model did not perform
well, achieving only 58.6% accuracy on the FER2013 dataset. The work of Wu
et al. et al. [6] introduces a novel Edge-AI-driven framework for FER. The pro-
posed framework focuses on two key aspects: algorithmic improvements and sys-
tem architecture. The study introduces two attention modules [12] for improv-
ing feature extraction and classification precision on the algorithmic front: Scal-
able Frequency Pooling (SFP) and Arbitrary-oriented Spatial Pooling (ASP). An
edge-cloud joint inference architecture is suggested to achieve low-latency infer-
ence. This design includes an optional cloud offloading of attention modules and
a lightweight backbone network on edge devices. Performance analyses show that
the suggested method achieves a good trade-off between classification accuracy
and inference latency, making it an attractive option for real-time FER applica-
tions. However, they have achieved 63.25% accuracy on the FER2013 dataset. In
recent years, image diffusion models [13] have emerged as a class of algorithms
that capture and propagate information across pixels in an image over time. These
models are based on the concept of diffusion processes, treating images as dynamic
systems where pixel-level interactions occur iteratively. The primary goal of image
diffusion models is to capture and emphasize the spatiotemporal dynamics in the
image data. Denoising diffusion-based conditional generative models [14] is a type
of generative model that aim to generate high-quality and denoised samples while
incorporating conditional information. These models combine the principles of
diffusion models and conditional generative modelling to gradually remove noise
from input data and generate samples that align with specific conditions. By iter-
atively updating the data elements based on their neighbours, the models reduce
noise while preserving the underlying structure. In this work, we utilized a very
recent diffusion-based model (CARD) [15] along with the CBAM attention mod-
ule to improve the performance of the FER2013 dataset. Overall, our work on
facial expression recognition makes the following contributions:

– Utilized the CARD model, a diffusion-based approach, for accurate facial
expression recognition.

– Incorporated the attention module (CBAM) to extract relevant and discrim-
inative feature maps, enhancing the performance of our model.

– A self-supervised pre-trained model employing SimCLR was utilized to learn
feature representation.

– Demonstrated significant improvements in accuracy and performance over
previous state-of-the-art methods, validating the effectiveness of our proposed
approach for facial expression recognition.
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The subsequent sections of the paper are structured as follows: In Sect. 2, we pro-
vide a comprehensive description of our proposed model, ResNet18 with CBAM,
the self-learning strategy, along with detailed architecture specifications. Moving
on to Sect. 3, we delve into the specifics of the dataset employed for our exper-
iments, outline the performance metrics utilized, and provide implementation
details. Section 4 presents the quantitative and qualitative results obtained from
our evaluation and analysis. Finally, in Sect. 5, we offer final remarks to conclude
the paper, summarizing the key insights and contributions of our research.

2 Methodology

Our proposed method consists of three main components, Classification and
Regression Diffusion Models (CARD) Model [15], ResNet18 [16] as the backbone
and Convolution Block Attention Module (CBAM) [17] and the self-supervised
training strategy [18].

2.1 CARD Model

A novel conditional generative model named the CARD model [15] has been
introduced, effectively addressing supervised learning problems in regression and
classification tasks. By employing trainable diffusion processes, this model esti-
mates the conditional distribution of the output variable given the input variable.
Unlike traditional regression analysis or classification models, the CARD model
not only provides predictions but also estimates the associated uncertainty, offer-
ing a more comprehensive understanding of the conditional distribution. In clas-
sification tasks, the CARD model incorporates model confidence at the instance
level through the stochastic nature of its generative model’s outputs. In con-
trast, regression tasks employ a re-parameterization technique to recover the
noise term’s distribution. The model demonstrates state-of-the-art performance
on benchmark regression tasks and accurately simulates the conditional distribu-
tion with various density modes. Further, two diffusion processes are described
with equations in the CARD model, diffusion noising and diffusion denoising.

Diffusion Noising Process. The diffusion noising process is also called for-
ward conditional process distributions [15]. CARD model defines diffusion nois-
ing process with diffusion schedule {βt}t=1:T ∈ (0, 1)T as:

q (yt | y0, fφ(x)) = N (
yt;

√
ᾱty0

+
(
1 − √

ᾱt

)
fφ(x), (1 − ᾱt) I

)
(1)

The Eq. 1 describes the conditional distribution q (yt | y0, fφ(x)) in the diffusion
model. It represents the noising process and is defined as a Gaussian distribution
N with mean

√
ᾱty0 + (1 − √

ᾱt) fφ(x) and covariance (1 − ᾱt) I. Here, yt is
the intermediate prediction, y0 is the observed response variable, and fφ(x) is
the prior knowledge of the relation between x and y0. The terms αt := 1 − βt

and ᾱt :=
∏

t αt define the diffusion schedule.
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Diffusion Desnoising Process. The diffusion denoising process, also known
as the re- verse process is a tractable formulation that allows for the computation
of the forward process posterior:

q
(
yt−1 | yt,y0,x

)
= q

(
yt−1 | yt,y0, fφ(x)

)

= N
(
yt−1; µ̃ (yt,y0, fφ(x)) , β̃tI

)
(2)

where, µ̃ :=
βt

√
ᾱt−1

1 − ᾱt︸ ︷︷ ︸
γ0

y0 +
(1 − ᾱt−1)

√
αt

1 − ᾱt︸ ︷︷ ︸
γ1

yt

+

(

1 +
(
√

ᾱt − 1)
(√

αt + √
αt−1

)

1 − ᾱt

)

︸ ︷︷ ︸
γ2

fφ(x),

β̃t :=
1 − ᾱt−1

1 − ᾱt
βt.

The Eq. 2 represents this process, where the conditional distribution of yt−1

given yt, y0, and x is denoted as q
(
yt−1 | yt,y0, fφ(x)

)
. It can be approximated

by a Gaussian distribution with mean µ̃ (yt,y0, fφ(x)) and covariance β̃tI. The
mean term µ̃ is computed based on a combination of input variables, while β̃t

is determined by the values of ᾱt−1, ᾱt, and βt.

2.2 Convolutional Block Attention Modules (CBAM)

Convolutional Block Attention Modules (CBAMs) [17] are a particular class of
attention mechanisms that can be incorporated into convolutional neural net-
works (CNNs) to focus attention on particular valuable regions in feature maps.
According to Fig. 1, CBAM is made up of two parts: the Channel Attention
Module (CAM) and the Spatial Attention Module (SAM). The CAM computes
the importance of each feature channel by performing a global pooling operation
(e.g., max pooling) followed by two fully connected layers. The CAM is described
in Eq. 3 where Mc(F ) represents the channel attention vector obtained from the
input feature map F . The equation consists of two branches: one involving aver-
age pooling F c

avg and the other involving max pooling F c
max. The feature maps

Fig. 1. Convolutional Block Attention Module
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resulting from these poolings are passed through Multi-Layer Perceptron (MLP)
layers with weight matrices W0 and W1. The outputs of the MLP branches are
then summed and passed through a sigmoid activation function σ to obtain the
final channel attention vector Mc(F ). The output of the CAM is a channel-wise
attention map that scales the feature maps in a channel-wise manner.

Mc(F ) = σ
(
W1

(
W0

(
F c
avg

))
+ W1 (W0 (F c

max))
)

(3)

The SAM, on the other hand, described in Eq. 8, computes the importance of
each spatial location by performing two convolutional operations followed by a
max pooling operation. The output of the SAM is a spatial attention map that
scales the feature maps in a spatial-wise manner.

F s
avg = AvgPool (F,pool size, stride) (4)

F s
max = MaxPool (F,pool size, stride) (5)
[
F s
avg;F

s
max

]
= Concat

(
F s
avg, F

s
max

)
(6)

f7×7 = Conv
([

F s
avg;F

s
max

]
,filter size = 7, stride = 1

)
(7)

Ms(F ) = σ(f7×7) (8)

The channel-wise and spatial-wise attention maps are then multiplied to pro-
duce the final attention maps that can be used to weight the feature maps in
a selective manner. The attention maps are normalized to sum to one so that
the information is preserved. The CBAM module can be inserted into any CNN
architecture, and it has been shown to improve the performance of various com-
puter vision tasks, such as image classification and object detection.

2.3 Simple Contrastive Learning (SimCLR)

SimCLR (Simple Contrastive Learning) [18] is a popular self-supervised learn-
ing algorithm that aims to learn powerful visual representations from unlabeled
data. It utilizes contrastive learning principles to encourage similar representa-
tions for augmented views of the same sample and dissimilar representations for
augmented views of different samples. Following is a mathematical explanation
of SimCLR’s key components and steps.

Data Augmentation. SimCLR applies data augmentation to create two aug-
mented views, denoted as xi and xj , for each input image x. These augmentations
include random cropping, color distortions, and Gaussian blurring.

Encoder Networks. SimCLR employs a shared encoder network, denoted as
fθ, to map the augmented views of a sample into a shared feature space. The
network parameters are represented as θ.
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Similarity Function. SimCLR uses the cosine similarity function to measure
the similarity between two feature embeddings. The cosine similarity between
two vectors u and v is computed as:

sim(u, v) =
u · v

‖u‖ · ‖v‖ , (9)

where u·v represents the dot product between u and v, and ‖u‖ and ‖v‖ represent
the Euclidean norms of u and v, respectively.

Contrastive Loss. SimCLR formulates the contrastive loss to maximize agree-
ment between positive pairs (augmented views of the same sample) and mini-
mize agreement between negative pairs (augmented views of different samples).
The contrastive loss is calculated as the negative log-likelihood of the similarity
between positive pairs compared to the sum of similarities between positive and
negative pairs, normalized by a temperature parameter τ :

L = − log
(

exp(sim(fθ(xi), fθ(xj))/τ)
∑

k exp(sim(fθ(xi), fθ(xk))/τ)

)
, (10)

where xi and xj represent the augmented views of the same sample, xk represents
the augmented view of a different sample, fθ(.) represents the shared encoder
network, sim(., .) denotes the cosine similarity function, and τ is the temperature
parameter. Minimizing this contrastive loss encourages the encoder network to
learn representations that capture meaningful and discriminative features for
the given task. By training the encoder network θ using this contrastive loss,
SimCLR learns powerful visual representations from unlabeled data, which can
then be used for downstream tasks like facial expression recognition.

2.4 Architecture Details

The FER2013 dataset is classified using the CARD model architecture, which
is depicted in Table 1. The flattened input image, with initial dimensions of
48∗48∗1, is first given an encoder. The output dimension of the encoder, which
has three fully connected layers, is 4096. The technique turns the input image
into a 4096-dimensional representation. Next, the one-hot encoded label vector,
denoted as yt, is concatenated with the output fφ(x) from the pre-trained Sim-
CLR self-supervised model. The final step is to perform a fully connected (FC)
layer to the output vector with 4096 dimensions. By performing a Hadamard
product (element-wise multiplication) between the generated output vector and
a timestep embedding, the response embedding is conditional on the timestep.
As a result, a response embedding that considers the particular timestep is pro-
duced. The image embedding and the response embedding are integrated by
performing another Hadamard product. This integration combines the informa-
tion from both variables. The final step involves passing the integrated vector
through two more FC layers with a total of 4096 output dimensions. A batch
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Table 1. CARD εθ Network Architecture

Input

x: Input data

yt: One-hot encoded label vector

fφ(x): Pre-trained SimCLR model

t: Timestep

Layers

l1,x = σ(BN(g1,x(x)))

l2,x = σ(BN(g2,x(x)))

l3,x = BN(g1,x(x))

l1,y = σ(BN(g1,y(yt ⊕ fϕ(x)) � g1,b(t)))

l1 = l3,x � l1,y

l2 = σ(BN(g2,a(l1) � g2,b(t)))

l3 = σ(BN(g3,a(l2) � g3,b(t)))

Output

g4(l3): Final output of the network

normalizing layer and a Softplus non-linearity before the Hadamard product
with the timestep embedding follow every one of these layers.

Pre-trained self-supervised model:

– The pre-trained self-supervised model is trained on the RAF-DB dataset [19].
– The SimCLR network is not fine-tuned during the training. It is only used

for feature extraction.

Optimizer:

– In each experiment, fφ(x) is trained using the Adam optimizer.

The output of the last fully-connected layer is a fully-connected layer with
an output dimension of 1, which comes after the Hadamard product with the
timestep embedding. For the classification challenge, this layer acts as the noise
prediction layer. It is significant to observe that a batch normalizing layer and a
Softplus non-linearity are present with each of the fully-connected layers, with
the exception of the output layer. These additional operations help in improving
the network’s performance and the non-linearity of the model. Overall our pro-
posed method works in a way that first, we pre-trained the model on unlabelled
data using SimCLR self-supervised method to learn feature representations along
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with ResNet18 backbone as the feature extractor. Next, we added the CBAM
(Convolutional Block Attention Module) module, which selectively emphasizes
important features while suppressing irrelevant ones, improving model perfor-
mance. We added the CBAM module after each ResNet block. In order to con-
struct a conditional distribution of class probabilities given the input image, we
finally swapped out the final fully connected layer of ResNet18 with the CARD
model.

3 Experiments

3.1 FER2013 Dataset

The facial expression recognition dataset known as FER2013 [20] consists of
35,887 instances (images) sized at 48 × 48 pixels, which are further divided into a
training set and a test set. The test set comprises 3,589 images, while the training
set contains 28,709 images. These images are annotated with one of seven emotion
categories, namely anger, disgust, fear, happiness, sadness, surprise, and neutral.
In the training set, the happiness category has the highest frequency, with 8,094
images, followed by sadness with 5,591 images and surprise with 5,424 images.
The least common category is disgust, with only 1,254 images. The fear category
consists of 4,625 images, the angry category has 4,486 images, and the neutral
category has 3,587 images. The distribution of images among the emotion cate-
gories in the test set mirrors that of the training set, where happiness remains the
most frequent category with 895 images. In comparison, disgust remains the least
frequent, with only 56 images. To gain insight into the representation of different
emotions, the images in the dataset effectively portray distinct emotions. Over-
all, the FER2013 dataset is a valuable resource for researchers in facial expression
recognition, with a diverse range of facial expressions and a balanced distribu-
tion of images across the emotion categories. However, the relatively small num-
ber of images in the disgust category may limit the ability of models trained on
this dataset to accurately recognize this emotion.

3.2 Performance Evaluation Metrics

To measure the overall performance of our proposed model, we use accuracy,
class-wise accuracy and Patch Accuracy vs Patch Uncertainty (PAvPU). Accu-
racy is a commonly used performance metric for classification models. It mea-
sures the percentage of correctly predicted instances among all instances in a
dataset. Class-wise accuracy calculates the proportion of correctly classified sam-
ples in each class separately.

Similarly, Patch Accuracy vs Patch Uncertainty (PAvPU) is a performance
evaluation metric that quantifies the percentage of predictions that are either
accurate when the model is certain of them or inaccurate when the model is
uncertain of them. The metric helps to determine how well the model can differ-
entiate between confident and uncertain predictions. It is calculated as the total
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number of accurate predictions divided by the sum of the number of accurate
predictions when the model is certain, the number of accurate but uncertain
predictions, and the number of inaccurate but definite predictions. As shown in
Eq. 11, the nac, nau, nic, niu indicates the proportion of correct predictions when
the model is certain (confident) about them, accurate but uncertain, inaccurate
but certain, as well as inaccurate and uncertain.

PAvPU =
nac + niu

nac + nau + nic + niu
(11)

In other words, PAvPU considers the model’s predictions’ accuracy and uncer-
tainty. A higher PAvPU score means that the model is more likely to be accurate
when it is confident and inaccurate when it is unsure. Therefore, a model with a
higher PAvPU is preferred, as it shows the model is capable of making accurate
predictions when it is confident and uncertain about its predictions when the
model is likely to be wrong.

3.3 Implementation Details

In this study, we used PyTorch as the primary deep learning framework for con-
ducting their experiments. We ran the experiments on a Ubuntu OS equipped
with an NVIDIA GeForce RTX 2080 Ti graphics card. The network architecture
of the CARD model [15] is simple for classification task which is described as:
Let x be the input image to the diffusion model, with dimensions 48 ∗ 48 ∗ 1 (for
FER2013 dataset), and yt be the target label for the classification task at time
step t. Let fφ(x) represent the encoder’s output, which is a 4096-dimensional
representation of x that was created by using three fully-connected layers. To
create a vector of the same size, we concatenate yt and fφ(x) and run them
through a fully connected layer with an output dimension of 4096. To produce
a response embedding that is conditional on the timestep, we next execute a
Hadamard product between this vector and a timestep embedding. The vari-
ables are then integrated using a second Hadamard product between the picture
embedding fφ(x) and the response embedding. Two more fully-connected layers
with an output dimension of 4096 each are applied to the final vector. Follow-
ing each of these fully-connected layers is a Hadamard product with a batch
normalizing layer and a timestep embedding layer, followed by a Softplus non-
linearity. Finally, we feed the output of the previous fully connected layer via the
noise prediction-representing first fully connected layer. A non-linearity does not
follow the output layer. Along with CARD diffusion model, we performed two
experiments: ResNet18 and used CBAM with combination of ResNet18. The
objective of these experiments was to improve and compare the performance
of the models on the FER2013 dataset. The Table 2 lists various parameters
and their corresponding values for a both experiments. The parameters include
the number of classes, the dimensions of the input data, the architecture of the
model, the parameters for the diffusion, the training and testing batch sizes, the
optimizer and its learning rate, and the number of epochs for training. The table
is organized in a format, with the parameter names listed in the left column and
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the respective values in the right column. The values for some parameters are
listed as multiple options separated by a vertical bar (|), indicating that these
have been tested with different batch sizes during training.

The performance of each model was evaluated using the accuracy of the over-
all model, class-wise accuracy and PAvPU. These evaluation metrics are defined
in Sect. 3.2. We compared the performance of models and discussed them in
Sect. 4. Overall, the experiments provided valuable insights into the effective-
ness of different models using CARD for facial expression recognition on the
FER2013 dataset.

Table 2. Parameter values for the model.

Parameter Value(s)

num classes 7

data dim 2304

feature dim 4096

hidden dim 4096

arch resnet18

beta schedule linear

beta start 0.0001

beta end 0.02

timesteps 1000

batch size (training) 32 | 64 | 128

n epochs 1000

batch size (testing) 64

optimizer Adam

lr 0.001

4 Results

The three experiments are evaluated using accuracy and PAvPU score. Table 3
presents the accuracy and Patch Accuracy vs Patch Uncertainty (PAvPU) score
for three different methods, CARD + ResNet18 and CARD + ResNet18 +
CBAM, and with the self-supervised method for the FER2013 dataset. The
Method column lists the two different methods used for the experiment, while
the Accuracy column lists the overall Accuracy achieved by each method. The
score for Patch Accuracy vs Patch Uncertainty, which evaluates a model’s per-
formance on a patch of the image while accounting for prediction uncertainty, is
listed in the PAvPU (α = 0.05) column. From the table, we can see that our pro-
posed SSL-based approach outperforms the existing benchmarks. Furthermore,
we can see that the addition of the CBAM module has also improved both the
accuracy and the PAvPU score of the CARD + ResNet18 method. The accuracy
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has increased from 61.3% to 64.8%, while the PAvPU score has increased from
65.0% to 66.5%. Using the SimCLR method, our model achieved the highest
accuracy among all experiments. This indicates that the addition of SimCLR
and CBAM has improved the ability of the model to make accurate predictions
on specific patches of facial images while considering the uncertainty of the pre-
diction. Overall, the results suggest that using the SSL-based method along with
incorporating attention mechanisms such as CBAM can lead to improvements
in the performance of deep learning vision models for vision-based tasks such as;
facial expression recognition tasks.

Table 3. Accuracy and PAvPU score for FER2013 Dataset

Method Accuracy (%) PAvPU (α = 0.05) (%)

Mao [7] 61.88 -

Luo et al. [5] 58.6 (ResNet18) -

Wu et al. [6] 63.25 -

CARD + ResNet18 61.3 65.0

CARD + ResNet18 + CBAM 64.8 66.5

Proposed SSL 66.6 66.9

5 Conclusion

We proposed a model that improves facial expression recognition by using the
diffusion model. Our model combined the SimCLR self-supervised method for
feature extraction and integrated the Convolutional Block Attention Module
(CBAM) into the model architecture. We trained and evaluated our model on the
FER2013 dataset, and the model demonstrated significant performance improve-
ments compared to previous approaches, confirming the effectiveness of our app-
roach. Yet, the CARD model requires significant training time, a facet open for
optimization. Future research offers ample prospects to advance facial expression
recognition. Firstly, a promising avenue involves integrating multimodal infor-
mation, wherein the fusion of facial expressions with speech or body gestures
can potentially yield more holistic and precise recognition systems. Secondly,
it would be beneficial to explore real-time and efficient implementations of the
proposed model, allowing for its seamless deployment in resource-constrained
environments. These directions hold significant potential for further advance-
ments in facial expression recognition.
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Abstract. The phenomenon known as the “echo chamber” has been
widely acknowledged as a significant force affecting society. This has
been particularly evident during the Covid-19 pandemic, wherein the
echo chamber effect has significantly influenced public responses. There-
fore, detecting echo chambers and mitigating their adverse impacts has
become crucial to facilitate a more diverse exchange of ideas, fostering
a more understanding and empathetic society. In response, we use deep
learning methodologies to model each user’s beliefs based on their his-
torical message contents and behaviours. As such, we propose a novel,
content-based framework built on the foundation of weighted beliefs.
This framework is capable of detecting potential echo chambers by creat-
ing user belief graphs, utilizing their historical messages and behaviours.
To demonstrate the practicality of this approach, we conducted experi-
ments using the Twitter dataset on Covid-19. These experiments illus-
trate the potential for individuals to be isolated within echo chambers.
Furthermore, our in-depth analysis of the results reveals patterns of echo
chamber evolution and highlights the importance of weighted relations.
Understanding these patterns can be instrumental in the development
of tools and strategies to combat misinformation, encourage the sharing
of diverse perspectives, and enhance the collective well-being and social
good of our digital society.

Keywords: Echo Chamber · Covid-19 · Belief Graph · Ego Network

1 Introduction

Nowadays, online social platforms have become one of the key sources for people
to perceive information. It also reshapes the way of searching, filtering and dis-
seminating information [17]. Modelling and analysing the influence and dissem-
ination of information on social networks, including information maximization,
social sentiment analysis, concern detection, etc. [12,19], have become prominent
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subjects [11,14]. One of the main perspectives of social media is to expose users
to like-minded peers, which may result in echo chambers that could reinforce
users’ pre-existing viewpoints and drive the communities to be more polarized
[7]. Individuals in these communities are easily affected by their surroundings.
Estimating the extent to which an individual is isolated in an echo chamber is
helpful in breaking the isolation.

Jamieson et al. were the first to define the phenomenon occurring on
social media platforms where information within a community is amplified and
metaphorically term it as the “echo chamber” [10]. To determine whether an
individual is isolated within an echo chamber, we focus on their surroundings
and behaviours. Therefore, we define the echo chamber from an individual per-
spective. This phenomenon is characterized by an individual who:

– Resides in a community that echoes their opinion, wherein most neighbours
share similar views.

– Inhabits this community, where the individual’s perspectives are repeatedly
reinforced by community members.

– Self-reinforces by engaging in communication that aligns with their viewpoint.

The prominence of the echo chamber phenomenon has been heightened by the
outbreak of Covid-19. Recognised globally as a pandemic, Covid-19 has become
a leading topic of discussion. Conversations around this subject vary widely,
encompassing themes such as vaccine hesitancy and vaccination-related deaths.
Under these conditions, social platforms provide a conducive environment for
misinformation propagation due to the lack of editorial supervision. As a result,
echo chambers have emerged among users, significantly influencing responses to
the Covid-19 pandemic [2]. For example, if members of a community consistently
engage with and promote content sceptical of Covid-19 vaccinations, the com-
munity can be highly identified as an echo chamber resistant to the prevailing
medical advice on vaccines.

To address this challenging issue, we propose a novel approach to detect
the echo chamber phenomenon and estimate the corresponding degree. In pur-
suing this aim, we explore the utility of knowledge graphs in identifying echo
chambers from an individual perspective and propose a content-based framework
that constructs belief graphs for each individual. During this construction pro-
cess, we extract triplets from the individual’s related Twitter content, including
tweets, retweets, and replies. To assess the impact of individual behaviours, we
incorporate them as distinct parameters to calculate weights for these triplets.
Extensive experiments are conducted, and the results explicitly show that mod-
elling an individual’s belief graphs with weighted relations can effectively reveal
an individual’s trends on a specific topic and identify the echo chambers to which
the individual belongs.
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2 Related Work

2.1 Echo Chambers on Social Platforms

Social platforms have subtly altered the way people access information and
formed echo chambers, isolating them in the process [7]. The detection of echo
chambers has been a research focus across various fields [4,18], serving as the
first step towards mitigating this phenomenon.

Social structures typically manifest in two distinct forms, i.e., global per-
spective and individual perspective. Most research has studied echo chambers
from a global perspective or topological viewpoint, primarily focusing on user
interactions while overlooking the source of these interactions [5,6]. Cinelli et
al. analyze echo chambers by assessing whether the overall network is strongly
polarized towards two sides of a controversy, emphasizing user interaction net-
works [7]. Cossard et al. explore echo chambers within vaccine communities using
clustering techniques, demonstrating the existence of echo chambers within real
social networks [8].

Analyzing extensive topological structure datasets from a global perspective
necessitates high-performance computing resources. The ego network centred
around a focal user offers a feasible way to model a community, enabling mea-
surement of the echo chamber degree with a focus on that user. Thus, inspired
by Li et al. and Valerio et al., we incorporate the concept of the ego network in
our study [3,13]. Li et al. propose agent-based influence diffusion models, where
the influence cascading process is modelled as an evolutionary pattern driven by
individuals’ actions. Valerio et al. analyze the micro-level structural properties
of online social networks and demonstrate that ego networks play a significant
role in social networks, impacting information diffusion within the network.

2.2 Content-Based Echo Chamber Detection

Content-based methods identify echo chambers by analyzing the information
texts produced by individuals. Villa et al. propose both a topology-based and
content-based approach, analyzing the topological structure of the social net-
work and sentiment aspects related to the content [21]. Cinelli et al. conduct a
comparative analysis on a large-scale dataset to identify echo chambers through
social network homophily. They define “leaning” as the attitude expressed by a
piece of content towards a specific topic about the content [7]. Abd-Alrazaq et al.
propose a text-mining method on a large dataset, considering information texts
but neglecting temporal information, which can provide contextual insights [1].
Lwin et al. and Xue et al. demonstrate that discourses on Twitter about Covid-
19 continually evolve, develop, or change over time [15,22]. Inspired by these
studies, we restructure the dataset into chronologically user-specific streams.

Most existing studies solely consider the content of information but overlook
individual behaviours and content weights, which demonstrate the significance of
content on individuals. For instance, reading a message doesn’t explicitly reveal
an individual’s thoughts about the message. However, a subsequent ’like’ or
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’upvote’ implies that the individual agrees with this message, thereby increasing
the weight of information from this message in the corresponding belief graph.
We argue that beliefs in individuals’ minds carry different weights, and not all
beliefs hold equal significance. As a result, behaviours offer valuable insights into
people’s perspectives on related messages.

Therefore, we propose a belief-aware echo chamber detection framework
incorporating content and individual behaviours. Our framework constructs
belief graphs for each individual in our dataset, considering their behaviours.
To measure the degree of echo chambers, we calculate the similarities between
the belief graphs of the focal user and their neighbours. With this framework,
social platforms can detect communities where members are primarily exposed to
reinforcing views, potentially limiting the diversity of thoughts and contributing
to polarization.

3 Belief-Aware Echo Chamber Detection

In this section, we formally define related terms and explain the proposed belief-
aware echo chamber detection framework.

3.1 Formal Definitions

Two types of graph structures are utilized in this work: one is the ego network,
a directed graph G =< U,E > that includes a focal user and its neighbours, and
the other is the user belief graph BG =< H,WR, T >.

Definition 1. An ego network consists of a focal user uf and their neigh-
boring users, denoted as U = {u0, ..., un}. Each user, represented by ui ∈ U ,
corresponds to a node in this directed network. Each edge(ui, uj) between nodes
is directed as the flow of information, indicating that user ui follows, replies to,
or mentions user uj. Each user in an ego network also has a unique belief graph,
representing their personal network of beliefs, which is clarified in Definition 2.

Definition 2. A belief graph is a unique graph containing multiple triplets
BG = {H,WR, T}, where H and T refer to nodes in belief graphs, and
WR = {wri|0 < i < m} represents relations between nodes, defined as weighted
relations. The belief graph is constructed by extracting triplets from users’ histor-
ical messages and behaviours on corresponding messages across various topics.

Definition 3. Similarity sim(vi, vj) refers to the distance between two vectors
in a low-dimensional space. The similarity is a value between [0, 1], where 0
implies completely contrary viewpoints, while 1 signifies identical viewpoints.

Definition 4. Echo chamber degree p(u, k) is a measure that evaluates the
likelihood of an echo chamber. A higher degree suggests a higher probability that
an individual experiences an echo chamber related to a specific topic k.
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Definition 5. Topic k refers to the label of each message, e.g., mk. The topic
set is denoted as T = {T0, T1, ..., Tn}. Messages with the same topics express
similar discourse. One message is assigned only one topic. In our framework,
topics are used for graph partitioning.

Fig. 1. The brief overall process of the framework.

As illustrated in Fig. 1, we determine the echo chamber degree in 5 phases:

– Construct a belief graph for each individual, considering both their Twitter
stream and their user behaviours.

– Partition the corresponding part of an individual’s belief graph into sub-
graphs according to different topics.

– Select an individual and its neighbours to create an ego network based on
their followee/follower relations and mentioning behaviour.

– Calculate the similarities of sub-graphs on a given topic between the focal
user and its neighbours to assess the closeness of their beliefs.

– Quantify the echo chamber degree by evaluating their average similarity and
information entropy.

A sub-graph is a graph partitioned from an individual’s complete belief graph
given a specific topic. Sub-graphs are used to compare users. Messages refer to
texts that users receive and post, including tweets, retweets, and replies. User
behaviours refer to user operations on a social platform, including:

– Viewing: Users view messages posted by their neighbours (followees) or rec-
ommended by the platform.

– Liking: Users like a message by clicking the blank heart symbol.
– Disliking: Users express dislike for a message by cancelling their liking

behaviour, i.e., clicking the solid heart symbol.
– Reposting: Users repost viewed messages.
– Sending: Users post a message or reply to someone in their own words.
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We presume each behaviour reflects a different perspective on corresponding
messages and aids in modelling changes in user beliefs. For example, when a user
likes a message, we increase the weight of triplets extracted from this message
by assigning a changing rate to the weight. The changing rates are defined for
different behaviours as shown in Table 1:

Table 1. Changing rate of each behaviour on corresponding information.

Reviewing Liking Disliking Reposting Sending

Changing Rate(r) 0.5 2 −2 1 2

3.2 Belief Graph Construction

The first step in this work is to construct belief graphs for each individual in the
ego network. We extract triplets (i.e., {head, relation, tail}) from the content
and calculate weights for these triplets by analyzing the individual’s behaviours.
We then attach the weights to the relations, resulting in weighted relations. A
belief graph that reflects an individual’s belief consists of multiple triplets with
weighted relations. We use Stanford OpenIE 1 to extract triplets from texts.

To calculate the weights, we employ a logarithmic function to prevent the
weights from reaching extremely high or low. This logarithmic transformation
helps maintain a balanced range of weights. The function is defined as follows:

wi = ln(w
′
i + ri) + 1, (1)

where w
′
i is the previous weight of the same triplet and ri is the changing rate

as shown in Table 1.
During extraction, the same triplets may be extracted multiple times. For

each new triplet, the initial weight is defined as 0, and its current weight is
calculated based on the changing rate of the corresponding behaviour. When we
encounter the identical triplet, we add the change in weight according to the
current behaviour to its previous weight (i.e., w

′
i in Eq. 1).

3.3 Belief Graph Partitioning

A complete belief graph of an individual encompasses information from several
topics. Comparing complete graphs may allow irrelevant information to affect
performance on the given topic. Hence, we perform a graph partitioning step
before transforming graphs into graph representations.

In this step, we utilize word embeddings from a word2vec model [16] to
identify nodes within the belief graph that have similar words to the given topic

1 https://nlp.stanford.edu/software/openie.html.

https://nlp.stanford.edu/software/openie.html
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and keywords. The cosine similarity function, as shown below, is utilized to
measure the similarity between word embeddings. Nodes and relations in both
directions are subsequently used to form the sub-graph.

sim(vi, vj) =
vi · vj

‖ vi ‖‖ vj ‖ , (2)

where vi and vj denote word embeddings obtained from the word2vec model.

3.4 Echo Chamber Detection

To compare the similarities among belief graphs, we convert these topological
structure graphs into vector representations. This is achieved through training
Graph Attention Networks (GATs) on each individual’s belief graph to generate
graph representations. Different from the original GATs [20], we introduce the
weighted relation features R = {ri,j |0 < i < n, 0 < j < n} as the initial
attention coefficient. The weighted relation features are used during the attention
calculation as follows:

ei,j = a(Wĥi,W ĥj , ri,j) (3)

Equation 3 represents the importance of node j’s features to node i. W
denotes a weight matrix used to parameterize a shared linear transformation,
ĥi represents the features of node i, and ri,j is the weighted relation from node
i to node j. To collect all features of the whole graph, we add a global node
to each graph. This global node is linked to every node in the graph, and its
representation represents the entire graph.

We hypothesize that similar graphs express similar beliefs on relevant topics.
To test this, we compute the similarity between individuals’ belief graphs. We
apply the graph representations generated by the trained GATs to a cosine
similarity function to calculate these similarities:

sim(hk
i , h

k
u) =

hk
i · hk

u

‖ hk
i ‖‖ hk

u ‖ , (4)

where hk
i denotes the representation of user i’s sub-belief graph on topic k, and

‖ hk
i ‖ represents the Euclidean norm of hk

i . h
k
u refers to the representation of the

focal user’s sub-graph on topic k. The average similarities are then calculated as
follows:

avg(hk
u) = 1/n

n∑

i=1

sim(hk
i , h

k
u), (5)

where n describes the number of the focal user’s neighbours.
In addition to similarity, inspired by [9], we also consider information entropy

from information theory and statistical mechanics to calculate the probability
of an individual being isolated in an echo chamber. The equation is as follows:
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H(gku) = −
∑

k⊆K

pk · ln(pk), (6)

where pk is the percentage of a user’s sub-graph on topic k, and gku refers to the
belief graph of the focal user of an ego network on topic k. Finally, we use both
average similarity and information entropy to measure the echo chamber using
the following equation:

p(u, k) = avg(hk
u) · H(gku), (7)

where u represents a focal user. A higher p(u, k) indicates a greater likelihood
that u is isolated in an echo chamber. In such a case, the ego network centred
around user u is a p(u, k) possibility echo chamber on topic k.

4 Experiments and Analysis

This section provides details of two experiments conducted to validate the effi-
cacy of the proposed Belief-based Echo Chamber Detection model. The first
experiment evaluates the similarities in responses of echo chamber members to
multiple related messages. The second experiment implements an ablation study
to elucidate the progression of the Belief Graph module within the BeECD frame-
work and to investigate the impact of weighted relations on belief graphs.

4.1 Data Collection and Organisation

The experiments utilize a dataset gathered from Twitter related to Covid-19.
This dataset, part of the continually updated Covid-19 Twitter chatter dataset
maintained by Georgia State University’s Panacea Lab, spans a crucial six-month
period from December 2020 to May 2021. This time frame is particularly sig-
nificant as it encompasses a period when several candidate vaccines displayed
safety and the ability to generate immune responses. The proposed BeECD can
be applied to any dataset. In this paper, we leverage Covid-19 as the dataset to
validate this approach.

Each individual’s content and behaviours are organised into a chronological
stream, including the user’s tweets, tweets from the user’s neighbours, retweets,
replies, corresponding tweets, likes, and liked tweets. We limit our focus solely
to English tweets, replies, and retweets, and uniquely, we include retweets in
the streams of each individual, allowing us to process retweeting behaviour and
corresponding content concurrently.

To facilitate computation, we extracted a sub-graph from the total dataset,
comprising 285 users, 3,587 interconnections, and 42,478 posts, which include
tweets, retweets, and replies.
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4.2 Experiment 1: Response Analysis

In this experiment, we hypothesize that each user within an ego network can
respond appropriately to one or multiple similar messages, anticipating that
responses from like-minded users will exhibit greater similarity than those from
dissimilar users. The implications of this phenomenon in real-world contexts
are substantial. Consider, for instance, an ego network exhibiting an 80% echo
chamber probability. If the average response probabilities within this network
align closely with this percentage, it will signify that most users within the
network are engaged in disseminating and consuming similar information. In
a practical sense, this may translate to a reinforcement of a specific narrative
or perspective. The resulting lack of engagement with diverse viewpoints could
amplify polarization. This may create a self-reinforcing cycle in which users are
confined to information confirming their pre-existing beliefs, thereby becoming
increasingly resistant to alternative viewpoints or evidence contradicting their
established convictions.

In addition to calculating the echo chamber probabilities, we subsequently
train an encoder-decoder structured language model on the entire dataset, feed-
ing 20 random messages from the test set into each ego network based on the
same topic that the ego network inclines towards. The language model is used
to assess the similarity of the users’ responses. By comparing the echo chamber
probabilities and response similarities, we assess the efficacy of the proposed
framework. The results depicted in Fig. 2 corroborate our hypothesis.

Fig. 2. The probabilities of detected echo chamber and user response similarities.

By presenting the outcomes from three distinct ego networks with varying
degrees of echo chamber probabilities, it’s clear that the average response prob-
abilities align with the calculated echo chamber probabilities.

This experiment sheds light on the intricate relationship between online inter-
actions and the formation of echo chambers. The observed alignment between
the echo chamber probability and user response patterns underscores the role
digital platforms play in shaping real-world perspectives, emphasizing the need
for further research and interventions in this domain.
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4.3 Experiment 2: Belief Graph Impact Analysis

The second experiment seeks to understand the influence of weighted relations on
the evolution of echo chambers. We additionally train Graph Attention Networks
(GATs) that do not account for the properties of relations during the training
process. Belief graphs are initiated using data from the first two months of six,
following which the remaining data is partitioned into 25 unique time intervals.
From each interval of the users’ Twitter streams, users’ beliefs and behaviours
are extracted and used to update their corresponding belief graphs.

By partitioning data into distinct time intervals, we highlight the signifi-
cance of temporal evolution in shaping users’ beliefs. This process shows the
importance of identifying the beliefs and understanding how they transform and
develop over time. Such an approach corresponds to real-world scenarios, where
individuals often undergo phases or shifts in their perspectives. These changes
may be influenced by various factors, such as past experiences, exposure to new
information, or personal growth, reflecting the complexity and dynamism of
human belief systems.

We anticipate that our framework, which incorporates weighted relations, is
capable of detecting variations in user beliefs, including instances where these
beliefs intensify before subsequently diminishing. This approach offers insight
into the dynamic nature of belief changes. On the other hand, in the absence of
such weighted relations, a user’s beliefs appear to remain unaltered and static.
This lack of dynamism obscures the potential to observe the evolutionary pat-
terns of echo chambers, even in cases where users undergo significant shifts in
their perspectives. We selected four representative curves from our proposed
framework with weighted relations and corresponding curves from the frame-
work lacking weighted relations for comparison. The results depicted in Fig. 3
effectively showcase different patterns of evolution of echo chambers in our pro-
posed framework with weighted relations.

From Fig. 3, it is clear that our proposed framework can effectively represent
the evolution of echo chambers or users’ shifting perspectives. The result also
highlights a crucial difference between the two models. The use of weighted rela-
tions, as opposed to non-weighted ones, allows for a more nuanced representation
of the complexities inherent in human interactions and belief systems. In real-
world terms, not all interactions influence our beliefs equally. Some might have a
significant impact due to the trustworthiness of the source or the emotional reso-
nance of the content, while others might be casually scrolled past without much
thought. Thus, incorporating weighted relations can more accurately model how
real people might be influenced by their digital interactions.

Understanding the evolution of echo chambers using advanced models like
GATs with weighted relations is crucial in today’s digital age. Such insights pro-
vide a clearer picture of how beliefs change over time on platforms like Twitter,
emphasizing the need for digital platforms to prioritize diverse content exposure
and critical thinking among their users.
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Fig. 3. The evolution of echo chambers.

5 Conclusion and Prospective Research Directions

In this study, we introduce a novel content-based methodology for echo chamber
detection on social networks, coined as the belief-aware echo chamber detec-
tion approach shedding light on the intricate relationship between online inter-
actions and the formation of echo chambers. We leverage Knowledge Graph
technology to construct user belief graphs, taking into account both message
content and user behaviour. Additionally, we train modified Graph Attention
Networks, incorporating weighted relations into the computation process. Simi-
larities between user belief graphs are then computed. The experimental results
indicate promising effectiveness and demonstrate real-world implications of our
approach in analyzing echo chambers on social platforms.

However, the detection of echo chambers represents a seminal work, and
addressing the subsequent effects presents significant challenges. Future research
endeavours will focus on strategies for mitigating the echo chambers, further
advancing the understanding and management of social network dynamics.
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Abstract. Emotionally intelligent Virtual Assistants (VAs) are increas-
ingly gaining popularity, especially with the digitization of different life
aspects. The focus of our work is to build VAs that can understand the
emotional state of users from their Egyptian-Arabic speech. This requires
the availability of large emotional datasets to be able to train accu-
rate models. Available corpora include different languages and dialects.
However, the Egyptian-Arabic dialect, in particular, shows a significant
gap. The main contribution of this paper is to fill this gap by gathering
a semi-natural Egyptian-Arabic dataset. The dataset includes six emo-
tions: happiness, sadness, anger, neutral, surprise, and fear. To the best
of the authors’ knowledge, it is considered as the first Egyptian-Arabic
dataset to include surprise and fear emotions. Also, a Deep Learning
(DL) model is introduced that is able to detect the first 4 emotions with
average accuracies of 70.3% and 73% for an imbalanced dataset and
a balanced dataset, respectively, and the first 5 emotions with average
accuracies of 65% and 66% for an imbalanced dataset and a balanced
dataset, respectively.

Keywords: Speech emotion recognition · Deep learning · Acoustic
features

1 Introduction

Emotion-based Artificial Intelligence (AI) is a growing research area nowadays.
Emotions play a crucial role in how humans interact with one another. Thus,
developing VAs that could understand the emotional state of the humans and
how they react would significantly improve their interaction. Emotionally intelli-
gent VAs [28] may be useful in a variety of fields, including business and health-
care. They can be used to detect any change in pitch or tone in the customers’
voices that signals their dissatisfaction during calls at call centers in order to
achieve better business performance. Also, in health care, because of AI’s capac-
ity to identify signs of mental health conditions such as depression, bipolar dis-
order, post-traumatic stress disorder, and other anxiety disorders through voice
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
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analysis, VAs could allow psychiatrists to monitor patients’ well-being between
clinic appointments.

Emotions may be recognized through analyzing different aspects such as
facial expressions and hand gestures in the case of video, tone of voice in the case
of speech and punctuation in the case of written text [17]. The work presented
in this paper is primarily concerned with speech emotion recognition, and more
particularly, emotion recognition from the acoustic features of speech.

Non-verbal communication and the way in which the words are spoken carries
a lot of essential information about the emotional state and the intention of the
speaker. The same textual message would be conveyed with different semantics
by incorporating appropriate emotions. In other words, the semantics of a spoken
word cannot be comprehended solely by reading the text. Thus, in addition to
the speech context, speech systems should be able to interpret non-linguistic
information like emotions. [17].

The task of Speech Emotion Recognition (SER) requires huge amounts of
labelled data in order to achieve high emotion classification accuracy [15]. Thus,
collecting data for this particular task has been the focus of studies for many
years. Emotional speech is also influenced by the spoken language, and par-
ticularly the origin and culture of the speaker [21]. The majority of emotional
speech databases used take into account European languages. Asian languages
have also seen a rise in the number of emotional speech databases recently. How-
ever, there is not much material about African emotional speech databases [23].
Particularly for Arabic, there are extremely few emotional speech databases in
different dialects. Despite the fact that Egyptian-Arabic is one of the most pop-
ular dialects in Arabic, only one dataset existed. The available Egyptian-Arabic
dataset is called (EYASE) [2]. It consists of 579 utterances and only four avail-
able emotional states. Consequently, the main goal for this paper was to collect
a larger emotional speech dataset in Egyptian-Arabic dialect with a wider range
of emotions.

This paper introduces an Egyptian-Arabic emotional speech dataset (EAED)
that consists of 3,614 audio files recorded from multiple Egyptian TV series. The
dataset includes five emotions which are: happiness, sadness, anger, surprise
and fear alongside the neutral speech. To be a total of six different emotional
states. The selection of emotions included was based on Paul Ekman’s suggestion
that there are six basic emotions: anger, disgust, fear, happiness, sadness and
surprise [9]. Thus, the dataset included five of the six basic emotions. And,
disgust emotion was discarded because after analysing the chosen TV series, it
was found that it almost does not exist. For the same reason, the majority
of semi-natural datasets lack this emotion. And, since it is uncommon, this
means that they are of less need for a virtual assistant. Moreover, a DL model
is then proposed for the task of emotion classification. Consequently, the main
contributions of this paper could be summarized as follows:

1. Filling the resource gap in Egyptian-Arabic emotional speech through EAED,
which consists of 3,614 utterances, with the following specifications:
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– It is the first Egyptian-Arabic emotional speech dataset to include surprise
and fear emotions.

– It involves huge number of speakers compared to the available Egyptian-
Arabic corpus (72 speakers versus 6 speakers).

– It was collected from more than one TV series with different genres to
ensure its ability to train more generalized models.

2. Investigating the effect of using a proposed DL model for the task of Egyptian-
Arabic SER achieving comparable results with existing methods.

Section 2 includes the related work and benchmark emotional speech corpora
with multiple languages and dialects. Section 3 includes the details of the data
collection process. Section 4 contains the detailed description of our dataset.
Section 5 includes the steps followed in order to validate the reliability of our
data. Section 6 includes the proposed DL model. Last but not least, Sect. 7 states
the results of the proposed model on EAED.

2 Related Work

Emotional speech datasets can be classified into four categories which are nat-
ural, semi-natural, acted and elicited datasets [2]. Natural emotional speech
datasets are those recorded from call centers or TV shows [1]. They are con-
sidered as natural since the recorded speech reflects genuine emotions and nat-
ural reactions without any intended exaggerations or deliberate dramatisation.
Semi- Natural datasets are those recorded from movies or TV series with profes-
sional actors speaking the dialogue [1]. However, real-life situations requiring the
involvement of emotional expression, are presented to the performers. The main
challenge in natural and semi-natural data sets is that, many human labelers
must listen to the recorded audio files in order to choose the most accurate label
for an audio file, which takes a lot of time. They also suffer from background
noise. Acted datasets are a type of emotional speech dataset that is gathered
by the help of professional actors and actresses, who are then asked to say a set
of linguistically neutral sentences with various predefined emotions [17]. Elicited
datasets is quite similar to acted datasets. However, elicited datasets are gath-
ered by people with no acting experience, which makes them less efficient. Acted
and elicited data sets are prone to over-fitting because they are captured in
noise-free environments. However, the noise-free environments makes the task of
feature extraction easier.

Regarding the common practices for gathering acted and elicited emotional
corpora, EMODB [6], which is one of the most commonly used datasets in the
field of SER, was recorded in an anechoic chamber with the help of 10 profes-
sional actors. The audio files were recorded at a 48-kHz sampling rate and then
down-sampled to 16 kHz. Furthermore, RAVDESS [19], which is a multimodal
database of emotional speech and song in North American accent, was generated
by 24 professional actors vocalizing lexically-matched statements. Each expres-
sion is produced at two levels of emotional intensity, with an additional neutral
expression. In addition, IITKGP-SEHSC [18] is an Indian acted database that
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is recorded using 10 professional actors. Fifteen Hindi text prompts were cho-
sen for recording. All the sentences were emotionally neutral in meaning. Each
artist must speak the 15 words in a single session using the eight fundamental
emotions. All the audio files were recorded at a 16 kHz sampling rate. Last but
not least, KSUEmotions [22], which is an elicited emotional speech database
designed for Modern Standard Arabic (MSA), was generated with the help of
fourteen speakers. The speakers were from three Arab countries: Yemen, Saudi
Arabia and Syria. The recorded corpus was perceptually tested by nine listen-
ers (six male and three female) and the audio files were recorded using 16 KHz
sampling frequency.

Regarding the common practices for gathering natural and semi-natural emo-
tional corpora, a Chinese natural emotional speech dataset was created using 20
different episodes from a Chinese talk-show. The number of speakers is 53 (16
males and 37 females). Speech signals were sampled at 16 KHz. Four different
human testers have been assigned to listen to the audio files in order to test its
reliability. Then, some of the audios were discarded and recollected [30]. Also, a
Saudi semi-natural database was created from YouTube videos taken from the
popular Saudi YouTube channel Telfaz11 [4]. The audio files were extracted from
videos, which were divided into smaller chunks. The chunks were around 1 to
9 s in length. As a preprocessing step, the noise, background music, and silence
were removed. The final dataset was composed of 113 utterances recorded by
male actors and 62 utterances recorded by female actresses.

Table 1 shows more details for the available emotional speech corpora and
emphasizes the gap in the Egyptian-Dialect compared to other languages, and
how the proposed dataset contributes in filling this significant gap.

One of the most widely used classifiers for the task of SER is neural networks
including both Convolutional Neural Networks (CNNs) and Long Short Term
Memory networks (LSTMs) [5,12,24,25].

3 Dataset Collection

In this paper, we have collected an Arabic emotional speech dataset with Egyp-
tian dialect called EAED. The dataset is a semi-natural one as it was collected
from a collection of well-known Egyptian TV series. A batch of undergraduate
Engineering students in computer science department was recruited for the data
collection task. The students were grouped into teams of four. Each group was
asked to watch the episodes of one TV series carefully and then divide it into
smaller chunks of audio files containing emotional tone of voices. Each audio
file ranged in length from 1 to 8 s depending on the completion time of the
given sentence. Our dataset contains six different emotions: happiness, sadness,
anger, neutral, surprise, and fear. The inclusion of the surprise and fear emo-
tions in the dataset is one of our primary contributions. As such, it is the first
dataset of Egyptian-Arabic that include those two emotions. All audio files were
recorded using the open source Audacity Software at sampling rate 44.1 KHz.
Then, four different human labelers including the one who recorded the audio
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Table 1. Emotional Speech Datasets

Dataset Name Language Type Files Emotions

[6] EmoDB German Acted 535 anger, boredom, dis-

gust, fear, happiness,

sadness and neutral (7)

[19] Ravdess North American Acted 7,356 calm, happy, sad, angry,

fearful, surprise, and

disgust (7)

[11] SAVEE English Acted 480 anger, disgust, fear,

happiness, sadness,

surprise and neutral (7)

[3] TESS English Elicited 2,800 neutral, sad, surprise,

calm, happiness, fear,

disgust and anger (8)

[7] IEMOCAP English Acted 10,039 happiness, anger, sad-

ness, frustration and

neutral (5)

[18] IITKGP-SEHSC Indian Acted 12,000 anger, disgust, fear,

happy, neutral, sad,

sarcastic and surprise

(8)

[30] - Chinese Natural 800 anger, joy, sadness and

neutral (4)

[4] Telfaz11 Saudi-dialect Semi-Natural 175 angry, happy, sad, and

neutral (4)

[13] ADED Algerian-dialect Semi-Natural 200 fear, anger, sadness and

neutral(4)

[22] KSUEmotions MSA Elicited 1,680 neutral, sadness, happi-

ness, surprise, and anger

(5)

[2] EYASE Egyptian-dialect Semi-Natural 579 angry, happy, neutral

and sad. (4)

- Proposed EAED Egyptian-dialect Semi-Natural 3,614 angry, happy, neutral,

sad, surprise and fearful

(6)

file were assigned to hear the audio file in order to annotate it. All the pre-
aggregated labels as well as some useful metadata for each audio file including
speaker name, gender, age group and series name were saved in csv files. How-
ever, after reviewing the csv files, some ties in the annotations were detected.
Consequently, a fifth labeler was assigned for the task of tie-breaking. Then, the
label with the maximum voting was chosen for each file. The audio files for each
series are grouped in a separate folder. Each folder consists of multiple folders,
one for each actor/actress in the series. In each actor/actress folder, the audio
files are named in the following convention: AA BB CC.wav

AA: Actor unique ID
BB: the emotion label
CC: a number to uniquely identify the file inside the folder
Example: NellyKarim happy 01.wav is a file in a folder that belongs to an

actress whose name is Nelly Karim and the emotion being conveyed is happy.
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4 Dataset Description

Our dataset was constructed from five different well known Egyptian TV series.
Here are some statistical data for the five chosen series, including the number

of speakers and the proportion of males and females involved:

– Leaalasear: 23 speakers were involved (8 males and 15 females).
– SahebELSaada: 21 speakers were involved (12 males and 9 females).
– SuitsArabic: 16 speakers were involved (8 males and 8 females).
– ElSayad: 7 speakers were involved (2 males and 5 females).
– AshamIblis: 12 speakers were involved (7 males and 5 females).

Table 2. Number of emotional utterances in each series

Series Name Neutral Sad Happy Angry Surprise Fearful Total

Leaalasear 120 143 147 145 91 29 675

SahebELSaada 338 125 80 260 65 42 910

SuitsArabic 127 80 72 138 108 60 585

ElSayad 296 160 93 223 66 20 858

AshamIblis 123 113 36 143 117 54 586

Fig. 1. Emotions Statistics in EAED.

Table 2, shows the number of audio files for each emotion separately in each
series. Figure 1, shows the number of utterances of each emotion in the whole
dataset. It is obvious that, the fear emotion has the least number of utterances
due to the lack of this emotion in the selected series. The data is available for
research purposes on the following link: http://ieee-dataport.org/11495.

https://www.imdb.com/title/tt7208026/?ref_=ext_shr_lnk
https://www.imdb.com/title/tt3477676/?ref_=ext_shr_lnk
https://www.imdb.com/title/tt19495202/?ref_=ext_shr_lnk
https://www.imdb.com/title/tt4969748/?ref_=ext_shr_lnk
https://www.imdb.com/title/tt12485218/?ref_=ext_shr_lnk
https://www.imdb.com/title/tt7208026/?ref_=ext_shr_lnk
https://www.imdb.com/title/tt3477676/?ref_=ext_shr_lnk
https://www.imdb.com/title/tt19495202/?ref_=ext_shr_lnk
https://www.imdb.com/title/tt4969748/?ref_=ext_shr_lnk
https://www.imdb.com/title/tt12485218/?ref_=ext_shr_lnk
http://ieee-dataport.org/11495
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5 Dataset Validation

EYASE dataset was taken as a baseline dataset for this work. A set of different
acoustic features were extracted from EYASE based on the findings of [2].

– Prosodic features such as pitch, intensity, jitter, and shimmer were retrieved
using parsel-mouth [14]. Then, statistical features such as mean, minimum,
maximum, standard deviation and range were computed from both pitch and
intensity.

– Spectral features were also extracted including the first three formants, the
mean of the first twelve Mel-frequency Cepstral Coefficients (MFCCs) and
long-term average spectrum (LTAS). For LTAS, mean, minimum, maximum,
standard deviation, range and slope were computed.

– Wavelet features were also computed. Each audio signal were decomposed
using four-level daubechies wavelet decomposition using Pywavelet Python
library. Then, wavelet energies and entropies [8] for each approximation and
detail sub-bands were computed.

Consequently, a total of 49 features were extracted. Then, Stratified K Fold
cross validation [29] (K = 10) was used in order to make sure that the samples
in each fold were balanced and not biased to a certain emotion class. Then, they
were fed into a support vector machine (SVM) classifier. Also, Grid search was
used to choose the best hyper parameters to be used for the SVM.

Two different independent speaker experiments were conducted: one includ-
ing the four available emotions in the dataset: happy, sad, angry and neutral
(AHNS) and the other excluding the happy emotion (ANS). For the AHNS
experiment and the ANS experiment, respectively, the obtained validation accu-
racies were 66.8% and 81.2% which are identical to the reported accuracies in [2].
Then, the same process including the feature vector extracted and the classifier
used was applied on the utterances of each series in our dataset. However, two
more experiments were conducted which are AHNSS which included the sur-
prise emotion and AHNSSF which included both the surprise and fear emotions.
Table 3 shows the average accuracies of the 10 folds for the four experiments.

Table 3. Dataset Accuracies (%)

Series Name AHNS ANS AHNSS AHNSSF

EYASE 66.8 81.2 NA NA

Leaalasear 69.5 80.3 62.6 60.2

SahebELSaada 73.8 80.3 68.4 65.6

SuitsArabic 70.5 82 65.1 58.7

ElSayad 68.4 76.5 63.4 61.3

AshamIblis 69.4 75.9 58.8 54.4
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6 Deep Learning Model

The second aim of this paper, is to investigate the use of DL in the task of SER
from Egyptian-Arabic speech. The proposed DL model is built by connecting
three main blocks. Each block consists of a one dimensional convolutional layer
followed by a Batch Normalization (BN) layer. The convolution layer plays the
role of a local feature extractor. When the data is passed into the convolution
layer, the convolution kernel slides over the input. Then, dot product between
the entries of the kernel and the input is computed in order to produce a feature
map [31]. The BN transformation keeps the mean activation around 0 and the
activation standard deviation near 1. Normalizing the activations of the convo-
lutional layer by the BN layer improves the performance of deep networks and
makes them more stable [31].

The first block is followed by a Leaky Rectified Linear Unit (ReLU) activation
function layer [20] with an alpha equals to 0.2. Leaky ReLU was found to be
better than using the normal ReLU. This is due to the fact that the extracted
feature vector has a lot of negative values, which lead to the dying ReLU problem
[20] where the negative values in the feature vector are assigned to 0, instead
of having a slope. The second and third blocks are followed by a Max pooling
layer. Max-pooling is the most commonly used non-linear function. It calculates
the maximum value for each sub-region in the feature map, and uses it to create
a down-sampled feature map [27].

Table 4. Proposed Deep Learning Architecture

Type Output Shape Kernel stride

Convolution (None,177,128) 5 1

Convolution (None,177,128) 5 1

Max Pooling (None,89,128) 2 2

Convolution (None,89,64) 5 1

Max Pooling (None,45,64) 2 2

All Max Pooling and Convolutional layers have the SAME padding. This
model is designed to learn 1D feature vector extracted from each audio clip. Thus,
all layers in the network are one dimensional. The first and second convolutional
layers consist of 128 kernels. The third layer consists of 64 kernels. Then, there is
a Flatten layer followed by a Dense fully connected layer with 128 units. Last but
not least, the output layer is a dense layer with either four or five units depending
on the number of emotions in each experiment and soft-max activation function.
Drop out layers with a rate of 0.25 are used after each block in order to avoid
over fitting [26]. Table 4 shows a summary of the layers included in the proposed
model.

Regarding the features extracted, the same 49-long feature vector used for
SVM was extracted in addition to, 128 Log-Mel Spectrograms with maximum
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frequency equal to 8000 forming a total of 177 features. The input feature vector
was then normalized using the standard scaler normalization technique. The data
was then split in to 10 stratified K Folds. Regarding the training parameters, the
batch size was set to 16 and the Stochastic Gradient Descent (SGD) optimizer
[16] was used with learning rate equals to 0.001 and with momentum equals to
0.8. The loss function used was categorical cross entropy.

7 Independent-Speaker Multi-class Emotion
Classification Results

For the purpose of training, the fear emotion was not included due to the lim-
ited number of fear emotion files which might lead to poor results. Then, two
approaches were followed. The first approach was to construct a balanced dataset
consisting of 2,140 audio files, in which all five emotion classes have equal num-
ber of utterances, from EAED dataset. The second one was to compose a com-
bined dataset using EAED and EYASE [2] datasets. However, the results of the
online surveys, that were used to validate EYASE in [10], indicated that the
happy emotion in EYASE was not accurately labeled. Thus, all the happy audio
files in EYASE dataset were removed. Two experiments were conducted in both
approaches: AHNS, and AHNSS.

Regarding the imbalanced dataset, the average of the accuracies resulting
from 10 folds after 150 epochs was equal to 70.3% (Max: 76%, Min: 67%) and
65% (Max: 68%, Min: 63%) for the AHNS and AHNSS experiments respectively.
Figure 2, shows the confusion matrices from one of the folds in the AHNS (left)
and AHNSS (right) experiments. Tables 5 and 6 show the recall, precision and f1-
scores values for each emotion separately for one of the folds in both experiments.
The happy emotion has the lowest values due to the limited number of happy
audio files in our dataset compared to other emotions.

Fig. 2. Confusion Matrices for imbalanced dataset

Regarding the balanced dataset, the average of the accuracies resulting from
10 folds after 80 epochs was equal to 73% (Max: 81%, Min: 67%) and 66%
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Table 5. Classification results for AHNS Experiment

Precision(%) Recall(%) F1-score(%)

Neutral 70 78 74

Sad 80 71 75

Angry 82 82 82

Happy 58 50 54

Accuracy(%) 74

Table 6. Classification results for AHNSS Experiment

Precision(%) Recall(%) F1-score(%)

Neutral 62 73 67

Sad 73 62 67

Angry 80 82 81

Happy 63 44 52

Surprised 52 52 52

Accuracy(%) 68

(Max: 71%, Min: 62%) for the AHNS and AHNSS experiments respectively.
Figure 3, shows the confusion matrices from one of the folds in the AHNS (left)
and AHNSS (right) experiments. Tables 7 and 8 show the recall, precision and f1-
scores values for each emotion separately for one of the folds in both experiments.

Fig. 3. Confusion Matrices for balanced dataset
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Table 7. Classification results for AHNS Experiment for balanced dataset

Precision(%) Recall(%) F1-score(%)

Neutral 80 81 80

Sad 82 84 83

Angry 83 81 82

Happy 76 74 75

Accuracy(%) 80

Table 8. Classification results for AHNSS Experiment for balanced dataset

Precision(%) Recall(%) F1-score(%)

Neutral 65 67 66

Sad 78 84 81

Angry 77 77 77

Happy 58 51 54

Surprised 73 74 74

Accuracy(%) 71

8 Conclusion

To fill the gap in resources in the Egyptian-Arabic emotional speech corpora, a
semi-natural emotional dataset was introduced in this paper. A total of 3,614
utterances were recorded in six basic emotional states. Most of the subsets of
EAED outperform the standard EYASE dataset in terms of classification accu-
racy when all trained using SVM. Moreover, a DL model was proposed for the
task of emotion classification. Afterwards, a feature vector containing a set of 177
different acoustic features was extracted and fed into the DL model. Two main
experiments were held: AHNS and AHNSS. Results showed that when using an
imbalanced dataset, the emotion classification accuracy is directly proportional
to the number of samples in the emotion class. Consequently, the proposed model
achieves better performance on the balanced dataset. Moreover, the sadness and
anger emotions are the most accurately detected. While, the happiness emo-
tion is the most challenging emotion in the task of SER. In addition, it can be
observed that adding the surprised emotion has significantly reduced the accu-
racy of the happiness emotion. This might be because most of the surprised
utterances included are surprisingly happy. In the future, further fine-tuning of
the DL model should take place for better results. Data augmentation techniques
could also be applied to increase the dataset size and improve performance.
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Abstract. Research is required for understanding the factors that con-
tribute to Lower Extremity Amputation (LEA), especially in an area
like Fiji that has a unique set of lifestyle factors and dietary habits. In
such a developing country where T2DM-related amputations are one of
the highest in the world, predicting the magnitude of the risk of LEA
is vital for improving the care of Type 2 Diabetes Mellitus patients.
Thus, this study developed a statistical model to predict quantifiable
risk factors or predictors for LEA among T2DM patients from the three
tertiary hospitals in Fiji. Such a model could possibly assist practition-
ers to understand the dynamics surrounding the problem and come up
with possible solutions that may help reduce or prevent limb loss among
diabetics. From the binary logistic regression classifier created via the 10-
Fold Cross-Validation technique, we find that predictors such as length of
stay (los), illness duration, the medical conditions of thrombocytosis and
leukocytosis, gender, age category, hypertension, and low haemoglobin
levels are key determinants of LEA. These predictors are statistically sig-
nificant and have small to moderate effects on the outcome. The model
has high sensitivity and performs very well, which indicates that it is
correctly identifying a large portion of patients with amputations, thus
minimizing the risk of false negatives.

Keywords: Binary Logistic Regression · Classification model ·
Machine Learning · Lower Extremity Amputation (LEA) · Diabetes
Risk Factors

1 Introduction

Type 2 diabetes mellitus (T2DM) is a chronic and lifelong disease and a major
health problem all over the world. The International Diabetes Federation (IDF)
estimates the global prevalence of diabetes to be approximately 9.1% [1]. A
report released by the World Health Organization (WHO) estimated that 422
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14327, pp. 333–344, 2024.
https://doi.org/10.1007/978-981-99-7025-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7025-4_29&domain=pdf
https://doi.org/10.1007/978-981-99-7025-4_29


334 S. Khan and K. Reddy

million adults worldwide were living with T2DM in 2014, among which 25% were
unaware that they were diabetic. The report also projected that T2DM will be
the seventh leading cause of death by the year 2030. The Western Pacific region
has the highest diabetes burden in the world, and it is estimated that up to 1 in
3 adults in the Pacific Island population has T2DM. [2]. Fiji is no exception to
this problem, T2DM is common in Fiji and it poses an enormous threat to the
health of Fiji citizens, as it prominently contributes to Fiji’s high mortality rates
[24] The estimated prevalence of T2DM in Fiji was 16% in 2002, which is twice
the global prevalence [17]. Almost one in every three Fijian is being diagnosed
with diabetes [24].

Lower limb amputation (LEA) is a surgical procedure to remove a limb or
a part of it on the lower extremity of a person due to diabetic complications.
It is one of the most feared, devastating, and multifactorial complications expe-
rienced by people with T2DM. People with T2DM who have poorly controlled
blood sugar levels are at an increased risk of developing peripheral neuropathy
and peripheral vascular disease, which can lead to reduced blood and sensation
in the lower limbs, which increases the risk of injury, infection, foot ulcer and
then subsequent sepsis that can progress to a point where amputation become
necessary [33]. A global review of LEA incidence reported that the incidence
of LEA in diabetics ranges from 46.1 to 9600 per 100,000 [23]. Another study
reported that the estimated age-adjusted incidence rates for LEAs with T2DM
range from 2.1/1000 to 13.7/1000 person year worldwide [19].

Variation in incidence has been attributed to many factors such as the com-
plex nature of foot infections, strategies for limb salvage, the clinical expertise
of surgeons, patient preferences, accessibility and quality of health care, popula-
tion, and study design used in various studies [31,32]. People with T2DM have
10–30 times increased risk of LEA compared with non-T2DM [4,26,33]. About
80% of all LEAs occur due to T2DM and 85% of these start with a foot ulcer
[25]. Fifty percent of these people will become infected and half of the patients
who have a foot ulcer die within 5 years [38]. Wounds that cannot heal can lead
to re-amputation [9].

Treatment and care strategies vary on the level of amputation. Determination
of the clinical characteristics and risk factors of each level of LEA is crucial to
understanding the processes that may save limbs among T2DM patients. Data
on diabetic-related amputation are lacking in Fiji. Statistics on risk factors are
important for disease prevention and intervention. While there is some available
information regarding LEAs, to a lesser extent, descriptives about their risk
factors, no research has yet utilized the available information in Fiji to model the
magnitude of the predictiveness of these risk factors for LEAs. This information
is also hardly available though for the Fiji population, so that is an information
gap that this research will fill. More importantly, such a model would be able to
assist surgeons and other health care providers for T2DM patients, in making
early decisions about when to be aggressive in treating certain risk factors among
patients, when the model indicates that there is a high risk of possible LEA.



A Classifier to Predict Amputations Due to T2DM in Fiji 335

2 Literature Review

Pacific literature on factors associated with LEA due to T2DM is limited. A
study published found that the main factors for LEA were delaying treatment,
use of traditional treatments, and insufficient knowledge about foot care [34].
Furthermore, literature on specific factors associated with diabetic LEAs is also
limited in Fiji. The occurrence of LEA due to T2DM differs by ethnicity, as it
occurs more among indigenous Fijians [20]. It is estimated that there is a T2DM-
associated LEA performed every 8 h in Fiji [Times F]. These statistics are quite
worrying, as it translates to an immense future burden on the health sector in
Fiji.

A wide range of risk factors for LEAs related to Diabetes Foot Ulcer (DFU)
had been reported, which included longer duration of diabetes mellitus [7,41],
previous diabetic ulcer histories and previous amputation histories [10], poor
glycemic control [37], hypertension [27,41], coronary artery disease [41], hyperlip-
idaemia [27], severity of peripheral arterial disease (PAD) [7,22,27,40], diabetic
neuropathy [28], osteomyelitis [7,22,41,42], Wagner grade [30,40], age [7,11,41],
sex [40], smoking history [8], anemia [12], higher WBC count [18], presence of
microvascular [13,42], and macrovascular complications [21,41], chronic kidney
disease and ulcer size [22,40], high baseline inflammatory markers, including
C-reactive protein (CRP) levels, low BMI [41].

The applications of AI are vast and varied in the area of medical sciences,
where numerous data mining algorithms have been employed in the literature.
Chemello et al. [14] provide a thorough review of these applications in diabetes-
related data. An extensive systematic review is also presented by [15] on AI-based
approaches that are suitable for predicting multiple diabetes-related complica-
tions. Below find further applications of data mining methods used in diabetes-
related data.

A prospective study was conducted in Singapore using Stepwise Logistic
Regression by Zameer et al. among 100 patients who were diagnosed or treated
at the National University Hospital to identify the predictive factors of lower
extremity amputations in diabetic foot infections [8]. The study revealed sig-
nificant univariate predictive factors for limb loss including age above 60 years,
gangrene, monomicrobial infections, high white blood cell (WBC) count, low
hemoglobin, and creatinine. Another cross-sectional study was conducted in
Saudi Arabia using multivariable logistic regression by Al-Rubeaan et al. among
62,681 patients aged 25 and more. The study revealed significant risk factors
were Charcot joints, peripheral vascular disease, neuropathy, diabetes duration
of more than 10 years, insulin use, retinopathy, nephropathy, over 45 years of
years, cerebral vascular disease, poor glycemic control, coronary artery disease,
male gender, smoking, and hypertension to be significant risk factors [30].

Recently, research by [32] conducted a retrospective study in Jordan using
a Multivariate Logistic Regression model among 225 T2DM patients who were
admitted to King Abdullah University Hospital, to identify the independent
predictors of major lower extremity amputations (LEA) among type 2 dia-
betic patients. This study considered many risk factors such as foot characteris-
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tics (History of foot problems, Ulcer, Gangrene, Ischemia, Diabetic neuropathy,
Clinical evidence of infections, Wagner’s grade); Demographic (gender, age),
and Health characteristics’ (BMI, duration of diabetes, Antidiabetic treatments,
glycemic control, ESR, smoking, Hypertension, Cardiac diseases, chronic renal
diseases, stroke). Among them, poor glycemic control, longer duration of dia-
betes, renal impairment, gangrene, and insulin use were found as independent
predictors of major amputation among Diabetic patients [8].

The literature review presented above identifies several gaps in determining
independent predictors of LEAs among T2DM. There are several risk factors
for LEA in diabetes that have been cited in the literature. However, there are
inconsistencies among the studies. These inconsistencies in risk factors may have
been attributed to factors such as genetic profiles and cultural features of the
population studied. In addition, despite the adequacy and richness of existing
data sources, the LEA in T2DM in Fiji remains poorly described. Furthermore,
the factors associated with amputations in these patients are yet to be identified.
Thus, this study is conducted to identify the factors associated with amputation
among T2DM patients in the Fijian population. Rarely studies have reported
any findings or published any diabetes-related data, which makes it very dif-
ficult for researchers to identify risk factors for diabetes-related LEA in Fiji.
Through this research, will want to reduce that gap, by collecting data and
identifying patients with risk factors associated with amputation. This could
prompt increased patient education, monitoring, and rehabilitation efforts that
may aid in the prevention of further amputation and its associated morbidity in
the future.

3 Research Methodology

3.1 Data Collection

We performed a retrospective review of the records of 1792 diabetic inpatients
who had undergone wound debridement or lower extremity amputation due to
foot ulcer at all three tertiary care hospitals in Fiji from January 2016 to Decem-
ber 2019. We first identified 3587 patient records with a hospital discharge list
diagnosis of Type 2 diabetes mellitus (E11) with foot ulcer due to multiple causes
(E11.73) according to the International Classification of Disease (ICD-10 AM)
from Patient Information System (PATIS). After removing duplicate records (n
= 517), missing folders (n = 969), any surgical information missing (n = 8),
patients who had refused surgery (n = 59), patients who had undergone any
LEA before the study period (n = 26), any missing information in the patients’
observation folder in the independent variables (n = 194), 1792 diabetic patients
folders/medical histories were reviewed.

The collected data had information on demographic characteristics (sex, age,
ethnicity, place of residence), hypertension, ischaemic heart disease, Wagner
grades, hospital length stay, smoking history, lab investigations (random blood
sugar, hemoglobin level, total white blood cell count), and the history of any
renal problem (eGFR).
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Hypertension was defined as systolic blood pressure ≥140 mmHg, diastolic
blood pressure ≥ 90 mmHg, or the use of anti-hypertensive medications. The
World Health Organization cut-off point for diagnosis of anemia is a hemoglobin
level of 12.0 g/dl for females and 13.0 g/dl for males. Having an abnormally
high number of white blood cells (≥12K) in the blood was classified as the
‘leukocytosis’ condition. Similarly, an abnormally high platelet count (≥450K) in
the blood was classified as the ‘thrombocytosis’ condition. For the main outcome
variable, patients were divided into two groups: non-LEA, and any LEA group.
LEA group refers to the patients who had undergone any amputation during
the study period and the non-LEA group considers patients who had wound
debridement or incision & drainage during the study period.

3.2 Classification Model

The binary nature of the outcome variable (amputation = 1 & non-
amputation = 0) requires the utilization of a data mining algorithm called
Binary Logistic Regression (BLR), which is from the family of Generalized
Linear Models (GLM). The BLR classifier predicts the probability of the occur-
rence of amputation and non-amputation based on a set of predictors, which
we refer to as the determinants, by fitting data to a logistic curve. The model
is then updated in such a way that important relationships between predictors
and the outcome variable, significant or lack thereof, are chosen. During this
process, some statistically significant predictors and some important predictors
were retained due to the nature of their effects on the outcome variable. The
mathematical representation of the BLR classifier can be written as the equa-
tion:

logit(y) = β0 + β1x1 + β2x2 + · · · + βkxk (1)

where βi, i = 1, 2, ..., k are the beta weights or the coefficient estimates of the
model, x1, x2, · · · , xk are the predictors, and y is a response to predict amputa-
tion or non-amputation, and logit(y) = ln(1/(1 − y)). The above equation can
also be written as

y =
1

1 + eβ0+β1x1+β2x2+···+βkxk
(2)

The model was created using the machine learning workflow whereby the classi-
fier is learned using 75% training data with 10-fold cross-validation and its model
performance and evaluations was done on the 25% test data. This algorithm was
carried out in R using the tidymodels framework.

4 Results and Discussion for the Binary Logistic
Regression Classifier

Initially, the full model approach [22] was used for the model-building process,
where all potential variables were included in the model. However, as we encoun-
tered complex relationships between predictors and the outcome, it became
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apparent that this approach was impractical to consider due to its limitations.
Consequently, we opted for variable selection using univariate methods to address
this issue, as proposed by [20]. Those variables that showed statistical signifi-
cance (p < 0.25) in the univariate analysis were included in the multivariate
model, which was then continuously updated systematically through trial and
test. Finally, a reasonable combination of predictors was chosen, based on the
clinical meaningfulness of the relationships that are scientifically plausible, to
be part of the final model to predict amputation. Dealing with highly corre-
lated predictors helped reduce the complexity of the model, which led to a more
pragmatic prediction model.

Presented in Table 1 are the exponentiated model coefficients known as Odds
Ratio (OR) which traditionally assess the effect of a predictor variable on the
response variable, given that the other predictor variables are “held constant”
(known as the ceteris-paribus assumption). The 95% confidence intervals (CI) of
these ORs and their corresponding p-values at 5% level of significance are also
given. For the continuous predictors, OR ≥ 1 indicates that the event is more
likely to occur as the predictor increases, and OR ≤ 1 indicates that the event
is less likely to occur as the predictor increases. For categorical predictors, the
OR for a particular category is with respect to a reference category, which is
stated for each predictor in the first column of Table 1. For all predictors, the
reference categories below the name of the predictors are in the first column. For
gender, it refers to the odds of having an amputation in Females versus Males,
i.e., women are 0.64 times as likely to have an amputation compared to males,
after adjusting for all other predictors in the model. This means that if we choose
“female” as the reference category, the result will provide the odds of having an
amputation in men as compared to women. Thus, men are likely to have about
1.6 times higher risk of amputation compared to women after adjusting for other

Table 1. The Binary Logistic Regression Model Results

Predictor Category OR 95% CI p-value

gender (ref: Male) Female 0.64 0.50, 0.83 <0.001

agecat(ref: <=40) 40–60 1.67 1.00, 2.76 0.047

60+ 1.94 1.15, 3.25 0.012

ethnicity (ref: i-Taukei) FoID 0.79 0.60, 1.03 0.084

Others 0.75 0.30, 2.05 0.6

length of stay 1.11 1.07, 1.15 <0.001

hypertension (ref: No) Yes 1.34 1.04, 1.72 0.025

illness duration(ref: <1month) >=1 month 2.39 1.60, 3.69 <0.001

Hb low (ref: No) Yes 1.37 1.04, 1.81 0.027

leucocytosis (ref: No) Yes 1.48 1.14, 1.93 0.003

thrombocytosis (ref: No) Yes 1.94 1.41, 2.70 <0.001
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factors in the model or keeping other factors fixed or constant. Note that this
effect is statistically significant (p-value < 0.001 at 5% level of significance).

For the predictor of age in categories, (agecat, which has categories of <=40,
40–60, and >=61), separate ORs are calculated for each of the other categories
relative to a particular reference category (in this case it’s <=40 years: thus,
comparisons are made as such: <=40 vs 40–60, <=40 vs >=60). Thus, with
the ORs given we say that 40–60 years old patients are about 1.7 times more
likely to get an amputation compared to the reference category of <=40 years
old patients. Similarly, patients who >= 61 years old have about twice the odds
of getting an amputation compared to <= 40 years old patients, after keeping
other factors fixed in the model. Both effects are statistically significant as shown
on the p-value column.

For ethnicity, the i-Taukei patients are about 1/0.79 = 1.3 times more likely
(meaning about 30% greater chance) to get an amputation compared to FoID
patients. This relationship is statistically significant with a p-value = 0.084 at
10% level of significance. Similarly, compared to the patients from the ‘Other’
ethnicity group, i-Taukei patients have about 1.33 times greater odds of getting
an amputation, after keeping other factors fixed in the model.

For the continuous predictor of length of stay in hospital in days, for a
one-unit increase in length of stay (a day more at the hospital), we expect
to see about 11% higher odds of risking an amputation. So, if a patient stays
about 7 more days at the hospital, the risk of an amputation more than doubles
(1.117 = 2.1). This 11% per-day increase obviously does not depend on the value
that other predictors are held at.

There are 1.34 times greater odds of getting an amputation for patients who
are hypertensive compared to those that are not, while holding all other pre-
dictors constant. Similarly, there are 2.4 times higher odds of amputation if
the duration of the illness has been >=1 month compared to < 1 month, keep-
ing all other factors fixed. Similarly, we can interpret the effects of Hb low
(low haemoglobin), leukocytosis and thrombocytosis on patients, as having
about 1.4, 1.5, and 2 times higher odds (respectively) of amputation compared
to patients that do not have these conditions, while keeping other predictors
constant. All of these predictors are statistically significant at 5% level of signif-
icance as shown in the last column of Table 1.

Figure 1 below presents the effects plot which visualizes the effects of each
predictor. The variable importance plot of each of these key predictors is also
given on the right.

The effects plot on the left illustrates the relationship between the predic-
tors and the outcome variable of amputation and how it changes with respect
to each predictor while holding other variables constant. The effects plot on the
left provides a clear understanding of the direction and magnitude of the effects
of each predictor on amputation, allowing for easier visualization, interpreta-
tion and communication of the model’s findings. Thus, it is seen that illness
duration, length of stay, thrombocytosis, lekcocytosis, age category,
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Fig. 1. LHS: Effects Plot; and RHS: Variable Importance Plot

gender, hypertension and even ethnicity have moderate to strong and sta-
tistically significant effects on the risk of amputation in diabetes patients.

The bars in the variable importance plot given on the right of Fig. 1 give
the predictor’s contribution to the model’s performance. VIP is a measure of
the importance of each predictor variable in the model in terms of its impact
on the overall prediction accuracy. VIP plot ranks the variables based on their
importance, allowing us to identify the most influential variables in the model.
This information can be useful for feature selection, identifying key drivers, and
prioritizing variables for further analysis or decision-making. Thus, as earlier
seen in the effects plot and the subsequent discussion, the top five predictors, in
order of importance, are: length of stay, illness duration, thrombocytosis,
gender, leukocytosis, age category, hypertension and low haemoglobin
help predict the risk of amputation due to T2DM in Fijian patients.

4.1 Model Evaluation

Model evaluation is carried out to assess its performance and accuracy in pre-
dicting amputation. Several evaluation metrics and techniques, such as accuracy,
confusion matrix, precision and recall, and the receiver operating curve together
with the area under the curve, are utilized to measure the effectiveness of the
model. These are presented in Fig. 1.

The table on the left of Fig. 2 provides the Confusion matrix, a table show-
ing the model’s predictions versus the actual outcomes and has the true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN). From
the model and this confusion matrix, given on the right side of Fig. 2 are the eval-
uation measures such as accuracy, precision, recall, and F1 score. An accuracy
of 0.772 signifies that overall, the moderately strong model makes about 77%
correct predictions, however, this alone may not provide a comprehensive eval-
uation since the data is imbalanced in terms of the distribution of amputations
and non-amputations.

The Receiver Operating Curve (ROC) (figure is omitted) and its Area Under
the Curve (AUC) were found to be 0.69. The AUC is more descriptive than
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Fig. 2. The Confusion Matrix and its Measures

accuracy because it is a balance of accuracy and false positive rate. This indicates
that the overall measure of the model’s discriminatory power model performance
is moderately strong. For interpretation, the higher the AUC, the better the
model performs.

A precision of 0.776 identifies the model can correctly predict about 78%
of the positive instances (i.e., amputation = 1) out of the total amputations. A
recall (also known as sensitivity or true positive rate) value of 0.978 tells us that
the proportion of 97.8% of actual positive cases (amputation = 1 or ‘yes’) are
correctly identified as amputations by the model. This value also indicates that
the model has a lower rate of falsely labeling positive instances as negative. The
F1 score of 0.865 is a single measure that combines precision and recall. This
score is a balanced measure of this model’s accuracy because it’s able to identify
amputation cases correctly (recall) and has the ability to avoid misclassifying
the non-amputation cases (precision).

Sensitivity is the measure that we will heavily depend on in this research. In
this application, we care about correctly classifying a positive amputation more
than incorrectly classifying a negative. In this case, a high recall or sensitivity
indicates that the model is correctly identifying a large portion of patients with
amputations, minimizing the risk of false negatives (i.e., classifying a patient
with amputation as a non-amputation patient). In medical or health-related
areas, such as predicting if a patient has a mental illness, it is extremely impor-
tant to have a low false positive rate because telling someone they have it when
they do not can cause a lot of emotional stress. Thus, in this research, sensitivity
is the important metric that can be used for evaluating the performance of the
classification model, particularly when the focus is on minimizing false negatives
or capturing as many positive cases of amputations as possible. A 97.8% sen-
sitivity means that the model is a very strong model in terms of predicting the
positive instances of amputations in T2DM patients.

5 Conclusion

From this study of 1792 Type II Diabetes Mellitus patients in Fiji, we find
that there are some key predictors that significantly influence lower extremity
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amputations (LEA). From the binary logistic regression classifier created via
the 10-Fold Cross-Validation technique, we find that predictors such as length
of stay, illness duration, the medical conditions of thrombocytosis and leuko-
cytosis, gender, age category, hypertension, and low haemoglobin levels are key
determinants of amputations. All of these statistically significant predictors have
small to moderate effects on the outcome. Most of the findings in earlier research
conducted in this area are from Western and developed countries studies with
better access to structured and coordinated healthcare systems with modern
equipment. This is the first such study in Fiji that has gone to this extent
of data collection and validation in this area, thus enabling us to make more
informed decisions to assist us in understanding the dynamics of amputations.
The model has a high rate of sensitivity, which indicates that it is correctly iden-
tifying a large portion of patients with amputations, thus minimizing the risk of
false negatives (i.e., classifying a patient with amputation as a non-amputation
patient). The people of Fiji are quite different from individuals of western and
developed countries and the predictors of amputation could be different as well.
The model created would certainly be able to assist surgeons and other health
practitioners for T2DM patients, in making targeted decisions about treating
certain risk factors in patients that could potentially avoid loss of limbs through
amputations.
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Abstract. Image-to-image translation serves as an essential field of
research in computer vision. Existing models frequently cause acciden-
tal distortion over non-target attributes, leading to overfitting of the
generated image to the reference domain and poor visual quality. To
address this problem, we propose Frequency Domain Feature Learning
with Wavelet Transform, namely FDFL-WT, which with better non-
target attributes retention and more precise image capture of style. This
method utilizes the wavelet transform to capture the image’s approx-
imation coefficients and diagonal coefficients, then we suggest wavelet
reconstruction loss and wavelet translation loss. The former compre-
hensively records the context information of the source image to make
the generated image realistic, whereas the latter improves the genera-
tor’s capacity to decouple attributes by assisting the model in efficiently
retaining image content attributes. Experimental results on CelebA-HQ
dataset indicate that FDFL-WT achieves about a 7.03% performance
improvement comparing with methods in the FID score of realism and
disentanglement tests.

Keywords: Frequency domain · Image-to-image translation · Style
transfer · Wavelet transform

1 Introduction

Image-to-image translation refers to the transformation of a image to another
image, covering a wide range of fields: style transfer [23,29,31], super-
resolution [18,20], image inpainting [16,25], etc. Recent advanced image-to-image
translation models can be grouped into two main categories: (1) Uncontrollable
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attribute model that transfers the overall style features of reference image to
source image. (2) Controllable attribute model that only transfers the style of
the reference image to the target attribute. Generally, the controllable attribute
model is more user-friendly than the uncontrollable attribute model.

In the controllable attribute model, a major challenge is that non-target
attributes are frequently tampered with in the image translationprocess, result-
ing in the loss of the content features in the source images and subsequent gen-
erated images over-adapt to the reference domain. One reason of this challenge
is that most existing models commonly use reconstruction loss [27,32] and cycle
consistency loss [9,33], which only constrain the generator at the pixel-level. The
preceding challenges raise the following essential question: how we can enhance
the retention of non-target attributes while maintaining the integrity of style
embedding.

To address this problem, we integrate frequency domain information into
the image translation process to incorporate more of the source domain image
attributes for preservation. The wavelet transform enables converting an image
from the spatial domain to the frequency domain so as to retrieve the image’s
frequency domain features. It may extract approximation coefficients, vertical
coefficients, horizontal coefficients, and diagonal coefficients from an image, in
accordance with the theory of previous work [1,12]. Among them, the approxi-
mation coefficients maintains the original image to the greatest possible extent,
whereas the diagonal coefficients captures the contour features and certain details
of the original image in the horizontal and vertical directions. Based on the
characteristics of these two coefficients, we introduce them to the task of image
translation for frequency domain feature learning.

We propose a novel framework, called Frequency Domain Feature Learning
with Wavelet Transform (FDFL-WT). We seek to set constraints in a differ-
ent way from the Fourier transform [2,7] in the frequency domain perspective
inspired by [3]. The specific approach is to utilize high-pass and low-pass filters
to extract the approximation coefficients and diagonal coefficients of the image
at first. The approximation coefficients of the image, dubbed LL, can be obtained
after two low-pass filters of the image. And the diagonal coefficients, dubbed HH,
can be obtained after two high-pass filters of the image (see Fig. 1(a)). Then, LL
is used in the image reconstruction process; HH is utilized in the image trans-
lation process. These two different losses, called wavelet reconstruction loss and
wavelet translation matching loss, are applied to tune the codec process of the
generator. Experiments on CelebA-HQ dataset reveal that FDFL-WT has a very
positive impact on authenticity and decoupling. Our contributions of FDFL-WT
as follows:

– We design a wavelet reconstruction loss. The wavelet reconstruction loss
enhances the authenticity of the generated image by employing the approx-
imation coefficients of the image obtained through the wavelet transform in
image translation tasks.

– We design a wavelet translation loss. The wavelet translation loss exploits the
differential coefficients extracted by wavelet transform, and thus successfully
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limits the tampering of non-target attributes when dealing with an image-to-
image translation task and has more details reserved.

– Numerous experimental results on the CelebA-HQ dataset indicate that com-
pared with the existing methods, FDFL-WT obtains competitive results in
terms of realism and disentanglement.

2 Related Work

Uncontrollable Attribute Image Translation Model. The uncontrollable
attribute image translation model aims to transform all attributes of the source
domain image into another style. For the sake of making overall appearance of
the generated image harmonious and organic, it is a specific type of style transfer.
Pix2Pix [11] realizes the overall conversion of images from one domain to another
by inputting pairs of images and passing them through the generator based on
U-Net [22] structure and the discriminator based on PatchGAN. CycleGAN [33]
designs cycle consistency loss to promote consistency between the content of
the generated image and the source image, allowing unpaired images to be style
migrated. PGGAN [13] employs the concept of “progressive development”, and
the resolution of the generated image increases with the progress of the epoch
for producing high-qulity images.

Controllable Attribute Image Translation Model. The objective of con-
trollable attribute image translation model is to alter a specific area of the source
domain image while protecting non-target attributes and concentrating only on
the transfer effect of the target attributes. StyleGAN [14] uses the mapping net-
work to decouple the late code, and then applies affine transformation to obtain
style features of different dimensions, which represent different attributes. After
combining random Gaussian noise and layer-by-layer input into the synthesis
network, the final style fusion image is obtained. StarGAN v2 [4] obtains the
style code of the target style through the mapping network or the extractor
network, then combine the style code and the source domain image by adaptive
instance normalization (AdaIN) to generate the target domain image with high
diversity and high controllability. By arranging the original labels into a hierar-
chical structure, HiSD [17] realizes the controllability of the target attributes and
avoids unintentional manipulation of non-target attributes by attaching condi-
tion variables to the discriminator.

Spatial Frequency Domain. The space made up of image components is
known as the spatial domain, and it is typically handled in pixel-space. The
frequency domain is the domain that reflects the target frequency and peak
amplitude, and the image is transformed from the spatial domain to the fre-
quency domain by different digital filters [21,26,28]. Wavelet transform is a typ-
ical technique to convert spatial information into frequency domain information.
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Fig. 1. Overview of the proposed FDFL-WT image-to-image translation framework
that contains (a) the discrete wavelet transform (DWT) operation, (b) the wavelet
reconstruction process, and (c) the wavelet translation process.

DW-GAN [5] used the approach of wavelet transform to disassemble and recon-
struct the image layer by layer, simulating the process of encoding and decoding,
and achieved high quality image generation results. Linfeng et al. [30] introduced
the idea of the wavelet transform into knowledge distillation, distilling only high-
frequency components so that the generator can better generate high-frequency
components. Yue et al. [6] devised wavelet-based skip connections in order to
transmit high-frequency signals to the decoder and generate images with high
resolution. Mu et al. [3] provided a way to incorporate the Fourier transform
into the style transfer model, which also allows effective control of the properties
of the generated image from a frequency domain perspective to be preserved.

3 Methodology

Our method is based on Image-to-image Translation via Hierarchical Style Dis-
entanglement (HiSD) [17] framework that employs an encoder-generator neural
network architecture. The overall structure consists of an encoder E, a genera-
tor G, and a translator T. Our image source is the image space χ = R

H×W×3.
Given a source domain image x ∈ χ, in the process of reconstruction, x is first fed
through the encoder E to acquire e = E(x), and then the generator G decodes
e to produce reconstructed image xrec = G(e). In the process of translation, x
also receives e = E(x) through the encoder E first, and then the translator T
fuses style encoding strg with E(x) to get etrg = T (e, strg), where strg can be
derived from either latent code or reference images, and subsequent the generator
decodes etrg to get translated image xtrg = G(etrg).
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3.1 Wavelet Transform Based Image Processing

We adopt the wavelet transform to extract image characteristics for frequency
domain image processing. In this paper, one low-pass filter and three high-pass
filters are used to process the image’s contents. The convolution procedure with
a predetermined step size of 2 completes the filtering. Four different kinds of
coefficients i.e., xLL, xLH , xHL, and xHH for the image can be obtained by
filtering the image via four different filters. We use fLL = ( 1

1
1
1), fLH = ( 1

−1
1

−1),
fHL = (−1

−1
1
1), and fHH = (−1

1
1

−1) as filters refers to [5]. Applying the low-pass
filter fLL to the original image x results in the approximation coefficients xLL.
The (p, q)-th value of xLL is:

xLL(p, q) = x(2p − 1, 2q − 1) + x(2p − 1, 2q) + x(2p, 2q − 1) + x(2p, 2q). (1)

We denote this process as xLL = WLL(x), and the reconstructed image xrec’s
approximation coefficients xLL,rec are expressed similarly to xLL. Applying the
high-pass filter fHH to the original image x results in the diagonal coefficients
xHH . The (p, q)-th value of xHH is:

xHH(p, q) = x(2p − 1, 2q − 1) − x(2p − 1, 2q) − x(2p, 2q − 1) + x(2p, 2q). (2)

We denote this process as xHH = WHH(x), and the translated image xtrg’s
diagonal coefficients xHH,trg are expressed similarly to xHH .

3.2 Training Objectives

Wavelet Reconstruction Loss. During the image reconstruction process, the
reconstructed image xrec must be as consistent as possible with the source
domain image x. The approximation coefficients can retain the main content
of the source domain image and be combined with the pixel-level reconstruc-
tion loss in the spatial domain to simultaneously improve the capabilities of
the encoder and generator. Therefore, this method calculates the difference
between the source domain image x’s approximation coefficients xLL and the
reconstructed image xrec’s approximation coefficients xLL,rec and urges the gen-
erator to produce images similar to the source domain image. Designing the
reconstruction loss at the frequency domain level as follow:

Lrec-dwt = Ex∼χ[‖WLL(x) − WLL(G(E(x)))‖1]
= Ex∼χ[‖xLL − xLL,rec‖1].

(3)

Wavelet Translation Loss. During the image translation process, we want
the translated image xtrg to be as consistent as possible with the source domain
image x in terms of overall contour and some details while correctly migrating
the target style strg. The contour and details of the image can be effectively
extracted using the diagonal coefficients. It can lessen the alteration of non-
target properties while preserving more of the source domain image’s details
when combined with the cyclic consistency loss at the pixel-level. For the sake
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of preserving more of the non-target attributes from the source domain image,
this method leverages the source image x’s diagonal coefficients xHH and the
translated image xtrg’s diagonal coefficients xHH,trg, then designs the translation
loss at the frequency domain level as follow:

Ltrans-dwt = Ex∼χ[‖WHH(x) − WHH(G(T (E(x), strg))))‖1]
= Ex∼χ[‖xHH − xHH,trg‖1].

(4)

Original Spatial-Domain Loss. HiSD has the original loss in the spatial
domain. By combining the Lrec-dwt with the Ltrans-dwt, it can achieve comple-
mentary effects. HiSD uses three loss functions, including adversarial loss Ladv,
reconstruction loss Lrec, and style loss Lsty. The style objective measures the
deviation between the style code used to generate the image and the style code
fed into the translator T to enhance the translator T ’s capacity for fusing differ-
ent styles. We denote Lorg as the combination of three loss functions:

Lorg = Ladv + λrecLrec + λstyLsty, (5)

where λrec and λsty are the weights of the reconstruction objective and the style
objective, for simplicity of calculation, they are set to λrec = λsty = 1.

Overall Loss. Combining all the above loss functions, the final overall loss is
formalized as:

LFDFL-WT = Lorg + λrdLrec-dwt + λtdLtrans-dwt, (6)

where λrd and λtd are the weights of Lrec-dwt and Ltrans-dwt. For simplicity of
calculation, in this paper they are set to λrd = λtd = 1.

4 Experiments

In this section, FDFL-WT is applied to HiSD [17], a face controllable attribute
image translation model with controllable attributes, and the results demon-
strate that FDFL-WT not only enhances the quality of the generated images
but also better preserves the identity of the source domain images.

4.1 Baselines

We use HiSD [17], FDIT [3] and STIIE [10] as our baselines. HiSD intends to
change just the attributes within the target when applying style transfer to an
image, which is congruent with the purpose of our method. By injecting con-
dition variables into the discriminator, HiSD enhances the model’s decoupling
capability and proposes the translator module for style fusion. HiSD evaluates
both the realism and disentanglement of the generated images, which can visu-
alize the image quality and the degree of retention of non-target attributes. As
a result, in the relevant studies in this work, HiSD serves as one of the baselines.

FDIT creates loss functions on the pixel-level and in the frequency domain,
employs a Gaussian kernel to filter the image, and applies frequency domain
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Fig. 2. Reference-based image translation test results on the CelebA-HQ dataset.

information to the style transfer task via the Fourier transform. Also in the fre-
quency domain perspective to solve the image quality problem in image trans-
lation and the non-target attribute tampering problem, it is very appropriate
to compare our work with FDIT. The experimental results of FDIT are also
examined in the tests to compare the differences in efficacy between FDFL-WT
and FDIT. The HiSD is expanded to include FDIT, and the same testing and
training procedures are followed.

As the latest image translation model, STIIE combines Transformer [24] with
StyleGAN for attribute editing and image inversion. Like HiSD, STIIE also has
the function of editing bangs, so it is compared as one of the baselines in this
paper. In addition, the gender and age attributes are used in the disentanglement
test, in HiSD, these two attributes are trained as conditional variables during the
training process. The age attribute is not included in all the attributes controlled
by STIIE, so it is not meaningful to test the disentanglement. Therefore, Table 1
does not contain the STIIE’s disentanglement test results.

4.2 Dataset and Evaluation Indicators

We evaluate FDFL-WT on the CelebA-HQ [13,19] dataset. This dataset contains
about 30,000 high-definition faces with labels. The first 3,000 images of the
dataset are used as training set and the remaining about 27,000 images are used
as test set with ‘Hair color’, ‘Bangs’, ‘Glasses’, and ‘Bangs’(with attributes ‘with’
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Fig. 3. Latent-based image translation test results on the CelebA-HQ dataset.

and ‘without’) for testing the quality of style transfer, and ‘Male’ and ‘Young’
for testing the decoupling capability.

Frechét Inception Distance (FID) [8] is applied as an evaluation metric in the
experiment. FID as a widely recognised evaluation metric for image generation,
measures the distribution distance between real samples and generated images.
A lower FID indicates that the closer the two distributions are, the better the
image effect will be.

4.3 Implementation Details

We carried out the proposed model on two RTX 2080Ti, the deep learning frame-
work used is PyTorch, and utilized images of the 1024 × 1024 size as input.
Encoder E contains a convolution layer followed by two residual blocks, trans-
lator T contains one convolution layer followed by two residual blocks and an
attention module, generator G contains two residual blocks followed by one con-
volution layer. For other settings, Adam [15] optimizer is employed, the batch
size is 8, the empirical decay rates (β1, β2) = (0, 0.99), and the learning rate is
0.0001.

4.4 Experimental Results

In this section, we evaluate our method on single-attribute style transfer of faces,
the latent-guided task and the reference-guided task are both utilized to generate
images. Specifically, the main objective is to convert the face images without
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Table 1. Results comparison among FDFL-WT, HiSD, FDIT and STIIE.

Method Realism (FID) Disentanglement (FID)

Latent Reference Gap Latent Reference Gap

HiSD 24.59 24.45 0.14 77.86 77.34 0.52

FDIT 24.20 23.99 0.21 77.73 76.83 0.90

STIIE 40.14 40.57 0.43 – – –

FDFL-WT 22.86 22.83 0.03 74.51 74.18 0.33

bangs into the face images with bangs, and 3000 training set images are selected
at random 40,000 times to train the model. In order to more accurately assess
the effectiveness of the methodology, the generated images are tested for realism
and disentanglement. Figure 2 displays several test results.

Realism. We shall evaluate the discrepancy between the generated fake image
and the source imageto verify the validity of generated images. For this purpose,
all the images without bangs in the test set are transformed into images with
bangs utilizing both the latent-guided task and the reference-guided task.

Latent code is taken from the random Gaussian noise of normal distribution
and used to generate random style code, so that the generated images can pos-
sess bangs of various styles. Figure 3 shows some character images with bangs
generated under the guidance of late code. FDFL-WT has more natural bangs,
and the skin color and background color of the characters closer to the source
image. The reference image is taken from all the character images with bangs
in the CelebA-hq dataset, and the reference images of each generated image are
randomly selected from them to guide the source image to generate an image
with reference image style.

The CelebA-HQ dataset’s images with bangs and all images created using
the aforementioned two techniques are both employed to calculate FIDs. A lower
FID represents a closer distribution between the two, indicating that the model is
more realistic at transforming the target attributes. In order to test the stability
of the model, we also introduce ‘Gap’, which is the difference between latent’s
value and reference’s value. The narrower the gap, the more stable the model
is for both image generation techniques. Additionally, it is necessary to process
the images with bangs used for FID comparison so that their resolution matches
that of the generated images. Table 1 displays the experimental results of the
realism test.

Disentanglement. In the disentanglement test, all images with ‘male’, ‘young’
tags without bangs in the test set are transformed into images with bangs using
both the latent-guided task and the reference-guided task, and the FID is cal-
culated with all images with ‘male’, ‘young’ tags with bangs in the CelebA-HQ
dataset. Like the realism test, the random Gaussian noise generation style is
used in the latent-guided task, and a random image with bangs is used for guid-
ance in each generation process of the reference-guided task, and the images
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Table 2. The effect of using different frequency domain coefficients.

Method Realism (FID) Disentanglement (FID)

Latent Reference Gap Latent Reference Gap

Rec3 23.88 23.51 0.37 76.56 76.95 0.39

HL 23.30 22.99 0.31 75.42 76.66 1.24

LH 24.00 24.02 0.02 77.56 77.50 0.06

Trans3 23.52 23.24 0.28 76.34 76.79 0.45

FDFL-WT 22.86 22.83 0.03 74.51 74.18 0.33

Table 3. Quantitative results of the ablation study.

Method Realism (FID) Disentanglement (FID)

Latent Reference Gap Latent Reference Gap

-trans 23.61 22.85 0.76 76.06 75.68 0.38

-rec 23.61 23.60 0.01 74.98 75.56 0.58

FDFL-WT 22.86 22.83 0.03 74.51 74.18 0.33

used for comparison are processed to make the resolution consistent with the
generated images. The experiment is designed in this manner to examine the
model’s capacity for holding onto irrelevant attributes, the disentangle test will
yield a subpar result if the age or gender of any image is altered. In a similar
vein, the model’s capacity to decouple, or maintain the non-target attributes, is
strengthened the lower the FID.

The Effect of Using Different Frequency Domain Feature. The wavelet
transform extracts four different types of coefficients from the image, but our
method does not employ the vertical and horizontal coefficients. We also exper-
imented with their application. We first calculate of reconstruction loss using
approximation coefficients, vertical coefficients, and horizontal coefficients, in
this way, it is expected to extract the features of the reconstructed image to the
maximum extent in the horizontal and vertical directions while using approx-
imation coefficients. However, this method brings information redundancy and
confusion, resulting in poor generation effect, this phenomenon can be seen in
Rec3 throughout Table 2.

In the process of translation, the vertical coefficients or the horizontal coef-
ficients only focus on the characteristics of one direction, which is obviously not
comprehensive enough for calculating translation loss. The HL and LH experi-
mental results in Table 2 also prove this view. In addition, we also use the combi-
nation of vertical, horizontal, and differential coefficients to calculate translation
loss. Similarly, the combination of the three will lead to redundancy and confu-
sion, as can be seen from the Trans3 in Table 2.
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4.5 Ablation Study

In this section, we test the effect of adding a single loss function on the experi-
mental effect by means of control variables. The loss of wavelet reconstruction is
more obvious for the improvement of realism, and the loss of wavelet translation
is more obvious for the improvement of disentanglement, these can be derived
from Table 3. The ablation experiment demonstrates that the wavelet loss recon-
struction tends to strengthen the image’s authenticity, while the wavelet loss
translation tends to prevent the modification of non-target attributes. The rea-
son for this is because the frequency domain information utilized is distinct.
Approximation Coefficients capture image color, lighting, and other characteris-
tics, while diagonal coefficients correspond to sharp edges and significant object
details. Comparing the experimental results of adding only wavelet reconstruc-
tion loss (-trans), only wavelet translation loss (-rec), or both (FDFL-WT), a
positive effect is observed between the two loss functions. This further proves the
necessity of introducing the wavelet transform and the validity of our proposed
method.

5 Conclusion

In this paper, we propose a novel method Frequency Domain Feature Learn-
ing with Wavelet Transform (FDFL-WT) for the style transfer task. The key
idea is to enhance the generator’s ability to grab features by employing the
approximation coefficients and the diagonal coefficients in the reconstruction as
well as translation processes; both of these characteristics are extracted by the
wavelet transform. Extensive experiments have been conducted to evaluate the
FDFL-WT approach in terms of realism and disentanglement, and confirm that
FDFL-WT yields better style transfer quality and a stronger ability to retain
non-target attributes. Most of image-to-image translation model can be easily
integrated with FDFL-WT. One of the limitations of FDFL-WT is that only the
generated part is constrained, so the objective of the future work is to enhance
the performance of the discriminator by incorporating the wavelet transform
concept into the adversarial loss discriminator.
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Abstract. With the proliferation of the Internet of Things (IoT), there is an abun-
dance of data available to humans. However, the monitoring environments for
data collection are becoming increasingly diverse, leading to the occurrence of
concept drift in the collected data. Concept drift refers to the phenomenon where
the distribution of data changes over time, making it challenging for prediction
models trained on historical data to adapt to the changing distribution. Previous
research has primarily focused on predicting or compensating for distributions
with fixed durations in Euclidean space to mitigate non-stationarity. However, we
have observed that concept drift often occurs at different time scales, and detect-
ing them using fixed scales has inherent limitations. Based on this observation,
we propose a Graph-Guided Latent Variable Target Inference network that maps
current data and variable duration query targets onto a graph neural network in
latent space. We apply self-attention transformations to the representations and
correlations on the graph in the dimensions of time, features, and query targets.
The model updates its parameters based on these non-Euclidean correlation pat-
terns, enabling the graph to evolve towards the direction of the query targets and
obtain an evolved latent distribution. Finally, the decoder generates a prediction
data stream regarding the query targets based on the evolved latent distribution.
The experiments were conducted on five datasets, where our proposedmethodwas
compared against the five most advanced baselines. The findings demonstrated a
substantial advantage in prediction performance provided by our approach.

Keywords: Graph neural network · Time Series Concept drift · Variable Target
Inference · Latent Space

1 Introduction

Time series prediction tasks are prevalent in various industries, such as server traffic
forecasting [1], traffic flow prediction [2], and weather forecasting [3]. Deep learning
based techniques have achieved impressive results in these fields and have become the
state-of-the-art methods [4]. These methods typically assume that the data follows an
independent and identically distributed (i.i.d.) pattern, meaning that the distribution of
the data remains relatively stable over time. However, with the development of IoT
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technology, the sampling environments of sensors have become more complex, leading
to temporal concept drift and making time series data tend to be non-stationary. This has
become a critical factor hindering the prediction performance of deep learning models
[5]. Concept drift refers to the phenomenon where the data distribution changes over
time, manifesting as non-stationarity in the temporal dimension of the data stream.
For example, the development of wearable devices has provided convenience for human
health monitoring, but the subjectivity of human activities can result in the devices being
used in non-standard scenarios [6], causing changes in the distribution of the collected
data. Concept drift often leads to overfitting in deep neural networks and a decrease in
generalization ability, impeding the training and prediction of models [7]. Therefore, it
is crucial to model the frequently changing data distribution and devise corresponding
strategies during the model training phase. Some studies aim to mitigate inefficient
concept drift by detecting and adjusting for it [8]. Others use statistical analysis on time
series to derive measures and reconstruct data distributions using empirical knowledge
[9, 10]. However, these empirical methods may overlook detailed real data information.

We have observed that the aforementioned research tends to define concept drift as an
absolute concept, namely, the degree of distribution shift exceeding a certain threshold
within a fixed time scale [7]. However, in reality, changes in data distribution can occur
at any time scale, and when the observation scale changes, time series often exhibit
varying degrees of distribution changes. For example, when observing city electricity
consumption on a daily time scale, hotweathermay cause a short-term surge in electricity
usage. But when observed on an annual time scale, a sharp decrease in city electricity
consumption can be observed in the years following the COVID-19 pandemic [11].
Therefore, we consider concept drift as a relative concept that exhibits different drift
characteristics at different time scales.

To incorporate the investigation of target time scales into the representation learning
of time series, we propose Graph-Guided Latent Variable Target Inference (GLVTI) that
starts with the conditional priors of time series and introduces variable-scale target query
time. By constructing the log-likelihood of the conditional priors, we infer the architec-
ture of this variable-scale neural network, providing an interface for multi-domain time
series prediction. GLVTI constructs a graph neural network guided by the variable target
time in the latent space, embedding attribute features, temporal features of the source
domain, and target domain time features into a non-Euclidean space. This enables effec-
tive representation of the dynamic correlations of the latent distribution patterns of the
data stream and inferring the latent representation graph after concept drift. The main
contributions of this paper are as follows:

• We propose Graph-Guided Latent Variable Target Inference (GLVTI) that starts with
the conditional priors of time series and introduces variable-scale target query time.

• We construct a graph neural network guided by variable target time in the latent space
of GLVTI, which embeds attribute features, temporal features of the source domain,
and target domain time features into a non-Euclidean space.

• In comparison with several mainstream baseline methods, GLVTI has achieved
superior predictive performance.
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2 Related Work

Concept drift in time series can be classified based on specific criteria [12], including
sudden occurrence rate and periodicity. Regardless of the criteria used, the occurrence
of concept drift requires reference to the data from both the source domain and the target
domain (also referred to as context data) [13]. In reality, most monitored time series are
influenced by periodic factors, and this drift pattern exhibits seasonality but still contains
a small amount of abrupt or random distribution changes [14]. Adaptive techniques have
been applied to time series forecasting tasks to address abrupt and periodic concept drift
[15, 16]. They typically assume that more recent known data is closer in distribution
to the data to be predicted, and thus tend to assign greater weights to the most recent
data while gradually discarding earlier data. Some studies feed historical data to the
model and train the model to minimize the difference between the model’s output and
future predicted values [17]. Other studies focus on designing time-sensitive neural
networks to directly control the evolution direction of network parameters over time
[18], or characterize the temporal invariance of data based on adversarial methods [19].
In addition to adaptive methods, there are also approaches that utilize static statistical
principles or distance functions to represent and mitigate data distribution [20, 21].
These models have good interpretability but are limited by their shallow depth and
limited data representation capacity. In recent years, neural network prediction models
based on self-attention mechanisms have emerged [34, 35], which, due to their powerful
data representation capabilities and long-range prediction abilities, allow the models to
directly overcome the negative effects of data concept drift.

We propose GLVTI, a unique active concept drift adaptation method for distribu-
tion adaptation. Unlike previous methods, GLVTI equally values historical and recent
data from the source domain, recognizing potential seasonal patterns across time and
multi-dimensional attributes. By using graph representation, GLVTI captures these cor-
relations, transforming distribution changes into graph topology alterations, actively
mitigating concept drift effects on forecasting.

3 Graph-Guided Latent Variable Target Inference

Asubsection sampleweconsider amulti-dimensional time series dataset, denoted asX =
{(xi, ti)|i = 1, 2, ...N }, where xi ∈ R

k represents the i-th sample containing attribute
values from k different sensor categories. The sampling time, ti, of each sample is not
required to be equidistant, which is a unique characteristic of the Graph-Guided Latent
Variable Target Inference (GLVTI) approach, allowing for variable time spans within
the source domain. For the task of time series forecasting, it is necessary to establish a
mapping relationship defined as:

G : X (t1:h) → X (th+1:h+λ) (1)

where G represents the mapping for the time series forecasting task, mapping h time
series values from t1 to th on the interval to λ time series prediction values from th+1 to
th+λ

(
λ ∈ z+

)
. The definition of Eq. (1) differs from traditional fixed-scale predictions

due to the time span variable λ, which defines a target span-variable forecasting task.
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Furthermore, this definition has a specific implication: consideringG as a neural network
mapping and assuming X (th+1:h+λ) is known, X (th+1:h+λ) can serve as self-supervised
signals to train the neural network G for X (t1:h).

3.1 Variable Target Inference

The training objective of our proposed model is to generate predictions in the target
domain that are close to the true values based on the source domain time series X (t1:h)
and target domain time th+1:h+λ, as follows:

max logP
[
X (th+1:h+λ)|t1:h+λ,X (t1:h)

]
(2)

where P represents probability. Since the prior distribution of the data is unknown,
directly solving for the maximum log-likelihood is not feasible. In indirect inference
methods, variational inference is an effective deterministic approximationmethod. How-
ever, Eq. (2) involves a conditional prior with a variable target domain time, which differs
from variational inference [22]. Nevertheless, it can still be derived based on the funda-
mental framework of Variational Bayesian ExpectationMaximization [23]. By applying
the Newton-Leibniz formula [24], we have:

log p
[
X (th+1:h+λ)|t1:h+λ,X (t1:h)

] = DKL
{
q
[
z|X (t1:h+λ), t1:h+λ

]||p[z|X (t1:h+λ), t1:h+λ

]}

+
∫

z

q
[
z|X (t1:h+λ), t1:h+λ

]
log

p
[
z,X (th+1:h+λ)|t1:h+λ,X (t1:h)

]

q
[
z|X (t1:h+λ), t1:h+λ

] dz

(3)

where z represents a newly introduced latent variable. In Eq. (3), the KL-divergence
term is greater than 0, thus we have:

log p
[
X (th+1:h+λ)|t1:h+λ,X (t1:h)

] ≥ Ez∼q[z|X (t1:h+λ),t1:h+λ]

{
λ∑

i=1

log p
[
X (th+i)|th+i, z

]
}

−

DKL
{
q
[
z|X (t1:h+λ), t1:h+λ

]||p[z|X (t1:h), t1:h]
}

(4)

Equation (4) provides an approximate method to solve Eq. (2), where the expectation
part can be approximated using a neural network. The conditional prior p[z|X (t1:h), t1:h]
in the KL-divergence term is uncertain, but it can be approximated by the posterior
q[z|X (t1:h), t1:h]. The KL-divergence, assuming a Gaussian distribution, can be directly
computed from a preset probability expression. Hence, the model’s loss function is
defined as:

L = DKL
{
q
[
z|X (t1:h+λ), t1:h+λ

]||q[z|X (t1:h), t1:h]
}

−Ez∼q[z|X (t1:h+λ),t1:h+λ]

{
λ∑

i=1

log p
[
X (th+i)|th+i, z

]
}

(5)

According to Eq. (5), it can be observed that minimizing the loss function is equiv-
alent to maximizing the log-likelihood in Eq. (2). This process aims to maximize the
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expectation term as much as possible while minimizing the KL-divergence. It means
that the neural network should strive to make the posterior of the expectation term
approach the prior as closely as possible and achieve regularization by minimizing the
KL-divergence. This helps prevent overfitting and improves the model’s generalization
ability.

3.2 General Architecture

We designed the overall architecture of the GLVTI network based on Eq. (5), as shown
in Fig. 1. The input information consists of the source domain time series X (t1:h), the
time t1:h, and the query time th+1:h+λ as the target domain. Since λ is an arbitrary positive
integer, the entire query target span is variable. The historical observed data is fed into
the encoder Encoder-d. The specific structure of the encoder can be defined based on
the specific prediction task.

Fig. 1. The general architecture of GLVTI can be divided into three parts, working from bottom
to top. The first part is the encoding stage of the information. The encoder, Encoder-d, encodes
the data within the source domain into a latent representation rd ∈ R

m×nd , while the encoder,
Encoder-r, encodes the variable target time within the target domain into rq ∈ R

m×nq . The second
part is the graph-evolving neural network Gr, in the latent space. It evolves guided by the target
time rq. rd and rq serve as node embeddings within Gr. Through model training, Gr evolves into
an approximate latent graph Gr′, that captures the changes occurring due to concept drift. The
third part is the decoder and the output stage of the entire neural network. The decoder is a set
of fully connected neural networks. It integrates information from different semantic levels and
produces a reconstructed output in the target domain, guided by the variable target.
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3.3 The Evolution of Latent Graphs

The graphGr in the latent space is updated through a self-attentionmechanism, adjusting
the weights of nodes and edges to evolve the non-Euclidean relational patterns from the
input information towards the target domain query time, resulting in the updated graph
Gr′. In the initial stage, Gr consists of time series nodes di (i = 1,2,…,nd) and target
time nodes qi (i = 1,2,…,nq). The former represents the latent features of the i-th batch
of time series, denoted as rd’s i-th column, while the latter represents the latent feature
components of the i-th target time sequence, denoted as rq’s i-th column.

To facilitate formal expression and unify these two types of nodes within the same
graph, we define them as:

V = {
vi|vi ∈ rd ∪ rq

}
(6)

where V represents the node set of graph Gr, and vi represents the i-th node after
numbering the elements of the set in order. The edges between nodes represent their
association weights.

In the initial stage, all nodes are connected by edges with weights set to 1. After
the graph is updated, edges with weights below a threshold η will be pruned. We define
the edge weights in Gr using the weight calculation method from GAT [25]. Then, we
utilize our newly designed attention mechanism to update each node. For any two nodes
vi and vj in Gr, the weight of the edge between them is

e
(
vi, vj

) =
exp

{
U

[
aTij · (

Wi(vi ⊕ qc) ⊕ Wjvj ⊕ Wcqc
)]}

n1+n2∑

k=1
exp

{
U

[
aTij · (

Wi(vi ⊕ qc) ⊕ Wjvk
)]}

(7)

where e
(
vi, vj

)
represents the weight of the edge from vi to vj. The matricesWi ∈ R

l×2m

and Wj ∈ R
l×m represent the linear transformation matrices for vi and vj, respectively,

and these two learnablematrices reduce the dimensionality of the nodes to l. qc represents
the target-guided node, which is the target time node connected by the edge with the
highest weight to vi. When vi and qc are the same node, the target-guided node of vi is
vi itself. aij ∈ R

3l×1 denotes the learnable attention coefficient between vi and vj. The
role of the target-guided node is to inject the most important target time information
into each node of the graph. When updating wi, the weight of this target information is
adjusted, allowing the graph neural network to establish a micro-level association with
the target time information. The operator ⊕ denotes concatenation of vectors on the left
and right sides. U represents the nonlinear function leakyReLU. If e

(
vi, vj

)
is below the

lower threshold value η of the edge weight, the graph neural network removes this edge
and does not restore it in future updates.

For node vi, the update is performed as follows:

v′
i = sigmoid

[
n1+n2∑

k=1

e(vi, vk)Wi,kvi

]

(8)

whereWi,k represents the linear transformation matrix for the edge between vi and vj. It
can be observed that the update of vi’ incorporates its attention information with all other
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nodes, resulting in each node in the updated graphGr’ containing both global information
and target time information. In Eq. (8), the target time information is embedded in each
updated node, enabling the nodes to carry the semantics of the target time at amicroscopic
level.

3.4 Decoding and Forecasting

After the update of the graph in the latent space, the latent features of the time series
are fused with the latent target time information. The model training process drives the
evolution of the graph towards the target time, resulting in an evolved latent distribution.
This process requires both the representation information of the entire graph and the
information of the evolved distribution, both of which can be obtained from the updated
graph Gr’.

First, let’s define the latent representation of the graph:

L =
n1+n2∑

i=1

sigmoid
[
WA

(
v′
i ⊕ Ai

) + bi
]

(9)

where L represents the overall latent representation of the graph, Ai represents the
weighted adjacency matrix of vi, WA and bi represent learnable linear transfor-
mation matrices and bias vectors, respectively. Furthermore, we apply a non-linear
transformation to L, mapping it to the distribution parameters of the latent distribution:

μL = au · tanh(WμL + bμ

)
(10)

σL = aσ · sigmoid(WσL + bσ ) (11)

where μL represents the mean of the evolved latent Gaussian distribution, and σ L rep-
resents the corresponding standard deviation. Wμ and bμ denote the learnable linear
transformation matrix and bias vector for generating the mean. Similarly, Wσ and bσ

denote the learnable linear transformation matrix and bias vector for generating the stan-
dard deviation. aμ and aσ represent scaling factors for the mean and standard deviation,
respectively. Finally, GLVTI employs the reparameterization technique to sample from
the evolved latent distribution, obtaining the sampled information zL that follows the
new latent distribution: zL ∼ N

(
μL, σ

2
L

)
. Based on the conditional prior in the expec-

tation term of Eq. (4), GLVTI integrates three types of information in its latent space
and passes them to the decoder, as R = zL ⊕ L ⊕ th+1:h+λ. The decoder employs fully
connected neural networks to aggregate information from multiple pathways and output
the final result.

4 Experiments

The experiment is divided into two parts: the first part examines the predictive perfor-
mance of GLVTI, and the second part is a ablation study to assess the contribution of
each component in GLVTI’s predictive performance. The experimental data is derived
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from regions of time series where multi-scale concept drift occurs densely, as well as
from typical weak stationary regions, including the Electricity (ELE) dataset [26], it
encompasses the power usage of 321 clients spanning from 2012 to 2014, with electric-
ity measurements in KWh taken at 15-min intervals. PSM [27] is a time series of 26
application server nodes recorded by eBay Inc. SMD [28] originates from a prominent
tech corporation and maintains a record. The dataset encompasses 38 dimensions. MSL
[29] consists of 55 dimensions sourced from NASA’s Mars Science Laboratory rover.
SWaT [30] comprises 51 sensors extracted from an incessantly operational water infras-
tructure system. The experiment compares GLVTI with five competitive baselines: ARF
[31], Condor [32], ODE-RNN [33], Informer [34] and Autoformer [35]. The encoder
portions of Informer and Autoformer both inherit the multi-head attention mechanism
from BERT.

For GLVTI, the encoder serves as the interface for data feature extraction, and we
adopt the Bert-based self-attention mechanism by default [36]. The optimizer used is
ADAM, with a learning rate set between 1e−5 and 1e−4. During initialization, the edge
weights of the graph neural network are set to 1. The time span variable λ is set as a
random integer following a uniform distribution between 0 and 1 times the length of
the source domain time series. The scaling coefficients aμ and aσ are set to 0 and 1,
respectively. The edge weight lower threshold η is set to 0.015.

4.1 Evaluating Predictive Performance

In this section, we evaluate the predictive performance of GLVTI. For each dataset, the
training set constitutes 80% of the data, while the remaining portion serves as the test
set. GLVTI-FC refers to GLVTI with a fully connected neural network as the encoder.
GLVTI-GRU indicates the use of GRU as the encoder. GLVTI-BERT represents the
default configuration with BERT [36] as the encoder. The experimental results are
presented in Table 1.

Table 1. Time series Forecasting Performance (MSE as %)

Methods ELE PSM SMD MSL SWaT

ARF 132.93 106.70 105.82 195.72 123.90

Condor 188.17 156.34 195.52 188.20 136.49

ODE-RNN 194.65 131.56 146.21 171.69 156.65

Autoformer 102.45 94.51 98.39 96.19 105.25

Informer 89.77 83.36 87.40 92.30 97.27

GLVTI-FC 141.78 104.81 142.97 157.60 106.34

GLVTI-GRU 124.49 113.71 122.79 148.35 141.18

GLVTI-BERT 86.34 82.05 82.47 86.37 91.70

From the experimental results, it can be observed that theGLVTImethodoutperforms
other baseline methods. Among the baseline methods, Autoformer and Informer, which
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are based on self-attention mechanisms, significantly outperform the other baselines,
indicating the advantage of self-attention in mitigating concept drift. GLVTI-BERT,
inheriting the advantages of global feature extraction from self-attention mechanisms,
achieves even better predictive performance than all baseline methods. Both GLVTI-
FC and GLVTI-GRU lack the self-attention mechanism in the encoder, resulting in a
significant drop in predictive performance. However, they still outperform the Condor
and ODE-RNN models alone. This indicates that the graph neural network in the latent
space evolves on variable scales, enabling the model to adapt well to concept drift in the
data, thereby outperforming the original structures of the respective encoders.

4.2 Ablation Experiments

In this section, we conduct experiments to evaluate the model’s performance when the
three key components of GLVTI are missing. This indirectly assesses the contributions
of these components to themodel’s performance. The first group of experiments involves
removing the graph neural network, and the encoder directly outputs distribution param-
eters according toVAE standards. The second group of experimentsmodifies the training
method for variable-scale target domain time by using fixed distance samples of 5 time
units as the supervised signal (average of the variable target time span). The third group
of experiments removes the target time from being injected into the decoder alongside
the raw data. The fourth experimental model involves retaining the original configura-
tion with all components, which is our proposed GLVTI. The experimental results are
presented in Table 2.

Table 2. Ablation results (MSE as %)

Strategy ELE PSM SMD MSL SWaT

GNN- 117.41 101.75 108.15 92.60 154.82

Fixed λ 93.29 94.75 112.32 104.36 97.89

t- 89.01 89.64 95.71 90.94 119.78

GLVTI 86.34 82.05 82.47 86.37 91.70

In Table 2, a minus sign “−” indicates the removal of the corresponding component.
“GNN-” represents the removal of the graph neural network’s evolutionary mechanism
in the latent space. “Fixedλ” denotes themodification of the variable-scale target domain
time to a fixed time span. “t-” indicates that the target time is no longer included as an
input to the model. “GE” represents the Graph Evolution Neural Network for removing
latent space.

The experimental results show that removing the GNN component leads to the
most significant degradation in model performance, indicating that concept drift indeed
involves non-Euclidean transformations of multivariate time series, and our designed
GNN structure is capable of effectively extracting such patterns. Fixing the target time
span also greatly impacts the model’s predictive performance. Removing the input of the
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target time has a negative effect on the model as well, although the extent of performance
degradation is not as significant as the first two cases.

5 Conclusion

This research addresses the concept drift issue in time series prediction by introducing
a novel method, Graph-Guided Latent Variable Target Inference (GLVTI). Unlike prior
studies, we view concept drift as a relative notion with varying drift characteristics
across different time scales. We propose a variable-scale target query time and infer
a neural network architecture based on conditional priors. By creating a target-guided
neural network in the latent space, we effectively capture dynamic time series correlation
patterns and infer the latent representation graph post-concept drift. GLVTI outperforms
othermethods inmultiple experiments, with ablation studies highlighting the importance
of graph neural network embedding and variable-scale target time guidance in enhancing
model performance. This work offers a fresh approach to multi-domain time series
prediction, suggesting future research to extend GLVTI’s application and further assess
its performance and robustness.
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Abstract. In this article, a novel evolutionary algorithm called differ-
ential evolution with Lévy flight (DEFL) algorithm was proposed to
optimize the Takagi-Sugeno-Kang fuzzy model (TSK fuzzy model) by
finding the optimal hyper-parameter combination. DEFL consists of the
conventional differential evolution (DE) algorithm as the primary search
method and Lévy flight which is adopted to improve the early conver-
gence problem of DE by its more changeable step size. Moreover, an
adaptive soft-switch factor is designed to achieve the balance between
exploration and exploitation according to the fitness of parent individ-
uals, which can enhance the searching ability of DEFL. To verify the
high performance of our proposed DEFL, two simulations are conducted.
First, the five test functions: Ackley, Rastrigin, Sphere, Dixon & Price,
and Perm are performed to verify the searching ability of DEFL and other
three evolutionary algorithms: genetic algorithm (GA), particle swarm
optimization (PSO), and DE are adopted for comparison. Then, TSK
fuzzy model optimized by DEFL is adopted on eight datasets for clas-
sification tasks which are compared with the other nine methods. The
first simulation shows that DEFL has the best searching ability com-
pared with other algorithms. The accuracy and ranks of the optimized
TSK fuzzy model on eight tasks demonstrate the high performance of
the model improved by DEFL.

Keywords: Differential evolution (DE) algorithm · Lévy flight ·
classification · Takagi-Sugeno-Kang fuzzy model (TSK fuzzy model)

1 Introduction

Takagi–Sugeno–Kang fuzzy model (TSK fuzzy model) as one of the most impor-
tant methods adopted broadly in various applications is applied in different fields
such as pattern recognition, control system design, and regression to achieve
great success because of its strong interpretability and scalability [3,13,15,16,20].
Nevertheless, the classification task with a large size or dimensionality of the
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data forces the conventional TSK fuzzy model to desire more membership func-
tions and fuzzy rules for fitting, which means that the parameters of the model
increase exponentially so that the dimensionality curse is unavoidable and the
interpretability of the model is also affected [5]. Furthermore, the outliers con-
tained in the dataset may lead to performance degradation since the TSK model
is sensitive to outliers [4]. Thus, many works focused on these problems. For
example, Xia et al. innovated a transformation matrix to make the margins
between classes more discriminative and deployed cross-rule and cross-view to
reduce the complexity of the TSK fuzzy model in [18]. In [19], a novel adap-
tive operator was used as the approximator of the minimum T-norm to equip
the conventional TSK fuzzy model to enhance the ability of the model in solv-
ing high-dimensional problems. Jiang et al. proposed a CNN-based born-again
TSK fuzzy model for the classification task, in which a noniterative learning
method called least learning machine with knowledge distillation was proposed
to accelerate the training time and the CNN model was utilized to reduce the
dimensionality by extracting the dark knowledge from the datasets [7].

According to the above works, deploying various optimization techniques can
efficiently handle the dimensionality curse and simplify the structure of the TSK
fuzzy model. However, the introduction of hyper-parameters in the optimizers
owns a direct impact on the performance of the model, which demonstrates
the importance of finding out the optimal hyper-parameter setting set for spe-
cific tasks [8]. Grid search, random search, evolutionary algorithms (EAs), and
bayesian optimization are the most popular methods in the hyper-parameters
tuning. Alibrahim and Ludwig [1] pointed out that the EA method perform the
best performance on optimization since the fastest convergence on finding the
best parameters. Besides, the complex and high-dimensional solution space con-
structed by the hyper-parameters is not smooth which has a low fitting with the
Bayesian optimization, the enumeration-based grid search, and the randomness-
based random search. Therefore, considering the nonlinear relationship between
these hyper-parameters and the system performance, EAs with strong searching
ability in multidimensional solution space are appropriate to realize efficiency
parameter adjustment for the TSK fuzzy model. In addition, EAs are compat-
ible with different optimization tasks because of their flexible architecture and
data-driven characteristic. Therefore, the EA-based TSK fuzzy models are pro-
posed in some research. In [12], the genetic algorithm (GA) was used to optimize
the inverse TSK fuzzy model adopted to approximate the nonlinearities of the
electrical generator and uncertainties of modeling to improve the control perfor-
mance of an oscillating water column. Askari et al. utilized the TSK fuzzy model
to forecast the high-frequency response of gas networks to nodal consumption
in forthcoming days and deployed the particle swarm optimization (PSO) algo-
rithm with least squares estimation for parameter identification of the TSK fuzzy
model [2]. As for high-dimensional data, a GA-based genetic programming algo-
rithm was proposed in [10] to explore the best architecture for the TSK fuzzy
model to alleviate the detrimental effect of distance concentration hampering
the effectiveness of standard TSK fuzzy models. However, the aforementioned
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methods adopt the conventional EAs for searching which have the weakness of
slow or early convergence since their single searching behaviors, which causes
the imbalance between the exploration (global search for traversing solution
space) and exploitation (local search for extracting better solutions from candi-
date individuals) [6,9,14]. For example, the crossover and mutation operators of
GA are carried out based on a random function, which causes strong exploration
and weak exploitation. Conversely, the differential evolution (DE) algorithm and
PSO own strong exploitation characteristics while lacking exploration since the
information of parent individuals is adopted to participate in the generation of
offspring. Consequently, balancing the exploration and exploitation of the EAs
is one of the effective optimization methods to enhance their searching ability.

Based on the above works and challengings, the DE algorithm with Lévy
flight (DEFL) is proposed in this paper. Various optimization techniques pro-
posed in [5,17] are integrated into a conventional TSK fuzzy model. To improve
the performance of the TSK fuzzy model on classification tasks and explore the
optimal optimizer combination, a novel search algorithm called differential evo-
lution with Lévy flight (DEFL) is proposed. DE algorithm as the main search
method is adopted to provide the exploitation ability for DEFL, which accel-
erates the proposed DEFL convergence. Lévy flight, which has an impressive
exploration characteristic since its more changeable step size, is deployed in the
mutation operator of the DE algorithm to handle the early convergence of the
DE. During the execution phase of the mutation operator, an adaptive soft-
switch factor design on the basis of the differential vectors generated by the
parent individuals is proposed to adjust the searching behavior of DEFL. The
proposed DEFL is used to search the optimal hyper-parameters for the TSK
fuzzy model to enhance the performance of the model on the classification tasks.
Eight datasets are collected for the simulations to verify the high performance
of the TSK fuzzy model optimized by our proposed algorithm. This paper has
the following contributions.

1) Batch normalization, uniform regularization, and AdaBound are integrated
into the conventional TSK fuzzy model.

2) A novel search algorithm called DEFL is proposed to search the best hyper-
parameters of the TSK fuzzy model to obtain high performance on classifi-
cation tasks, which deploys Lévy flight in the mutation operator of DE to
overcome the early convergence weakness.

3) An adaptive soft-switch factor is designed to balance the exploitation and
exploration of DEFL according to the fitness of selected parent individuals.

2 TSK Fuzzy Neural Network

2.1 Classical TSK Fuzzy Model

Defining the TSK fuzzy model has N fuzzy rules R = {R1,R2, · · · ,RN}. In
terms of arbitrary fuzzy rule Rn (n = 1, 2, · · · , N) for the input data x =
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[x1, x2, · · · , xM ] with M -dimensional feature vector, it can be presented as IF-
THEN formulation by

Rn : IF x1 is Xr,1 and · · · and xM is Xn,M ,

THEN y1
n(x) =

M∑

m=1

ω1
n,mxm + b1n and · · · and yC

n (x) =
M∑

m=1

ωC
n,mxm + bC

n (1)

where Xn,m (m = 1, 2, · · · ,M) denotes the fuzzy set for the n-th rule with the
m-th dimensional feature vector of the input data, yc

n(x) (c = 1, 2, · · · , C) is the
output of each rule for the c-th class in a classification problem, and ωc

n,m and bc
n

are the consequent parameters similar to the weight and bias in the conventional
neural network model, respectively.

Defining yc(x) is the prediction of the TSK fuzzy model, which can be
obtained by yc

n(x) as

yc(x) =
N∑

n=1

f̄n(x)yc
nx (2)

where f̄n(x) presents the normalized value of the firing level fn(x) for the cor-
responding Rn and is computed through

f̄n(x) =
fn(x)

∑N
k=1 fk(x)

. (3)

The calculation of the firing level fn(x) can be described as

fn(x) =
M∏

m=1

μXn,m
(xm), (4)

in which μXn,m
is the membership function (MF) and the membership grade

μXn,m
(xm) is calculated by

μXn,m
(xm) = exp

(
− (xm − ζn,m)2

2σ2
n,m

)
(5)

where ζn,m and σn,m are the mean and the standard deviation of the MF on the
basis of the Gaussian. Thus, (4) can be further written as

fn(x) = exp

(
−

M∑

m=1

(xm − ζn,m)2

2σ2
n,m

)
. (6)

2.2 Optimization Techniques Implementation

In [5,17], some optimization techniques were adopted in the FNN model and
successfully improved the performance of the model. Thus, these optimizers are
utilized in our method and summarized in this part.



374 X. Feng et al.

Batch Normalization. Batch normalization (BN) is an effective method
to accelerate training processing by separating the normalized training data.
Assuming that BNγ,β(·) is the BN operator, the input data xb (b = 1, 2, · · · , B)
selected in the minibatch B = {x1,x2, · · · ,xB} can be handled according to

BNγ,β(xb) = xBN
b = γx̂b + β (7)

where γ and β are the learning parameters, and x̂b is obtained by

x̂b =
xb − ζB√

σ2
B + ε

, (8)

in which ζB and σB denote the mean and standard deviation for the elements
in the minibatch, and ε is set to 1e-10 to prevent singularity.

Uniform Regularization. Considering the TSK fuzzy model may be under
the influence of the “rich get richer” problem [11], uniform regularization (UR)
is added to the loss function design. To prevent the model from overfitting, L2

regularization is also adopted. The loss function L is formed as following,

L(xBN
b ) = LCE(xBN

b ) + ηL2(xBN
b ) + λLUR(xBN

b ), (9)

where η and λ are the tradeoff parameter and the weight decay coefficient,
disparately. LCE is the cross-entropy loss, L2 denotes the L2-regularized loss,
and LUR is defined as the UR loss computed by

LUR =
N∑

n=1

(
1
B

B∑

b=1

f̄r(xBN
b − 1

N
)

)
(10)

AdaBound. Assuming that ϑι is an arbitrary parameter vector in the TSK
fuzzy model at the ι-th epoch (ι = 1, 2, · · · , ιmax), which can be updated by

ϑι = ϑι−1 − κ̂ � ŝι (11)

where κ̂ is the learning rate obtained by

κ̂ = max
[
l(ι),min

(
u(ι),

κ0√
r̂ι + ε

)]
(12)

in which κ0 presents the initial learning rate, ŝι and r̂ι are the corrected values
yielded through

ŝι =
sι

1 − ρι
1

, r̂ι =
rι

1 − ρι
2

(13)

for the compensation on the first-order and second-order moment estimations sι

and rι which can be calculated by

sι = ρ1sι−1 + (1 − ρ1)∇L(ϑι), rι = ρ2rι−1 + (1 − ρ2)∇2L(ϑι) (14)
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with setting parameters ρ1 = 0.9 and ρ2 = 0.999, and l(ι) and u(ι) are the lower
and upper bound functions derived by

l(ι) = α

(
1 − 1

(1 − ρ2)ι + 1

)
, u(ι) = α

(
1 +

1
(1 − ρ2)ι

)
(15)

where α ∈ [0, 1] is the scale factor.

3 DELF Algorithm Design

3.1 Optimization Task Formulation

According to the aforementioned contents, five hyper-parameters: number of
fuzzy rule N , minibatch size B, tradeoff parameter η, weight decay coefficient
λ, and scale factor α are selected to be the search objects for DELF algorithm.
The pseudo-code is shown in Algorithm 1 and the system is shown in Fig. 1.

Fig. 1. Optimization based on the DEFL algorithm for the TSK fuzzy model.

Defining Mg = [M1,g,M2,g, · · · ,MP,g]T (g = 1, 2, · · · , G) is the g-th
iteration containing P individuals and G is the max iteration for DELF algo-
rithm. For an arbitrarily individual Mp,g, let Mp,g = [Np,g, Bp,g, ηp,g, λp,g, αp,g]
(p = 1, 2, · · · , P ). Thus, the goal of DELF algorithm is to explore the optimal
combination of the five hyper-parameters for the TSK fuzzy model, which means
the best individual M∗.

3.2 Evaluation Function Design

To characterize the performance on the classification task of the TSK fuzzy
model with every hyper-parameter combination (also called individual), the eval-
uation function is formed as

Fp,g = Ctrain(Mp,g) + Ctest(Mp,g) (16)
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where Ctrain(Mp,g) and Ctest(Mp,g) denote the accuracy for the TSK fuzzy
model with Mp,g on the training and test sets, respectively. It is worth point-
ing out that only the training set is used to perform backpropagation for the
learning and Ctest(·) is adopted to evaluate the versatility for the TSK fuzzy
model. Considering Ctest(·) as one of the evaluation factors to guide the search
performance of DELF during exploration even if it does not participate in the
learning phase directly, which could be regarded as data leakage. Thus, we split
each dataset to be three parts: 70% samples are selected randomly to be the
training set, 20% as the test set, and the remaining 10% samples are used to
be the validation set which is just adopted to get the accuracy Cval(M∗) of the
optimal TSK fuzzy model found by DELF algorithm.

3.3 Mutation Operator with Lévy Flight

The conventional DE algorithm has a strong ability for exploration since the
mutated offspring yielded on the basis of the differential vectors among the
parents, which endows the algorithm with fast convergence. Nevertheless, the
defect of early convergence occurs easily when the differences among parents
become smaller with iteration increasing. Thus, Lévy flight with variable step
size is added in the mutation operator of the conventional DE algorithm to avoid
this shortcoming. The mutation member Mm

p,g is obtained by

Mm
p,g+1 = MDE

p,g + ϕp,gMLF
p,g (17)

in which MDE
p,g and MLF

p,g are the offspring yielded by the mutation operator
and Lévy flight disparately and ϕ is our proposed adaptive soft-switch factor
used to adjust the searching behavior of DELF, which is formed as

ϕp,g =
1

5σF
. (18)

σF denotes the standard deviation for the fitness vector F s
p,g containing three

fitness corresponding to the randomly selected individuals.
Before the mutation operator conducts every time for the p-th MDE

p,g at g-th
generation, three individuals are chosen and sorted as best one Mbest, medium
one Mmed, and worst one Mworst by fitness. Then, MDE

p,g can be yielded by

MDE
p,g = Mbest + Fp,g(Mmed − Mworst) (19)

in which the scaling factor Fp,g is obtained by

Fp,g = Fl + (Fu − Fl)
Fmed − Fbest

Fworst − Fbest
, (20)

where [Fbest,Fmed,Fworst] = Fs, and set Fl = 0.1 and Fu = 0.6.
The each element MLF

r,p,g ∈ MLF
p,g (r = 1, 2, · · · , 5) can be calculated through

MLF
r,p,g = Mr,p,g + χS(v) (21)
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Algorithm 1: DELF for the Optimization of TSK Fuzzy Model
Input: Population: P ; Max Generation: G; Lower: Ml; Upper: Mu

Output: Best parameter set M∗ = [N∗, B∗, η∗, λ∗, α∗]
1 for p = 1 to P do
2 Mp,0 = Ml + rand(0, 1) · (Mu − Ml);
3 end
4 g = 1;
5 while g ≤ G do
6 � (Mutation Operator)
7 for p = 1 to P do
8 Mm

p,g = Mutation(Mg−1,Fg−1);
9 end

10 � (Crossover Operator)
11 for p = 1 to P do
12 Mc

p,g = Crossover(Mg−1,Mm
g ,Fg−1);

13 end
14 � (Evaluation Operator)
15 for p = 1 to P do
16 Fc

p,g = Evaluation(Mp,g);
17 end
18 � (Greedy Selection)
19 Mg, Fg, M∗, F∗ ← Obtain the final current population from

{Mc
g,Mg−1} according to {Fc

g,Fg−1};
20 g ← g + 1;

21 end
22 return Best parameter set: M∗ = [N∗, B∗, η∗, λ∗, α∗];

where χ is defined as step factor and set to χ = 0.01 [6]. Lévy distribution is

S(v) =
1
π

∫ ∞

0

e−εqψ cos(qv)dq, 0.3 ≤ ψ ≤ 1.99 (22)

which can be approximated by

S(v) =
u

|v|1/ψ
(23)

u ∼ N(0, σ2
u), v ∼ N(0, σ2

v) (24)

σu =

(
Γ (1 + ψ) sin(πψ/2)
Γ ( 1+ψ

2 )ψ2(ψ−1)/2

)
, σv = 1 (25)

in which ψ = 3/2 is a constant parameter.
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3.4 Crossover Operator

After obtaining the mutation members, the crossover operator is performed
to get selected individuals from the parents and offspring. For each element
Mc

r,p,g ∈ Mc
p,g, the formulation can be written as

Mc
r,p,g =

{
Mr,p,g, if rand(0, 1) ≤ ℘p,g

Mm
r,p,g, if rand(0, 1) > ℘p,g

(26)

where an adaptive crossover rate ℘ is

℘r,g = ℘l + (℘u − ℘l)
max(Fg) − Fp,g

max(Fg) − min(Fg)
, (27)

in which ℘l = 0.1 and ℘u = 0.9 without loss of generality.

4 Simulation Result Analysis

4.1 Searching Ability Comparison

To demonstrate the improvement of our proposed method, the simulation of
DEFL is conducted on five test functions. Moreover, DE, PSO, GA, and four
variant DE-based methods are used as comparison methods to illustrate the
searching ability of DEFL.

Each algorithm is conducted with 50 trials on each test function for obtaining
the objective results. The iteration and the population for every algorithm are set
the same as 1000 and 30, disparately. The mean final fitness of every algorithm
on every test function is shown in Table 1. According to the results, the proposed
DEFL obtained the smallest mean fitness on all the test functions, which verified
the stability and strong searching ability of our proposed method. Figure 2 shows
that GA and PSO performed fast convergence at the early phase, although
both of them fell into the local optimal solutions. Besides, Lévy flight deployed
in DEFL improved its searching behavior successfully since the mean search
convergence became faster and the mean final fitness got smaller compared to
the conventional DE and the four variants of the DE-based methods.

Table 1. Mean final fitness.

Function DE GA PSO DEFL (pro.) DE (DE/rand/1) DE (DE/best/1) DE (DE/current-to-best/1) DE (DE/rand/2)

Ackley 1.127 1.4994 4.5836 0.0881 0.9948 10.5706 3.3504 0.81641

Rastrigin 0.9763 2.3301 6.1632 0.0546 0.1087 5.344 0.3068 0.1216

Sphere 0.4932 0.8809 5.6036 0.2305 0.2362 7432.7022 3.6231 280.3486

Dixon & Price 3.0761 7.4926 38.0112 2.4367 21.7012 275.7157 36.5622 41.014

Perm 1.0074 1.7925 1.2662 0.2251 0.3482 2.3101 0.7345 0.5545
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Fig. 2. The mean fitness convergence of the eight EAs on the Ackley test function.

4.2 TSK Fuzzy Model Optimization

8 classification datasets downloaded from the UCI Machine Learning Repository
(https://archive.ics.uci.edu/ml/datasets) are adopted to validate the efficiency
of our proposed method, which are listed in Table 2. 70% samples are selected
randomly to be the training set, 20% samples as the test set for DELF explo-
ration, and 10% are adopted to be the validation set to achieve a more fair and
substantial comparison with other methods shown in [5]. The other simulation
parameters of the proposed and comparison methods are summarized in Table 3.

Table 2. Dataset Information.

No. Dataset No. of Samples No. of Feartures No. of Classes

1 Vehicle 846 18 4

2 Biodeg 1055 41 2

3 DRD 1151 19 2

4 Yeast 1484 8 10

5 Steel 1941 27 7

6 IS 2310 19 7

7 Waveform21 5000 21 3

8 Page-blocks 5473 10 5

For each dataset, five trials are performed to demonstrate the stability of
our proposed search method and the results of these trials are summarized in
Table 4. It can be found that DELF can explore the optimal solution at each trial
on each dataset for the TSK fuzzy model to obtain high accuracy on training,
test, and validation samples, which illustrates the stability of DELF.

For each dataset, the optimal solution with the highest fitness is selected
from the five trials for the comparison with other nine methods and the infor-
mation of the selected individual is listed in Table 5. It is worth noting that the

https://archive.ics.uci.edu/ml/datasets
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Table 3. Simulation Parameters for Classification.

Objective Parameter Symbol Simulation

TSK Fuzzy Model Small positive constant ε 1e−10

Learning epoch ι 200

Attenuation rate ρ1 0.9

ρ2 0.999

DELF Population P 20

Max generation G 200

Search range SN [1, 50]

SB [16, 512]

Sη [0, 10]

Sλ [0, 50]

Sα [0, 1]

Table 4. Simulation results of DELF on the eight datasets

Dataset Tri. 1 Tri. 2 Tri. 3 Tri. 4 Tri. 5 Avg.

Train. Test Val. Train. Test Val. Train. Test Val. Train. Test Val. Train. Test Val. Val.

Vehicle 0.9088 0.8639 0.8353 0.8801 0.8639 0.8000 0.9155 0.8284 0.8588 0.8750 0.8580 0.8588 0.9020 0.8876 0.8706 0.8447

Biodeg 0.9093 0.9289 0.9143 0.9229 0.9005 0.8762 0.9012 0.9242 0.9048 0.9120 0.9289 0.8476 0.8836 0.9005 0.9143 0.8914

DRD 0.7581 0.7913 0.7391 0.7854 0.7217 0.6870 0.7730 0.7609 0.7391 0.7667 0.7957 0.6783 0.7667 0.7087 0.7130 0.7113

Yeast 0.6343 0.6229 0.5608 0.6275 0.6667 0.6081 0.6112 0.6195 0.5946 0.6506 0.5791 0.5405 0.6304 0.6330 0.5676 0.5743

Steel 0.7719 0.7397 0.7113 0.7638 0.7526 0.7577 0.7631 0.7113 0.7577 0.7491 0.7139 0.7784 0.7469 0.7526 0.7268 0.7463

IS 0.9586 0.9654 0.9610 0.9555 0.9524 0.9740 0.9685 0.9534 0.9307 0.9586 0.9481 0.9394 0.9474 0.9502 0.9524 0.9515

Waveform21 0.8743 0.8700 0.8740 0.8671 0.8920 0.8820 0.8806 0.8620 0.8380 0.8743 0.8840 0.8720 0.8697 0.8720 0.8540 0.8640

page-blocks 0.9569 0.9580 0.9634 0.9601 0.9534 0.9744 0.9590 0.9626 0.9744 0.9517 0.9580 0.9671 0.9559 0.9644 0.9762 0.9711

best hyper-parameter settings searched by our proposed method for the model
on different datasets are different, which demonstrates that the setting of the
hyper-parameters is desired for various tasks. However, the hyper-parameter set-
ting is counter-intuitive on some tasks, for example, the selection of the hyper-
parameters for the TSK fuzzy model on the DRD and Waveform datasets is
different even if they own a similar number of features and classes, which causes
difficult design through empirical tuning and illustrate the necessity of DEFL.
Moreover, according to the best setting plan obtained by DEFL, we can find that
some optimizer is redundant (such as η for Vehicle or λ for Waveform21), which
means that the implementation of the optimizer should be carefully validated
based on the specific situation. In other words, blindly deploying the optimizer
in the TSK fuzzy model may not achieve performance improvement.

Before the comparison among our proposed method and other methods, each
best parameter set M∗ selected from five trials for each dataset were deployed
on the TSK fuzzy model and run 30 times with ι = 500, and the mean of the
accuracy was calculated to participate in the comparison. Table 6 summarized
the results of the ten algorithms on the eight datasets, which shows that the opti-
mized TSK fuzzy model performed the best performance on the half datasets and
obtained the highest average accuracy. In addition, the performance of the TSK
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Table 5. Information of the best individual for each search on eight datasets.

Dataset Simulation N∗ B∗ η∗ λ∗ α∗

Vehicle Tri. 5 43 100 0 4.2036 0.0312

Biodeg Tri. 4 50 121 5.0435 50 0.0959

DRD Tri. 4 50 87 10 14.2328 0.0819

Yeast Tri. 2 50 212 0 28.7210 0.0689

Steel Tri. 2 49 59 0 24.1667 0.0911

IS Tri. 1 50 98 0 50 0.1174

Waveform21 Tri. 2 26 87 0 0 0.1072

Page-blocks Tri. 3 49 75 0 38.8136 0.1891

fuzzy model deploying the searched best parameter set was improved on all the
datasets compared to the conventional TSK fuzzy models, which demonstrates
the effectiveness of our proposed method. To further estimate the improvement
generated from the proposed DEFL, the ranks were displayed in Table 7. Obvi-
ously, the mean rank of the model adopting the setting parameters searched by
DEFL is the smallest, which also presents the strong searching ability of DEFL
for optimization of the TSK fuzzy model and stability on various datasets.

Table 6. Accuracy of the ten algorithms on the eight datasets 1

Dataset CART RF JRip3 PART TSK-FCM-LSM TSK-MBGD TSK-MBGD-BN TSK-MBGD-UR TSK-MBGD-UR-BN DELF

Vehicle 0.6907 0.7407 0.6892 0.7110 0.7411 0.6970 0.7354 0.7089 0.7907 0.8164

Biodeg 0.8202 0.8572 0.8222 0.8362 0.8377 0.8523 0.8531 0.8539 0.8609 0.8836

DRD 0.6283 0.6589 0.6240 0.6364 0.6824 0.6623 0.6618 0.6713 0.6720 0.6973

Yeast 0.5564 0.5963 0.5731 0.5340 0.5851 0.5673 0.5770 0.5722 0.5725 0.5913

Steel 0.7017 0.7328 0.7135 0.7120 0.6527 0.5864 0.7110 0.7248 0.7350 0.7392

IS 0.9320 0.9529 0.9481 0.9608 0.9571 0.5762 0.7557 0.8559 0.9501 0.9518

Waveform21 0.7641 0.8369 0.7908 0.7843 0.8647 0.6779 0.8002 0.8363 0.8234 0.8582

Page-blocks 0.9651 0.9688 0.9681 0.9677 0.9499 0.9375 0.9419 0.9515 0.9580 0.9682

Average 0.7573 0.7931 0.7661 0.7678 0.7838 0.6946 0.7545 0.7719 0.7953 0.8133

1. The detail information about the comparison methods can be found in [5].

Table 7. Ranks of the ten algorithms on the eight datasets

Dataset CART RF JRip3 PART TSK-FCM-LSM TSK-MBGD TSK-MBGD-BN TSK-MBGD-UR TSK-MBGD-UR-BN DELF

Vehicle 9 4 10 6 3 8 5 7 2 1

Biodeg 10 3 9 8 7 6 5 4 2 1

DRD 9 7 10 8 2 5 6 4 3 1

Yeast 9 1 5 10 3 8 4 7 6 2

Steel 8 3 5 6 9 10 7 4 2 1

IS 7 3 6 1 2 10 9 8 5 4

Waveform21 9 3 7 8 1 10 6 4 5 2

Page-blocks 5 1 2 4 8 10 9 7 6 3

Average 8.5 3.125 6.75 6.375 4.375 8.375 6.375 5.625 3.875 1.875
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5 Conclusion

In this paper, we proposed the DELF algorithm to explore the optimal architec-
ture of the TSK fuzzy model on the classification task. Five hyper-parameters
contained in the three optimization techniques were adopted as search objects.
To overcome the weakness of the conventional DE about the local optimal prob-
lem, Lévy flight with the more changeable step size was used in the mutation
operator. Moreover, an adaptive soft-switch factor was designed to balance the
search behavior according to the fitness of the selected members in the mutation
operator. Nine algorithms were used for comparison with the TSK fuzzy model
designed by our proposed method on eight datasets. The simulation results illus-
trated that the architecture of the model searched by our proposed method
has high performance compared with other algorithms. Besides, the TSK fuzzy
model optimized by DELF performed better on most classification tasks than
the model designed through the empirical design. As for the optimization tech-
niques, the TSK fuzzy model desiring different implementation plans of them on
the different tasks is proofed, which is meaningful and illuminating.
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Abstract. With increased data availability, data quality is the biggest
problem in using AI models. The data may suffer from missing values
and noisy values. Another major challenge is to get accurate labels for
feature vectors in the training data. In contrast, in many applications, we
can only get weak labels (for example, partial labels, positive-unlabeled
data, bandit feedback, etc.). In this paper, we consider uncertainty in
both features and labels. More specifically, we assume that feature vec-
tors have missing attributes and are only given partial labels. We present
a novel second-order cone programming framework to learn robust classi-
fiers that can tolerate uncertainty in the observations of partially labeled
multiclass classification problems. The proposed approach, RPL-SVM,
is based on a chance-constrained framework. Experimental results show
that RPL-SVM efficiently learns multiclass classifiers with missing values
in a partial label setting. This demonstrates the remarkable resilience of
RPL-SVM to real-world observational uncertainties.

Keywords: Multiclass classification · Missing values · Partial labels ·
Second order cone programming

1 Introduction

Most state-of-the-art classification algorithms assume the training data con-
tains actual labels for each example. However, data labeling is costly and time-
consuming, which makes access to actual class labels challenging. An alternative
to an actual label is a set of candidate labels called partial labels [6,15]. Learning
can happen successfully if the partial label set contains the true label. Partially
labeled data is more accessible and offers a less expensive option for learning
with precise labels. Cour et al. [6] describe a general risk minimization approach
for learning with partial labels. This approach can adjust any common convex
loss function to work in the partial label environment. Since the ground-truth
label is not available for a specific instance, the loss is determined by compar-
ing the average score of the candidate label set to the maximum score in the
complementary label set. The approach proposed in [17] updates latent label
distributions through iterative self-training techniques to learn classifiers using
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partial labels. On the other hand, leveraged weighted loss (LWS) [25] based app-
roach strikes a balance between losses on candidate labels and unassigned ones in
the risk function. To enhance the performance of partial label learning, PiCO [24]
combines contrastive representation learning with a novel class prototype-based
label disambiguation.

All the above algorithms for partial label learning assume that the feature
vectors do not suffer from missing values and other noise processes. However,
real-world data is often noisy, incomplete, or uncertain due to various factors
such as measurement errors, data collection limitations, etc. Ignoring this ambi-
guity can lead to biased or inaccurate models. Imputation methods for handling
missing values are discussed in [8,21]. Missing or noisy feature values can also be
seen in AI applications where data privacy is of prime importance. Differential
privacy [10] is a key approach to ensure data privacy. Most approaches to imple-
menting differential privacy in the AI models rely on adding noise in the feature
vectors [4]. This added feature noise can deteriorate the overall performance of
the classifiers, even in partial label settings. There are other scenarios where
noisy features co-occur with partial labels. When there are missing (or noisy)
attributes in a feature vector, different annotators may assign various labels to
it. Considering all these different labels for such noisy feature vector result in
partial labels. One real-world application where this can be observed is online
object annotation [18]. Much work has been done to develop robust methods to
learn classifiers in the presence of missing values and feature noise [14,22]. But
these methods do not consider label ambiguity. Learning with missing or noisy
features in a partial label setting is still a challenging problem.

This paper addresses the problem of learning a robust classifier with miss-
ing attributes and partial labels. We propose a robust support vector machine
(SVM) formulation to handle uncertainty in labels and features. We use a chance-
constrained programming approach [16] [1]. This approach can learn classifiers
for any distribution with finite mean and covariance. The robust formulation is
a second-order cone program (SOCP). We call the proposed formulation RPL-
SVM, which stands for Robust Partial label Support Vector Machine. The key
contributions of the paper are as follows.

1. This paper proposes an RPL-SVM framework that handles uncertainties in
input feature vectors and output labels.

2. We provide both linear and nonlinear RPL-SVM formulations. Nonlinear
RPL-SVM uses nonlinear kernels to learn robust classifiers.

3. Provides a comprehensive experimental evaluation of RPL-SVM’s perfor-
mance against state-of-the-art baselines on various benchmark datasets with
different degrees of missing attributes and partial labels.

2 Multiclass Partial Label SVM (PL-SVM)

Let us consider the problem of multiclass classification given a partially labeled
training set. Let X ⊆ R

d be the feature space from which the instances are
drawn and Y = {1, . . . , L} be the label space. In the partial label setting, every
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instance x ∈ X is associated with a candidate label set Y ⊆ Y. The set of labels
not present in the candidate label set is denoted by Ȳ . The ground-truth label
associated with x is denoted by lowercase y. It is assumed that the actual label
y lies within the set Y (i.e., y ∈ Y ). Let {(x1, Y1), . . . , (xn, Yn)} be the training
set. The objective is to learn a classifier h : X → Y. Let W ∈ R

d×L be the weight
matrix of the classifier h(x). The ith column vector wi of W denotes the weight
vector of the ith class. The maximum margin approach to learning a multiclass
classifier using partial labels solves the following optimization problem [5,20,23].

min
w,ξ

1
2

L∑

j=1

‖wj‖2 + C
n∑

i=1

ξi

s.t.
[
|Yi|−1

∑

y∈Yi

wy − wj

]�
xi ≥ 1 − ξi; ∀j ∈ Ȳi i = 1 . . . n

ξi ≥ 0; i = 1 . . . n

(1)

where Ȳi = Y \ Yi. In the above formulation, C is used set a trade-off between
sum of errors

∑n
i−1 ξi and complexity term

∑L
j=1 ‖wj‖2. When the partial label

set only contains the true class label, the SVM formulation in Eq. (1) becomes
the same as the multiclass SVM formulation proposed in [7].

3 Imputing Missing Values

This paper uses the expectation-maximization (EM) based algorithm proposed
in [8] to impute the missing values. We impute missing attributes in the par-
tial label setting using the Dempster algorithm [8] as follows. Given a par-
tial label set Y , let SY denote the examples of the partial label set Y . Let
m ⊂ {1, 2, . . . , d} denote the set of missing features in SY . and a = {1, 2, . . . , d}\a
be the set of available features. Thus, any x ∈ SY is composed of xm and xa

(i.e. x = (xa,xm)). Let μY denote the mean of the samples in SY and ΣY

as the corresponding covariance matrix. Thus, μY and ΣY are decomposed

as μY =
[
μYa

μYm

]
and ΣY =

⎡

⎣
ΣYaa

ΣYam

Σ�
Yma

ΣYmm

⎤

⎦. Where μYa
= 1

|SY |
∑

x∈SY
xa

and ΣYaa
= 1

|SY |
∑

x∈SY
(xa − μYa

)(xa − μYa
)�. μYm

and ΣYmm
are the mean

and covariance matrix of the missing features. ΣYma
is the covariance matrix

between missing and available features. Let SY,comp be the subset of SY with
no missing attributes. Similarly, SY,miss is the subset of SY with missing fea-
tures. In this algorithm, we start with initial estimates of the mean and covari-
ance from the available observations as μ

(0)
Ym

= 1
|SY,comp|

∑
x∈SY,comp

xm, Σ(0)
Ymm

=
1

|SY,comp|
∑

x∈SY,comp
(xm−μ

(0)
Ym

)(xm−μ
(0)
Ym

)�, Σ(0)
Yma

= 1
|SY,comp|

∑
x∈SY,comp

(xm−
μ

(0)
Ym

)(xa − μ
(0)
Ya

)� We then iterate over the following two steps of imputing the
missing values and re-estimating the mean and covariance until convergence.
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1. Imputing the missing values: For each x ∈ SY,miss, impute as x̂(k)
m =

μ
(k)
Ym

+ Σ(k)
Yma

Σ−1
Yaa

(xa − μY,a).

2. Re-estimating mean and covariance matrix: μ
(k)
Ym

= 1
|SY |

∑
x∈SY

xm,

Σ(k)
Ymm

= 1
|SY |

∑
x∈SY

(xm − μ
(k)
Ym

)(xm − μ
(k)
Ym

)�, Σ(k)
Yma

= 1
|SY |

∑
x∈SY

(xm −
μ

(k)
Ym

)(xa − μ
(k)
Ya

)�, Σ(k)
Ymm

= Σ(k−1)
Ymm

− Σ(k)
Yma

Σ−1
Yaa

(Σ(k)
Yma

)�.

4 RPL-SVM Linear: Robust Formulation for Linear
Classifiers with Partial Labels and Missing Values

The partial label SVM described in Sect. 2 assumes that training data does
not suffer from missing values and other noise processes. Here, we describe the
formulation of our proposed approach RPL-SVM which can also handle missing
values in the feature vectors. Let us assume that the training examples xi, i =
c+1 . . . , n have missing feature values. We use the imputation method described
in Sect. 3 to fill in missing values in these feature vectors. Let x̄i be the imputed
feature vector of xi. The imputation method may add some feature noise in xi,
which can cause separability constraints hard to satisfy. Thus, we replace the
separability constraints involving xi with the following probabilistic constraints.

p
([

|Yi|−1
∑

y∈Yi

wy − wj

]�
x̄i ≥ 1 − ξi

)
≥ κi, ∀j ∈ Ȳi; i = c + 1 . . . n.

Here, the probability is with respect to the distribution of x̄i. Here, we require
that x̄i be correctly classified with probability greater than κi. κi ranges in the
interval (0,1]. A large value of κi will result in a good classifier with a low risk
of making mistakes. Directly solving this probability constraint is challenging.
We assume that the second moment of x̄i exists to solve this. Note that Yi is
the partial label set for x̄i. To consider the first and second moment of x̄i, we
need to consider all the examples having Yi as a partial label set. Let μYi

and
ΣYi

be the mean and covariance matrix corresponding to the partial label set
Yi. We want the above inequality to hold even for the worst-case distribution
having mean μYi

and covariance ΣYi
, leading to the following constraints.

inf
x̄i∈(μYi

,ΣYi
)

p
([

|Yi|−1
∑

y∈Yi

wy − wj

]�
x̄i ≥ 1 − ξi

)
≥ κi, ∀j ∈ Ȳi.

We get the following conditions using multivariate Chebyshev inequality [3,14,19].

sup
x̄i∈(μYi

,ΣYi
)

p
([

|Yi|−1
∑

y∈Yi

wyi
− wj

]�
x̄i ≤ 1 − ξi

)
=

1
1 + d2

≤ 1 − κi; (2)

∀j ∈ Ȳi, i = c + 1 . . . n
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where d2 = inf[
1

|Yi|
∑

y∈Yi
wy−wj

]�
x̄i≤1−ξi

(x̄i −μYi
)�Σ−1

Yi
(x̄i −μYi

). This constraint

always holds for a family of distributions with the same second-order moments.
In the worst case, equality is reached. Next, we rewrite Eq. (2) which is discussed
in following theorem.

Theorem 1. Let where γi =
√

κi

1−κi
, then constraint in Eq. (2) is rewritten as

[
|Yi|−1

∑

y∈Yi

wy − wj

]�
μYi

− (1 − ξi) ≥ γi

∥∥∥Σ1/2
Yi

(
1

|Yi|
∑

y∈Yi

wy − wj)
∥∥∥.

Proof. We rewrite d2 as follows.

d2 = inf
C�Z≥f

Z�Z (3)

where Z = Σ− 1
2

Yi
(x̄i − μYi

), C� =
[

1
|Yi|

∑
y∈Yi

wy − wj

]�
Σ

1
2
Yi

and f = 1 −
ξi −

[
1

|Yi|
∑

y∈Yi
wy − wj

]�
μYi

. The Lagrangian of the optimization problem in

Eq. (3) is written as L(Z, λ) = Z�Z + λ(f − C�Z), where λ is the Lagrangian
multiplier corresponding to the inequality constraint. KKT optimality conditions
are: 2Z = λC; f = C�Z. Substituting Z in f, we get f = C�Z = λ

2C�C. Thus,
λ = 2f

C�C
and Z = fC

C�C
. From Eq. (2), we know that d2 ≥ κi

1−κi
. Substituting

Z value in Eq. (3) yields, d2 = Z�Z = (fC)�(fC)
(C�C)�(C�C)

= |f |2
(C�C)

. Thus, d = |f |
‖C‖ .

Using d ≥
(

κi

1−κi

)1/2

, we get following constraint by substituting f and C values.

[
|Yi|−1

∑

y∈Yi

wy − wj

]�
μYi

− (1 − ξi) ≥
√

κi

1 − κi

∥∥∥Σ1/2
Yi

(|Yi|−1
∑

y∈Yi

wy − wj)
∥∥∥

�

Thus, using the above constraints for i = c + 1, . . . , n, the robust SVM formula-
tion for partial label data with missing values is as follows.

min
w,ξ

1
2

L∑

j=1

‖wj‖2 + C

n∑

i=1

ξi

s.t.
[
|Yi|−1

∑

y∈Yi

wy − wj

]�
μYi

≥ 1 − ξi + γi

∥∥∥Σ
1
2
Yi

[
|Yi|−1

∑

y∈Yi

wy − wj

]∥∥∥;

∀j ∈ Ȳi; i = c + 1 . . . n
[
|Yi|−1

∑

y∈Yi

wy − wj

]�
xi ≥ 1 − ξi; ∀j ∈ Ȳi; i = 1 . . . c

ξi ≥ 0; i = 1 . . . c
(4)
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Note that for i = c + 1 . . . n, the separability constraints force the mean μYi
of

partial label set Yi to achieve higher score with 1
Yi

∑
yi∈Yi

wyi
compared to any

other wy (y /∈ Yi). On the other hand, examples i = 1, . . . , c are not facing any
missing attribute. Thus, for i = 1, . . . , c, we require that the example xi achieve
higher score with 1

Yi

∑
yi∈Yi

wyi
compared to any other wy (y /∈ Yi).

5 RPL-SVM Nonlinear: Robust Formulation
for Nonlinear Classifiers with Partial Labels

This section extends the proposed RPL-SVM formulation for learning non-
linear classifiers. We first assume a feature map φ : R

d → H correspond-
ing to a Mercer’s kernel K : R

d × R
d → R+. Where H is the reproduc-

ing kernel Hilbert space (RKHS) corresponding to the kernel K. We assume
that each wy (y = 1 . . . L) is a linear combination of all the examples. Thus,
wy =

∑c
i=1 αy

i φ(xi) +
∑n

i=c+1 ᾱy
i φ(x̄i), y = 1 . . . L. Where x̄i is achieved

by imputing missing values of xi. We reformulate the optimization problem in
Eq. (1) as a SOCP by removing ‖w‖2 from the objective and adding a constraint
‖w‖2 ≤ Λ as follows.

min
ξ

n∑

i=1

ξi

s.t. [|Yi|−1
∑

yi∈Yi

wyi
− wy]�φ(xi) ≥ 1 − ξi; ∀y ∈ Ȳi, i = 1 . . . c

[|Yi|−1
∑

yi∈Yi

wyi
− wy]�φ(x̄i) ≥ 1 − ξi; ∀y ∈ Ȳi, i = c + 1 . . . n

L∑

i=1

‖wi‖2 ≤ Λ; ξi ≥ 0; ∀1 ≤ i ≤ n

(5)

The optimization problem in Eq. (5) can be shown equivalent to the opti-
mization problem in Eq. (1) for appropriate choices of C and Λ. Substituting
wy =

∑c
i=1 αy

i φ(xi) +
∑n

i=c+1 ᾱy
i φ(x̄i), y = 1 . . . L in the constraints of the

optimization problem in Eq. (5) will be as follows.
〈

1
|Yi|

∑

y∈Yi

(
c∑

k=1

αy
kφ(xk) +

n∑

k=c+1

ᾱy
kφ(x̄k), φ(xi)

〉
−

〈
c∑

k=1

αj
kφ(xk), φ(xi)

〉

−
〈

n∑

k=c+1

ᾱj
kφ(x̄k), φ(xi)

〉
≥ 1 − ξi; ∀j ∈ Ȳi, i = 1 . . . c

⇒ 1
| Yi |

∑

y∈Yi

(
c∑

k=1

αy
kK(xk,xi) +

n∑

k=c+1

ᾱy
kK(x̄k,xi)

)
−

c∑

k=1

αj
kK(xk,xi)

−
n∑

k=c+1

ᾱj
kK(x̄k,xi) ≥ 1 − ξi, ∀j ∈ Ȳi, i = 1 . . . c
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⇒ 1
| Yi |

∑

y∈Yi

〈αy, K̃(xi)〉 − 〈αj , K̃(xi)〉 ≥ 1 − ξi;∀j ∈ Ȳi, i = 1 . . . c

where

K̃(xi) = [K(x1,xi), . . . ,K(xc,xi),K(x̄c+1,xi), . . . ,K(x̄n,xi)]�

αy = [αy
1 , . . . , αy

c , ᾱy
c+1, . . . , ᾱ

y
n]�.

Similarly, constraints for i = c + 1 . . . n will be

|Yi|−1
∑

y∈Yi

〈αy, K̃(x̄i)〉 − 〈αj , K̃(x̄i)〉 ≥ 1 − ξi;∀j ∈ Ȳi, i = c + 1 . . . n

where K̃(x̄i) = [K(x1, x̄i), . . . , K(xc, x̄i),K(x̄c+1, x̄i), . . . ,K(x̄n, x̄i)]�. The non
linear version of the RPL-SVM is obtained by considering the uncertainty in
K̃(xi). We assume that examples xi, i = c + 1 . . . n have missing feature values.
Probabilistic constraint takes the below form under noisy attributes in K̃(xi).

p
([

|Yi|−1
∑

y∈Yi

αy − αj
]�

K̃(xi) ≥ 1 − ξi

)
≥ κi, ∀j ∈ Ȳi, i = c + 1 . . . n

We continue to regard K̃(xi) as a random vector, just like in the original prob-
lem. Using a similar approach as in the linear case, we can show that these
probabilistic constraints lead to the following equivalent constraints.

[
|Yi|−1

∑

y∈Yi

αy − αj
]�

K̃(μYi
) ≥ 1 − ξi + γi

∥∥∥Σ
1
2
Yi

(|Yi|−1
∑

yi∈Yi

αy − αj)
∥∥∥

∀j ∈ Ȳi, i = c + 1 . . . n

where K̃(μYi
) = [K(x1, μYi

), . . . ,K(xc, μYi
),K(x̄c+1, μYi

), . . . ,K(x̄n, μYi
)]�.

ΣYi
is the covariance of K̃(xi) which is in K̃-space. Thus, the nonlinear for-

mulation of RPL-SVM is as follows.

min
ξ

n∑

i=1

ξi

s.t.
[
|Yi|−1

∑

y∈Yi

αy − αj
]�

K̃(μYi
) ≥ 1 − ξi + γi

∥∥∥Σ
1
2
Yi

[ 1
| Yi |

∑

y∈Yi

αy − αj
]∥∥∥;

∀j ∈ Ȳi, i = c + 1 . . . n
[
|Yi|−1

∑

y∈Yi

αy − αj
]�

K̃(xi) ≥ 1 − ξi; ∀y ∈ Ȳi, i = 1 . . . c

L∑

j=1

‖αj‖2 ≤ Λ; ξi ≥ 0; ∀1 ≤ i ≤ n;

(6)
where γi =

√
κi

1−κi
and αy = [αy

1 , . . . , αy
n]�.
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6 Experiments

In this section, we show the experimental results of the proposed approach. We
perform experiments on Wine, Glass4, IRIS, Dermatology, Waveform, SatImage,
Exasens, and Shuttle 5 datasets [2]. The details of the datasets used are provided
in Table 1. Among these datasets, Exasens has actual missing attributes. In
this dataset, 75% of samples have four missing attribute values. We divide each
dataset into train and test data with a 67:33 ratio.

Table 1. Experiment datasets description

Dataset Wine Glass4 IRIS Dermatology Waveform SatImage Shuttle Exasens

# Samples 119 131 150 366 5000 6435 58000 399

# attributes 13 9 4 33 21 36 9 7

# classes 3 4 3 6 3 6 5 4

For benchmarking, we use the following three state-of-the-art approaches.

1. Partial label multiclass SVM (PL-SVM) [6]: This is SVM based approach for
multiclass classification using partial labels described in Sect. 3.

2. Partial label KNN (PL-KNN) [13]: This approach uses a generalization of
KNN for learning with partial labels. We use k = 5 for our experiments.

3. PICO [24]: This is a deep learning approach for learning with partial labels,
surpassing all other competing models [25] [17] [12] [11].

Introducing Missing Features. We ensure that 50% of training samples per
class contain missing feature values. In a feature vector, some R% of feature
values are deleted to create missing attribute data. We considered different values
for the percentage of missing attributes (R) based on the datasets. We have
tested with different percentages of missing attributes (25%, 50%, and 75%).

Creating Partial Labels. We create partial labels for training data as follows.
Let k be the total number of classes. To create a partial label set of size c, first, we
keep the original label in the set. The rest of the c− 1 labels from the remaining
k − 1 labels are chosen randomly. We consider partial label sets of sizes 2 and
4 for Dermatology, SatImage, and Shuttle5 datasets. For the Glass4 dataset,
we consider partial label sets of sizes 2 and 3. For IRIS, Wine, Exasens, and
Waveform datasets, we consider partial label sets of size 2.

6.1 Experimental Setup

Once missing values are filled using the imputation algorithm described in Sect. 3,
we learn classifiers using the proposed algorithm RPL-SVM and the baseline
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algorithms. We compare the test accuracy of RPL-SVM with PL-SVM, PL-
KNN, and PICO. We calculated the average test data classification accuracy
for each algorithm by repeating the experiments 50 times. For RPL-SVM, we
have considered various κ values. We used cvxpy [9], an open-source Python-
embedded modeling language for convex optimization with MOSEK solver for
SOCP. The experiments are conducted on a 2.6 GHz 6-Core Intel Core i7 pro-
cessor with 16 GB 2667 MHz DDR4 memory.

Table 2. Experiment results

Dataset Partial Label Size Missing Attributes RPL-SVM PL-SVM PL-KNN PICO

IRIS 2 25% 0.04 ± 0.02 0.05 ± 0.03 0.1± 0.04 0.04± 0.03

50% 0.05± 0.02 0.06± 0.03 0.1 0.06

Wave-form 2 25% 0.14± 0.01 0.15± 0.04 0.27 0.14 ± 0.02

50% 0.14 ± 0.01 0.15 0.26 0.14± 0.02

75% 0.14± 0.01 0.15± 0.01 0.27 0.14± 0.02

Wine 2 25% 0.05± 0.02 0.08± 0.02 0.31 0.16± 0.01

50% 0.06± 0.03 0.09± 0.03 0.34 0.18

75% 0.08± 0.03 0.11± 0.04 0.36 0.17

Glass4 2 25% 0.04± 0.03 0.1± 0.12 0.05 0.08

50% 0.06± 0.04 0.25± 0.12 0.06 0.08

3 25% 0.1± 0.07 0.24± 0.11 0.11 0.27

50% 0.1± 0.07 0.32± 0.12 0.13 0.37

Derma-tology 2 10% 0.02 0.03 0.04 0.02± 0.01

25% 0.02 0.03 0.04 0.08

4 10% 0.03± 0.01 0.04± 0.02 0.1 0.3± 0.04

25% 0.03± 0.01 0.04 0.1 0.3± 0.05

Sat-Image 2 25% 0.14± 0.01 0.17± 0.09 0.15 0.12± 0.01

50% 0.14± 0.01 0.17± 0.09 0.15 0.12± 0.01

75% 0.14 0.17± 0.09 0.15 0.11

4 25% 0.22 0.4 0.24 0.15

50% 0.22± 0.02 0.4± 0.04 0.24 0.15± 0.01

75% 0.22± 0.02 0.4± 0.04 0.24 0.17

Shuttle5 2 25% 0.02± 0.02 0.13± 0.03 0.03 0.05

50% 0.02± 0.12 0.13± 0.03 0.03 0.08

75% 0.02± 0.02 0.13± 0.03 0.04 0.05

4 25% 0.35± 0.05 0.45± 0.07 0.47 0.08

50% 0.35± 0.05 0.45± 0.07 0.48 0.08

75% 0.35± 0.06 0.45± 0.08 0.48 0.07

Exasens 2 75% 0.45± 0.09 0.83± 0.06 0.54± 006 0.47± 0.09

6.2 Performance Comparison Results of RPL-SVM with Baselines

Table 2 provides average test error rates observed for different datasets with
different configurations. We have considered kernel-based formulations in the
proposed RPL-SVM and baseline PL-SVM approach. For RPL-SVM, we have
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Table 3. Training times (in minutes) comparison of various algorithms across all partial
label set sizes.

Dataset Wine Galss4 IRIS Dermatology Exasens Waveform SatImage Shuttle 5

RPL-SVM 0.03 0.08 0.03 2.3 0.3 118 145 188

PL-SVM 0.02 0.07 0.02 2.1 0.25 112 138 174

PL-KNN 0.03 0.06 0.03 1.8 0.03 10 15 19

PICO 69 65 71 76 81 83 115 128

IRIS SatImage Dermatology

Glass4 Shuttle5 Wine

Waveform Exasens

Fig. 1. Average error rates for different κ values using RPL-SVM algorithm. MA-
Missing attributes, PL- Partial label set size

reported the results with the best κ value for comparison. For RPL-SVM and
PL-SVM, we consider polynomial kernel with degree 2 and Gaussian kernel in
our experiments. We report all algorithms’ average test error rates and stan-
dard deviation values. We only represented standard deviation values up to two
decimals and ignored the rest. We observe that the performance of RPL-SVM
does not change much with increasing partial label set size and with the increase
in the percentage of missing attributes. Thus, it shows the robustness of RPL-
SVM against missing attributes and partial labels. RPL-SVM outperforms PL-
SVM and PL-KNN for all configurations of missing attributes and partial label
set sizes. Compared to PICO, RPL-SVM outperforms IRIS, Waveform, Wine,
Glass4, and Dermatology datasets for all configurations of missing attributes and



394 S. Mohandas and N. Manwani

partial label set sizes. For the Shuttle5 dataset, RPL-SVM outperforms PICO
for a partial label set of size two and all percentages of missing attributes. For
the Exasens dataset, RPL-SVM outperforms all benchmark algorithms. Table 3
provides the training times for the algorithms considered. We see that Wine,
Glass4, IRIS, Dermatology, and Exasens datasets are small datasets (i.e., fewer
examples). For such datasets, RPL-SVM converges faster. On the other hand,
RPL-SVM takes much more time to converge on Waveform, SatImage, and Shut-
tle5, which are larger datasets. Compared to Pl-KNN, RPL-SVM takes more
time to train. This difference is more visible for larger datasets. Compared to
PL-SVM, RPL-SVM takes a similar time for training for all datasets. Compared
to PICO, RPL-SVM converges much faster for the smaller datasets. For larger
datasets, it takes more time compared to PICO. This might be obvious as PICO
is a deep learning-based approach efficiently trainable for larger datasets.

6.3 Effect of κ on RPL-SVM

Figure 1 provides the average test error rate of RPL-SVM as a function of κ for
different partial label set sizes and 25% of missing attributes. Ideally, as the κ
value increases, the constraints will be satisfied with high probability, resulting
in better performance. Thus, test error should decrease with an increasing value
of κ. We observe this pattern for IRIS, Glass4, and Exasens datasets. However,
this may not always happen due to the following reason. For a given function
class, the data may not satisfy the probabilistic constraints with high probability
for small values of ξ. Thus, ξ values will increase, adding further to errors.

7 Conclusions and Future Work

paper proposes a novel approach, RPL-SVM, which can handle missing
attributes in a partial label setting. We provide an experimental comparison of
all the algorithms on balanced and unbalanced datasets. The results show that
RPL-SVM outperforms benchmark algorithms. RPL-SVM’s potential is evident,
but addressing scalability for larger datasets and exploring multi-label classifica-
tion applications is crucial. Further investigation into optimization techniques,
robustness in uncertain scenarios, and broader applications could establish RPL-
SVM as a robust tool for real-world uncertainty handling, advancing machine
learning’s impact across domains.
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Abstract. Spatial Transcriptomics (ST) quantitatively interprets
human diseases by providing the gene expression of each fine-grained
spot (i.e., window) on a tissue slide. This paper focuses on predicting
gene expression in specific windows on a tissue slide image. However,
gene expression related to image features typically exhibits diverse spa-
tial scales. To spatially model these features, we propose the Coarse
and Fine Attention Network (CFANet). At the coarse level, we employ
a coarse-to-fine strategy to acquire adaptable global features. Through
coarse-gained areas (i.e., area) guiding to realize sparse external window
attention by filtering out the most irrelevant feature areas. At the fine
level, using dynamical convolutions realizes internal window attention to
obtain dynamic local features. By iterating our CFAN Block, we con-
struct features for different gene types within the slide image windows
to predict gene expression. Particularly, without any pre-training, on
10X Genomics breast cancer data, our CFANet achieves an impressive
PCC@S of 81.6% for gene expression prediction, surpassing the current
SOTA model by 5.6%. This demonstrates the potential of the model
to be a useful network for gene prediction. Code is available (https://
github.com/biyecc/CFANet).

Keywords: Spatial Transcriptomics · Gene Expression Prediction ·
Deep Learning · Transformer · Tissue Slide Image

1 Introduction

Based on the findings presented in Natural Methods [1], Spatial Transcriptomics
(ST) has emerged as the future technique in disease research due to its capa-
bility to capture gene expression data with high-resolution spatial information.
However, obtaining ST requires advanced technologies like the 10× Genomics
Visium system, which is extremely expensive. This poses a challenge to the
widespread adoption of ST. Considering that tissue slide images are more acces-
sible and affordable, the predictions of spatial gene expression data from tis-
sue slide images hold the potential to generate virtual ST data. To effectively
and efficiently predict gene expression within specific windows of slide images
(Fig. 1), we propose a novel solution called Coarse and Fine Attention Network
(CFANet).
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14327, pp. 396–408, 2024.
https://doi.org/10.1007/978-981-99-7025-4_34
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Fig. 1. Overview of fields. Each window of a tissue slide image is with distinct gene
expression. Here is an example, we have a tissue slide image with three windows, and
each of the windows corresponds with expression of four different gene types. Our goal
is to predict the gene expression of each window.

Previous studies have explored the use of neural networks, specifically STNet
[2] and NSL [3] for predicting gene expression. STNet utilizes transfer learning by
fine-tuning a pretrained DenseNet model, while NSL relies on convolution oper-
ations to map the color intensity to gene expression. Although these approaches
show promise for high throughput analysis, they have faced two significant limi-
tations a lack of local feature aggregation and vulnerable assumption. To address
these limitations, recent studies have proposed the Exemplar Guided Network
(EGN) [4] and the Exemplar Guided Graph Network (EGGN) [5] were proposed.
They combine exemplar learning with the vanilla Vision Transformer (ViT) [6]
and Graph Convolutional Network (GCN), respectively. However, on the one
hand, the vanilla ViT suffers from a quadratical complexity due to its quadratic
relationship with the input image size, on the other hand, it is difficult for the
exemplar extract needs to introduce additional information, such as prior knowl-
edge of gene expression within windows of the exemplar.

Based on above discussion, we propose CFANet . It flexibly merges coarse-
gained areas (i.e., areas) and fine-grained spot (i.e., window) features, for pre-
dicting gene expression prediction. Specifically, each CFAN Block consists of
two levels: Sparse Adaptive Global area Attention (SAGA) as coarse level and
Multi-scale Dynamic Local window Attention (MDLA) as fine level. SAGA con-
siders that not all the key-value pairs are useful, so SAGA filters out the most
irrelevant areas to realize sparse external window attention. On the other hand,
MDLA introduces a fully convolutional neural network (CNN) inspired by the
network designs of Transformer. This enables the dynamic aggregation of local
features and facilitates internal window attention. Our contributions are sum-
marised below:

– In this paper, we propose CFANet , a global and local attention network,
to effectively and efficiently predict gene expression from the slide image
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window. Experiments conducted on two standard benchmark datasets show
our superiority when compared with SOTA approaches.

– At the coarse level, we propose the SAGA module with a coarse-to-fine strat-
egy to obtain adaptive global features. By effectively filtering out the most
irrelevant areas and focusing on sparse external window attention, the routing
area is successfully obtained.

– At the fine level, we develop the MDLA module with dynamical convolutions
to effectively extract local features and realize internal window attention. This
module enables accurate capturing of the spatial locality of different windows.

2 Related Work

Gene Expression Prediction. Measuring gene expression is a fundamental
process in the advancement of new treatments [7] for diseases. There are two
distinct approaches for predicting gene expression: based on DNA sequences
and slide images. The gene expression within slide images plays a crucial role
in determining the characteristics of the tissue, Deep Learning methods have
been introduced to this process, the image-based approaches can be categorized
into two branches. The first brunch focuses on bulk RNA-Seq and single-cell
RNA, which measures gene expression within a large predefined area of up to
105 ×105 in corresponding slide images and the cellular level, respectively. How-
ever, both of these approaches result in the loss of rich spatial information about
gene expression, which is crucial when studying tissue heterogeneity. The sec-
ond brunch, known as Spatial Transcriptomics (ST), is a novel approach that
employs DNA barcodes to different windows within the tissue and captures spa-
tial information. He et al. designed the STNet [2], which is the first to consider
integrating the slide image with ST. Dawood et al. [3] propose an NSL, which
is ’color-aware’. Recently, Yang et al. have proposed two exemplar guided deep
neural network, named EGN [4] and EGGN [5].

Vision Transformer. ViT [6] employs self-attention mechanism, splitting each
image into patches and treating them as tokens. It exhibits noteworthy effi-
ciency in various classification tasks but relies on full self-attention mechanism,
which leads to quadratic growth in computational complexity as the image size
increases. To tackle this dilemma, recent studies focus on sparse attention [8].
Ramachandran et al. have proposed the local window self-attention mechanism,
as well as its shifted or haloed variants. These mechanisms facilitate interactions
between different windows, offering a solution to the problem of computational
complexity. Furthermore, Dong et al. [8] propose both horizontal and vertical
stripes window self-attention.

Self Attention in CNN. Self-attention mechanisms have been widely adopted
in the field of computer vision tasks. Several works [9,10] have proposed incor-
porating self-attention layers, either channel-based or position-based, to enhance
convolutional networks. SENet establishes channel relationships within the con-
volutional network by employing global average pooling to squeeze the features.
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Dual attention network [10] utilize both channel-based and position-based atten-
tion mechanisms individually. Then, the resulting features from both attention
modules can be combined through either element-wise addition or concatenation.
These combined features are integrated into the convolutional output following
each stage. In contrast, GCNet [9] combines SENet and the non-local network
to create a hybrid attention mechanism. This mechanism effectively combines
information from both channel and spatial relationships within a single attention
module.
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Fig. 2. Network architecture of the proposed CFANet. Each CFAN Block fuses LAGA
and MDLA for global and local feature extraction. By gathering key-value pairs in the
top k relevant areas, LAGA utilizes sparse external window attention. MDLA contains a
fully CNN model DAF and the gated FFN to capture the local features of the windows.
Finally, CFANet has a prediction block with the fusion feature representation, to
achieve the gene expression prediction task.

3 Method

Sparse Adaptive Global area Attention (SAGA). Several works [8,11,12]
have proposed various sparse attention mechanisms to address the time and space
complexity challenges associated with vanilla Transformer. These mechanisms
selectively apply applying all pairs. Existing approaches, however, either rely on
handcrafted static patterns or share the same subset of key-value pairs among
all queries.

To tackle the dilemma of handcrafted approaches, we design a SAGA module
that facilitates adaptively sparse global attention through coarse-to-fine strategy.
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The key idea of strategy is to automatically filter out irrelevant areas at a coarse
level, resulting in a small subset of routed areas. Subsequently, this areas guided
fine-grained window to effectively capture sparse external window attention (Note
that, the routing areas are obtained by calculating the similarity between areas
and belongs to the query-area level, in query-window level, all windows in the same
area will attend to the same windows that belong to the routing areas). We give
a detailed explanation of coarse-to-fine strategy as follows.

– Area Partition and Input Projection. Given a 2D input feature map
X ∈ R

C×H×M , we begin by partitioning it into non-overlapping areas of size
S × S, with each area containing HW

S2 feature vectors. To accomplish this,
this step reshape X as Xa ∈ R

S2×HW
S2 ×C and then use linear projections to

obtain the query, key, and value tensors, Q,K,V ∈ R
S2×HW

S2 ×C :

Qi = Xi
aW q, Ki = Xi

aW k, Vi = Xi
aW v, (1)

where W q,W k,W v ∈ R
C×C are the projection weights for the query, key,

and value, respectively.
– Routing Area. To filter out irrelevant areas from the query-area, we lever-

age the relationship between the query-area and the remaining areas (which
are not part of the query-area). Specifically, we first construct a directed rela-
tionship regarding per-area and obtain area-level queries and keys, Qa,Ka ∈
R

S2×C , by taking the per-area average of Q and K, respectively. To be more
specific, We then derive the adjacency matrix, Aa ∈ R

S2×S2
, of area-to-area

affinity via matrix multiplication between Qa and transposed Ka:

Aa = Qa(Ka)T . (2)

Entries in the adjacency matrix, Aa, quantify the degree of semantic correla-
tion between two areas. The core step involves pruning the relations between
areas, keeping only topk connections. Specifically, we derive a routing index
matrix, Ia ∈ N

S2×k, with the row-wise topk operator:

Ia = topkIndex(Aa). (3)

Hence, the ith row of Ia contains k indices of most relevant areas for the ith

area.
– external window attention. With the area-to-area routing index matrix
Ia, the application of external window attention becomes possible. For each
query window within area j, it attend to all key-value pairs that are located
in the union of k routed areas indexed with Ia

(j,1), I
a
(j,2), ..., I

a
(j,k). To GPU

friendly, We gather key and value first, i.e.,

Kg = gather(K, Ia), V g = gather(V , Ia), (4)

where Ki
g,Vi

g ∈ R
S2× kHW

S2 ×C are gathered key and value tensor. We can
then apply attention mechanisms on the gathered key-value pairs as:

Oi = Attention(Qi ,K
g,V g). (5)
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Note that we can parallelize the computation of the attention weights and
the attended representations across all tokens in all regions, which makes our
approach computationally efficient.

Multi-scale Dynamic Local window Attention (MDLA). Although the
SAGA is able to extract features through sparse external attention by adap-
tively filtering areas. However, as mentioned above, SAGA considers coarse level
similarity (i.e., each window belonging to the same query-area shares the same
routed area for external window attention. However, this arrangement is deemed
insufficient. Considering the locality of different windows, we design a MDLA
module to facilitate internal window attention.

Specifically, to investigate the local features dynamically, MDLA initially esti-
mates spatial-variant filters with multi-scale convolution, which contains 3× 3
kernel with dilation factors of 1, 3, and 5. Subsequently, filters are estimated
and employed as dynamic local attention to enhance the aggregation of local
features within the input. Lastly, following the approach employed by Trans-
former, which utilizes a feed-forward network to refine feature representation,
we utilize a gated feed-forward network, as proposed in [13] to improve the per-
formance of the aggregated features.

– Depth-wise Aggregation Feature (DAF). For a given feature Xi ∈
R

H×W×C obtained by a layer norm followed by 1×1 convolution, we propose
a dynamic weight generation network inspired by the squeeze and excitation
network (SENet). Unlike traditional SENet architectures, our network omits
normalization layers and non-linear activations to ensure the generation of
dynamic weights. To better capture local information, we incorporate two
depth-wise convolutional layers within the SENet framework. The utiliza-
tion of depth-wise convolutional operations allows efficient modeling of local
attention.
The proposed dynamic weight generation is achieved by:

X = DWConv7×7(DWConv7×7(Conv1×1(Xi))),X ∈ R
H×W×γC

Xout = Conv1×1(X),Xout ∈ R
H×W×G×K2

W (x) = R(Xout),W (x) ∈ R
G×K×K

(6)

where γ represents the squeezing factor; DWConv7×7 represents a depth-wise
convolution operation with a filter size of 7 × 7 pixels, Conv1×1 represents a
convolution operation with a filter size of 1×1 pixel. The function R denotes
a reshaping operation, and x represents the pixel index. For each pixel, a
correlated dynamic kernel of size K × K is utilized for dynamic convolution.

Using the generated pixel-wise weight W , we can obtain the aggregated fea-
ture as follows:

X̂
l
= W � Xi, (7)

where � represents the operation of dynamic convolution, which utilizes a
weight-sharing mechanism for each channel.
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The detailed architecture of the dynamic weight generation network is illus-
trated in Fig. 2. Similar to the multi-head self-attention [13], we divide the
number of feature channels into G heads and learn separate dynamic weights
in parallel.

– Feed-Forward Network (FFN). Additionally, to enhance the capability
of feature representation, we incorporate an improved feed-forward network,
as proposed in [13], for processing the aggregated feature X̂:

Li = FFN(X̂
l
), (8)

FFN(·) denotes a feed-forward network.
– Fusion. We fuse the external window attention Oi with the internal window

attention Li, we have:
Y i = Fusion(Oi,Li) (9)

where MLPf is a single-layer perception. In addition, there are many Fusion
methods for Oi and Li. This paper selects the most straightforward method:
directly adding them. In our extensive experimentation, we discovered that
other complex fusion methods have a negligible influence on the results of
gene expression prediction.

Prediction Block. We apply the fusion feature map for prediction. We have:

yi = MLPf(Yi) (10)

Objective. CFANet is optimized using the mean squared loss L2 and batch-
wise PCC LPCC. The overall objective is achieved by:

LE = L2 + LPCC. (11)

4 Experiments

4.1 Datasets

We conducted experimental studies using two available datasets, namely the
STNet dataset [2] and the 10x Genomics datasets1. The STNet dataset contains
approximately 30,612 pairs of windows and gene expression data. These data
were obtained from 68 slide images, which were collected from 23 patients. Fol-
lowing study [2], our objective is to predict the expression levels of 250 gene
types exhibiting the highest mean values across the dataset. As for the 10xPro-
teomic dataset, it comprises 32,032 slide image windows and gene expression
data obtained from 6 slide images. To ensure consistency and comparability, the
setting is similar to the STNet dataset.

1 https://www.10xgenomics.com/resources/datasets.

https://www.10xgenomics.com/resources/datasets
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4.2 Experimental Set-Up

Evaluation Metrics. Following [4,5], here we also employ three metrics to
compare: Pearson correlation coefficient (PCC), mean squared error (MSE), and
mean absolute error(MAE). All the experimental results are presented 1 × 101.
Specifically, to assess performance, we employ the PCC at three different quan-
tiles: PCC@F, PCC@S, and PCC@M, which correspond to the first quantile,
median, and mean of PCC, respectively. PCC@F reflects the PCC for the least
performing model predictions, while PCC@S and PCC@M measure the median
and mean of correlations for each gene type. Given the predictions and ground
truths (GTs) for all of the slide image windows. Higher values for PCC@F,
PCC@S, and PCC@M indicate better performance. Furthermore, MSE and
MAE quantify the deviation between predictions and GTs on a per-sample basis
for each gene type within each slide image window, lower MSE and MAE value
signifies better performance.

Implementation Details. The setting of CFANet following before study set-
ting. During training, CFANet is trained from scratch for 100 epochs, with a
batch size of 32. We set the learning rate to 5 × 10−4 with a cosine annealing
scheduler. To control overfitting, we apply a weight decay of 1 × 10−4. SAGA
is sparse transformer blue with a patch size of 32, the embedding dimension
is 1024, the feedforward dimension is 4096, the model consists of 16 attention
heads and have a depth of 8. All experiments were conducted using 2 NVIDIA
A10 GPUs, allowing for efficient processing and training of the model.

4.3 Experimental Results

We have conducted quantitative gene expression prediction comparisons between
our CFANet and SOTA methods using the STNet dataset and the 10x Genomics
datasets (Table 1). All the experimental results are presented 1 × 101. We high-
light the best results and use ‘-’ to indicate unavailable results. Models are
evaluated using four-fold cross-validation and three-fold cross-validation on the
datasets mentioned above. We evaluate the effectiveness of our CFANet experi-
mentally on a series of prior SOTA works, which include models in gene expres-
sion prediction [2–5] and, as well as models in ImageNet classification ViT [6],
MPViT [14], CycleMLP [15]. Our CFANet outperforms the SOTA methods
in these PCC-related metrics(Note that, PCC-related evaluation metrics are of
utmost importance in our task.).

(i) Our CFANet exhibits a significant superiority over the baseline methods
when considering the PCC-related evaluations. It is crucial to highlight that a sig-
nificant proportion of gene types within this first quantile exhibit skewed expres-
sion distributions, which represents the most challenging aspect of the prediction
task. Our method surpasses the second-best approach by nearly 10% in terms of
PCC@S, indicating a significant improvement in capturing correlations for these
particularly challenging gene types. This evaluates the performance of the median
of correlations for all types of genes. As mentioned above, PCC-related evaluation
metrics are the most important in our task. Our CFANet utilizes both the Coarse
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and Fine Attention outperforms marginally in terms of in PCC-related evaluation
metrics, However, it achieves similar MSE and MAE as the EGGN model, are cur-
rently the SOTA model in gene expression prediction within tissue slide images.

(ii) CycleMLP and MPViT are the SOTA methods in the ImageNet classifi-
cation task, our CFANet are better than them on every each metric.

(iii) The FlOPs and Time were compared with the most advanced gene pre-
diction model, and the results showed that CFANet was effective and efficient.
Under the same backbone, the FLOPs of EGN are five times that of CFANet,
and the running time is the processing time of a dataset plus inference time.
Due to the trouble of EGN and EGGN pre-processing, the running time is very
large.

Table 1. Comparison to prior works.

Methods FLOPs Time STNet Dataset 10x Genomics Dataset

(m) (s) MAE MSE PCC@F PCC@S PCC@M MAE MSE PCC@F PCC@S PCC@M

STNet [2] - - 0.45 1.70 0.05 0.92 0.93 1.24 2.64 1.25 2.26 2.15

NSL [3] - - - - −0.71 0.25 0.11 - - −3.73 1.84 0.25

ViT [6] - - 0.42 1.67 0.97 1.86 1.82 0.75 2.27 4.64 5.11 4.90

CycleMLP [15] - - 0.44 1.68 1.11 1.95 1.91 0.47 1.55 5.88 6.60 6.32

MPViT [14] - - 0.45 1.70 0.91 1.54 1.69 0.55 1.56 6.40 7.15 6.84

EGN [4] 5031.08 2663.25 0.41 1.61 1.51 2.25 2.02 0.54 1.55 6.78 7.21 7.07

EGGN [5] - 2319.32 0.39 1.61 2.12 3.05 2.92 0.35 1.31 7.06 7.60 7.44

CFANet 1026.35 406.3 0.63 1.66 2.12 3.06 3.00 0.40 1.49 8.00 8.16 8.02

Quantitative Evaluation. The visualization of the latent space (Fig. 3),
achieved by considering the SOTA models in gene expression prediction. STNet
dataset have two additional labels, namely tumor and normal, we utilized these
labels for annotations. In visualization, We randomly selected 256 representa-
tions of the slide image window for each label. The visualized results also show
the advantages of CFANet.

Fig. 3. Quantitative evaluation of the SOTA models. We use t-SNE to reduce the
dimension of the model potential space. We annotated with additional labels (i.e.,
tumor and normal) from the STNet dataset.
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4.4 Ablation Study

The capability of each component by conducting a detailed ablation study in
the 10x Genomics datasets.

Effectiveness of the CFANet Architectures. As one of the key compo-
nents in our CFANet , Fusion block merges the SAGA with MDLA to enhance
feature aggregation. We compare the proposed method with two baselines, one
involving the ’SAGA only’ module, and the other involving the ’MDLA only’.
The results are presented in Table 2. It is evident that the model achieves the
best gene expression prediction results when these two modules are fused. We
have employed the simplest method of combining them. However, through our
extensive experiments, we have found that more complex fusion way have little
influence on the results of gene expression prediction.

Table 2. Ablation study on CFANet architectures.

Methods ‘SAGA only’ ‘MDLA only’ CFANet

SAGA ✓ ✓

MDLA ✓ ✓

MAE 0.58 0.80 0.40

MSE 1.64 2.26 1.49

PCC@F 6.05 6.61 8.00

PCC@S 6.84 7.18 8.16

PCC@M 6.57 6.86 8.02

Effectiveness of the SAGA. When considering the parameters s and k in the
SAGA module, the following factors are taken into account:

(i) The selection of s aligns with that of SWinTransformer [16], where a
window size of 7 is used along with void padding. Given that 224 = 7 × 32, we
opt for S = 7 to ensure it remains a divisor of the feature map size across all
stages.

(ii) The selection of k is informed by the findings from KVT [17], which
reveal that retaining approximately 66% of attention is sufficient. Gradually, we
increase k to ensure a reasonable number of windows are attended to as the area
size reduces in later stages. Our goal is to achieve a reduction of attention by
nearly 30% ∼ 40% across the four stages. Accordingly, we set k to [1, 4, 4, -2] and
use 2, 2, 6, and 2 blocks for the respective stages. This involves non-overlapping
patch embedding, the initial patch embedding dimension set at C = 96, and
the MLP expansion ratio of e = 4. Here, we conduct a comparison between
SAGA and several existing SOTA sparse attention mechanisms [8,11,12] within
the context of a classification task. To ensure a fair comparison, we follow the
approach outlined in [8] by aligning the macro architecture designs with those
of CSwin [8]. The results of this comparative analysis are presented in Table 3.
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Through extensive evaluation, an interesting observation came to light: while
crossformer achieves the best Mean Squared Error (MSE), our SAGA excedes
in terms of other key metrics. Moreover, the difference in MSE between our
approach and crossformer is quite small. This observation might be attributed to
crossformer’s consideration of neighboring window information. This observation
serves to further validate our decision to focus on local window information.

Effectiveness of the MDLA. Our MDLA module contains DAF amd FFN
blocks, inheriting dynamical convolutions to generate dynamic weights for bet-
ter local feature aggression. To demonstrate the effectiveness of the proposed
MDLA, we first verify the effectiveness of Multi-scale by comparing with Single-
scale. Furthermore, as mentioned in the paper, depth-wise convolutional oper-
ations have shown the capability to model local attention. In order to further
investigate the effectiveness of the proposed MDLA, we conducted additional
experiments involving the ’depth-wise only’ operation. This allowed us to assess
the model’s performance in capturing local attentions and evaluate the addi-
tional introduced by the MDLA module. Finally, we verify the effectiveness of
DAF block and FFN block individually through experiments involving ’DAF
only’and ’FFN only’, respectively. Table 4 shows that using the MDLA achieves
the best metrics of PCC-related, ’DAF only’and ’FFN only’ have the best MAE
and MSE, respectively. These strongly suggesting the effectiveness of the MDLA
in enhancing gene expression prediction.

Table 3. Ablation study on SAGA.

Methods DAT [12] crossformer [11] CSwin [8] CFANet

CVPR2022 ICLR2022 CVPR2022

MAE 0.50 0.45 0.60 0.40

MSE 1.64 1.46 1.88 1.49

PCC@F 5.76 6.49 5.63 8.00

PCC@S 6.62 7.17 6.40 8.16

PCC@M 6.26 6.93 6.08 8.02

Table 4. Ablation study on MDLA.

Methods Settings Results

Multi-scale Depth-wise DAF FFN MAE MSE PCC@F PCC@S PCC@M

Single-scale attention ✓ ✓ ✓ 0.49 1.68 7.61 8.03 7.67

‘Depth-wise only’ ✓ ✓ 0.51 1.51 6.46 7.12 6.91

‘DAF only’ ✓ ✓ ✓ 0.36 1.41 6.60 7.14 6.92

‘FFN only’ ✓ 0.47 1.15 6.32 7.00 6.80

CFANet ✓ ✓ ✓ ✓ 0.40 1.49 8.00 8.16 8.02



Spatial Gene Expression Prediction 407

5 Conclusion

This paper proposes an CFANet to effectively and efficiently predict gene expres-
sion from each fine-grained spot on a tissue slide image. CFANet simultaneously
considers on both the coarse and the fine levels to gain global (i.e., external win-
dow) attention and local (i.e., internal window) attention, respectively. Each
CFAN Block contains the SAGA module and MDLA module. At the coarse level,
a coarse-to-fine strategy is proposed to acquire sparse external window attention
by adaptively filtering out the most irrelevant feature areas. At the fine level, a
dynamically internal window attention mechanism is designed with dynamical
convolutions, accurately capturing the locality of different windows. These two
types of attention are then combined to predict gene expression. Through exten-
sive experiments, we demonstrate the superiority of the CFANet over existing
SOTA methods. CFANet holds the potential to facilitate studies novel treat-
ments through effective and efficient gene expression prediction.
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Abstract. This paper presents the novel spatial and temporal fusion
model (STFM), an effective approach for Autism Spectrum Disorder
(ASD) detection and classification tasks using foundational machine
learning models. Utilizing ensemble learning principles, STFM improves
the classification performance by integrating weak classifiers. The process
begins with the sliding window method applied to fMRI data, construct-
ing brain networks through Pearson correlation calculation between brain
regions. This infuses the network with both temporal and spatial pat-
terns. Then, bidirectional LSTM (Bi-LSTM) and 2DCNN are applied for
temporal and spatial feature extraction respectively. The model further
ensures smoother data variations between patterns through interpola-
tion, and utilizes a basic cross attention mechanism for fusion of patterns.
The fused patterns are then classified by a simple SVM classifier. The
presented STFM model demonstrates a remarkable classification accu-
racy of 70.42%, surpassing most fundamental machine learning models
in ASD detection.

Keywords: Machine Learning · Autism Spectrum Disorder
Classification · Spatial Temporal Pattern Fusion · Ensemble Learning ·
Cross Attention Mechanism

1 Introduction

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition
defined by social interaction impairments and restrictive, repetitive behavioral
patterns [1]. The disorder’s prevalence has surged recently, affecting about 1
in 54 children in the U.S. [2]. Early detection and intervention are pivotal for
improved long-term results, underscoring the need for precise, efficient diagnostic
tools [3].
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Magnetic Resonance Imaging (MRI) has become a significant tool for explor-
ing ASD due to its noninvasive assessment of brain structure and function. Many
studies highlight ASD-related structural and functional brain changes, like gray
and white matter volume discrepancies, variations in cortical thickness, and func-
tional connectivity [4]. This has spurred increased interest in creating MRI-based
ASD diagnostic algorithms. As AI and ML technologies advance, their potential
to improve diagnostic accuracy in conditions like ASD is increasingly recognized
by the medical and research community. Recent studies have indicated that
machine learning algorithms can be particularly effective in analyzing and cat-
egorizing neuroimaging data related to ASD, revealing patterns that might not
be immediately discernible to human experts [5]. Additionally, there is growing
evidence that AI-enhanced diagnostic tools, when utilized alongside traditional
assessment methods, can significantly enhance the precision and timeliness of
ASD diagnosis [6].

In this paper, we propose spatial temporal feature fusion model(STFM), an
effective autism detection and classification model based on the fusion of tem-
poral and spatial patterns of brain network. The model is designed with the
inspiration of ensemble learning, which aims to improve the overall classification
performance by integrating temporal and spatial patterns. Firstly, we process the
preprocessed FMRI data using the sliding window method and construct brain
networks within each window by calculating the Pearson correlation between
brain regions. Secondly, we employ bidirectional LSTM(Bi-LSTM) and 2DCNN
to extract the temporal and spatial patterns of the brain networks separately,
achieving effective reduction on dimension while preserving feature information
to the greatest extent. We conduct ablation experiments to demonstrate the
effective extraction of two types of patterns. Subsequently, we employ bilinear
interpolation to result in smoother data variations between patterns. Finally, we
employ the basic cross attention mechanism for fusion of patterns and choose
a simple SVM as the classifier in experiments. We conduct systematic experi-
ments on the large ASD fMRI dataset, and achieve a classification accuracy of
70.42%. In comparison with relevant studies using basic machine learning classi-
fication models, STFM achieves the best classification results. The contributions
of STFM are summarized in three folds:

– We propose a spatial and temporal fusion model (STFM), which unveils a new
pathway in autism detection classification tasks using fundamental machine
learning models.

– We employ deep learning models to separately extract the temporal and spa-
tial patterns of brain networks, and effectively integrate both by cross atten-
tion mechanism.

– STFM achieves a classification accuracy of 70.42%, surpassing most funda-
mental machine learning classifier models.

2 Related Work

Machine learning (ML) and deep learning (DL) techniques have shown significant
advancements in areas such as image classification, natural language processing,
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and speech recognition [7]. These methods have also been effectively applied
to MRI data for ASD classification. Algorithms like support vector machines
(SVM), random forests, and k-nearest neighbors are commonly used with both
structural and functional MRI data for this purpose [8–10]. Moreover, DL tech-
niques, including convolutional neural networks (CNN) and recurrent neural net-
works (RNN), have demonstrated potential in ASD classification [11,12]. The
Autism Brain Imaging Data Exchange (ABIDE) provides an essential public
dataset containing neuroimaging data from ASD individuals and controls, aiding
the development and validation of new classification models [13,14]. Recently,
the fusion of temporal and spatial features for MRI-based ASD classification
has emerged due to its enriched representation of brain patterns [15,16]. For
instance, Meng et al. [17] proposed a multi-kernel SVM that integrates these fea-
tures, showing improved performance. Chen et al. [18] combined features using
a deep belief network, and Zhang et al. [19] introduced a spatiotemporal convo-
lutional network. However, there’s still a need to better understand the fusion
techniques and ensure model consistency across diverse datasets. In this regard,
a comprehensive review by Rahman et al. [20] provides insights into machine
learning methods of feature selection and classification for autism spectrum dis-
order, emphasizing the importance of feature engineering in achieving robust
model performance.

3 Methodology

3.1 The Overview of Our Method

Fig. 1. Framework Overview of the Spatial Temporal Fusion Model (STFM)
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The STFM is divided into four main components: brain network construction,
pattern extraction, pattern fusion and classification. Initially, we employ a slid-
ing window approach to construct the brain network and compute the Pearson
correlation between brain regions. Subsequently, we use Bi-LSTM and 2DCNN
independently to extract the temporal and spatial patterns of the brain network,
and employ cross attention to merge these two types of patterns. Ultimately, we
classify the fused features using Support Vector Machine (SVM). The overview
of the model is illustrated in Fig. 1.

3.2 Brain Network Construction
First, we employ fMRI imaging to model brain networks, where fMRI can be
abstracted as a time series. Next, a sliding window model is employed to process
raw brain network data and incorporate temporal aspects [21,22]. The method-
ology involves: Defining a sliding window of width w and step size s. Segmenting
the data into overlapping windows, with a total number of windows calculated
as

N =
⌊

T − w

s

⌋
+ 1 (1)

where T represents the total length (or duration) of the data, w represents the
width of the sliding window, and s represents the step size by which the window is
moved in each step. Calculating the Pearson correlation coefficient between each
pair of regions of interest (ROI) within each window, resulting in a symmetric
correlation matrix C, in which the Pearson correlation coefficient Cij between
the ROIs i and j is:

C (i, j) =
(xi − x̄i)

T (xj − x̄j)√
(xi − x̄i)

T (xi − x̄i)
√

(xj − x̄j)
T (xj − x̄j)

(2)

where xi and xj respectively represent the i-th ROI and the j-th ROI. Flattening
the upper triangular part of Cij into a feature vector vk.
Vertically concatenating the feature vectors from all windows, resulting in a
matrix V ∈ R

N×M . This approach transforms the raw brain network data into
a temporally structured format, facilitating the analysis of dynamic changes in
brain network connectivity over time.

3.3 Extraction of Temporal and Spatial Patterns
The proposed feature extraction model is trained using a supervised learning
approach, with the aim to minimize a loss function L between the predicted
output ŷ and the ground truth y:

L(ŷ,y) =
1
N

N∑
i=1

L(ŷi,yi) (3)

where N is the number of samples, and L denotes a suitable loss function, such as
the mean squared error for regression tasks or cross-entropy loss for classification
tasks.
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Temporal Patterns. We present our methodology for extracting temporal
patterns from time series data using a bidirectional Long Short-Term Memory
(Bi-LSTM) model. The architecture of an LSTM-based neural network allows
for efficient learning of long-range dependencies in sequential data, making it
suitable for time series analysis tasks [23].

Given a time series X = x1, x2, . . . , xT , where xt ∈ R
d represents the feature

vector at time step t and T denotes the length of the series, our goal is to
capture the temporal patterns and dependencies within the data. We employ
a Bi-LSTM model, consisting of two separate LSTM layers, one for processing
the input sequence in a forward direction and the other for processing it in a
backward direction. The forward LSTM layer computes the hidden state hf

t for
each time step t as follows:

hf
t = LSTMf (xt,h

f
t−1) (4)

where LSTMf denotes the forward LSTM function. Similarly, the backward
LSTM layer computes the hidden state hb

t :

hb
t = LSTMb(xt,hb

t+1) (5)

The bidirectional output at time step t is obtained by concatenating the forward
and backward hidden states:

ht = [hf
t ;hb

t ] (6)

where [·; ·] denotes concatenation. The resulting sequence of bidirectional out-
puts H = h1,h2, . . . ,hT captures the temporal patterns in both forward and
backward directions.

The Bi-LSTM model has been widely used for various sequence-to-sequence
learning tasks and has demonstrated its effectiveness in capturing complex tem-
poral patterns [24,25]. In our work, we leverage this powerful architecture to
extract meaningful temporal features from time series data for further analysis
and interpretation.

Spatial Patterns. We present the methodology employed for the extraction
of spatial patterns from brain networks using a 2D Convolutional Neural Net-
work (2DCNN). The architecture of the proposed 2DCNN model is designed to
effectively capture the spatial features within the brain network data [26].

Given a brain network represented by a matrix X ∈ R
m×n, where m and n

denote the number of nodes and features, respectively, the 2DCNN model learns
to extract spatial patterns by applying a series of convolutional, activation, and
pooling layers. The convolution operation is defined as follows:

Y = f(X ∗ W + b) (7)

where Y is the output feature map, f represents the activation function (ReLU),
W ∈ R

k×k is the convolutional kernel with size k × k, b is the bias term, and
∗ denotes the convolution operation. The kernel slides over the input matrix X,
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computing element-wise products followed by a summation, which results in a
scalar value at each position of the output feature map Y.

The extracted feature maps are then passed through a pooling layer, which
aims to reduce the spatial dimensions and capture the most prominent features.
Two common pooling methods are max pooling and average pooling. In this
study, we employ max pooling, defined as:

Zi,j = max (p, q) ∈ Pi,jYp,q (8)

where Z is the pooled feature map, Pi,j represents the pooling window with size
r × r centered at location (i, j), and Yp,q is the element of the feature map Y at
position (p, q). The effectiveness of 2DCNNs in extracting spatial features from
brain networks has been demonstrated in various studies, such as BrainNetCNN
and the identification of autism spectrum disorder using deep learning [27]. In
this work, we follow a similar methodology and adapt the architecture of our
2DCNN model based on the specific characteristics of the brain network data
under investigation.

3.4 Fusion of Patterns

Dimension Adjustment. To effectively process the extracted neural network
data, it is necessary to increase the dimension of the feature representation
from 16 dimensions to 512 dimensions. This dimension increase can enhance the
expressiveness and granularity of the feature representation, thereby enabling
the model to capture more complex and subtle patterns in the data. To achieve
this goal, we employ a bilinear interpolation technique, which is a widely used
method for increasing the resolution of images and other data structures in
computer vision and related fields.

Cross Attention. We introduce the basic cross attention model for fusing
temporal and spatial features extracted from brain networks. The cross attention
is a powerful mechanism that calculates the attention scores between two input
sequences and uses these scores to weigh the importance of features from one
input sequence when processing the other sequence. It is widely applied in many
fields like Visual question answering (VQA) [28]. Given two input sequences,
X ∈ R

B×L1×H and Y ∈ R
B×L2×H , where B denotes the batch size, L1 and L2

represent the sequence lengths, and H is the hidden size, the Cross Attention
model computes the attention probabilities and the output as follows:

A = softmax

(
X × Y T

√
H

)
, O = A × Y (9)

Here, A denotes the attention probabilities, and O represents the output of the
cross attention model. This model enables the efficient fusion of temporal and
spatial patterns extracted from brain networks, which can be applied in various
brain decoding and analysis tasks. Specifically, our choice of cross attention for
this fusion process, ensures a parameter-free and lightweight approach, differen-
tiating our methodology from typical MLP-based solutions.
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3.5 Classifier

The Support Vector Machine (SVM) classifier [29] is used for feature classifi-
cation. Given labeled training data (xi, yi)i = 1N , it finds a hyperplane that
separates two classes maximally. The optimization problem is:

minimize
w,b,ξ

1
2
|w|2 + C

N∑
i=1

ξi (10)

subject to

yi(w�xi + b) ≥ 1 − ξi,i = 1, . . . , N ξi ≥ 0, i = 1, . . . , N (11)

Here, w is the weight vector, b is the bias term, ξi are slack variables, and C > 0
is a regularization parameter [30]. For non-linearly separable data, we use the
RBF kernel with the kernel function K(xi,xj) as:

K(xi,xj) = exp
(−γ||xi − xj ||2

)
(12)

Here, γ > 0 is a parameter that impacts the shape of the decision boundary.
Optimal C and γ are typically found using cross-validation techniques, which is
a standard practice in machine learning to ensure optimal model performance.

4 Experiments
Dataset. In the process of processing data using a sliding window, we choose
a window size of 30 and a window moving step size of 1, preserving the first 100
windows [31]. We discard samples with fewer than 100 windows, leaving a total
of 706 samples. Detailed information is summarized in the Table 1.

Table 1. Summary of ABIDE Dataset for Research

Age(average) Gender(Male/Female)

Autism 19.62 270/151

Health 18.30 160/125

The raw fMRI data is preprocessed by the standard CPAC pipeline, and the
AAL brain atlas is employed to automatically divide the whole brain onto 116
ROIs. Pearson correlation is calculated between every two ROIs. The symmetric
matrix is then expanded into the upper triangle, resulting in a dimension of

Dim =
N ∗ (N − 1)

2
(13)

Here, ‘Dim’ refers to the dimension of the constructed brain network. As such,
the final dataset size comes out to be (706, 100, 6670), representing the (number
of samples, number of windows, Dim), respectively. In our research utilizing the
ABIDE dataset, we have thoroughly examined the distribution of cases, and
we can affirmatively state that the dataset presents a balanced representation of
both autism and control cases, thereby mitigating concerns related to imbalanced
data-driven biases in our evaluation metrics.
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Result and Analysis. To provide a more intuitive representation of the model’s
performance and stability, we construct a confusion matrix and performed 5-fold
cross-validation. We measure model performance using the following metrics:
True Positives (TP), True Negatives (TN), False Positives (FP), and False Neg-
atives (FN). They represent correctly identified positives, correctly identified
negatives, incorrectly identified positives, and incorrectly identified negatives,
respectively. The key performance metrics are Accuracy, Sensitivity, and Speci-
ficity, computed as:

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Sensitivity =
TP

TP + FN
(15)

Specificity =
TN

TN + FP
(16)

The results indicate that our model is slightly lacking in stability, which is an
area that needs improvement in our future work. The confusion matrix and
Receiver Operating Characteristic (ROC) Curves are as shown in Fig. 2.

(a) Matrix of Classification Outcomes:
A Detailed Confusion Matrix Illustrating
True Positive, False Positive, True Nega-
tive, and False Negative Results

(b) The ROC curve illustrates the relation-
ship between the sensitivity and specificity
of a model. The X-axis represents ‘False
Positive Rate’ and the Y-axis represents
‘True Positive Rate’.

Fig. 2. Visualization of Model Evaluation: Confusion Matrix and Receiver Operating
Characteristic (ROC) Curves

In order to verify the effectiveness of our model in the classification task on
this dataset, we compare it with several classical supervised classification models
in machine learning, including LDA (Linear Discriminant Analysis), KNN (K-
Nearest Neighbors), SVC (Support Vector Classifier), Decision Tree, and Logistic
Regression. In addition, we also include some deep learning models with larger
parameter sizes, such as LSTM (Long Short-Term Memory), DNN (Deep Neural
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Network), CNN (Convolutional Neural Network), and AutoEncoder. For the sake
of fairness and reliability, the parameters for the comparison methods including
LDA, KNN, Decision Tree and Logistic Regression, are optimized experimen-
tally. Results for SVC, DNN, LSTM, CNN, and AutoEncoder models are taken
directly from existing literature (references 33 to 37 in Table 2). Specifically,
the ML models referenced in the table were trained directly on the data with-
out any prior feature extraction using the STFM pipeline. The comparison of
classification performance of STFM with other models is summarized in Table 2.

Table 2. The comparison of classification performance of STFM with other models

References Methods Performance

Accuracy Sensitivity Specificity

– LDA 63.38 65.06 61.02

– KNN 53.52 71.08 28.81

[32] SVC 66.8 61.00 72.30

[33] DNN 70.00 74.00 63.00

[34] LSTM 66.80 – –

[35] CNN 70.20 77.00 61.00

[36] AutoEncoder 67.50 68.30 72.20

– Decision Tree 45.07 48.19 40.68

– Logistic Regression 65.49 68.67 61.02

Our Method STFM 70.42 71.08 69.49

In reviewing the classification performance comparison summarized in
Table 2, it is evident that the proposed STFM outperforms the other models
on multiple metrics. When considering accuracy, the metric most intuitively
associated with model performance, STFM achieves a score of 70.42%. This
represents an obvious improvement over the next best model, the CNN, which
achieves an accuracy of 70.20%. Moreover, STFM notably demonstrates more
balanced performance in terms of sensitivity and specificity, achieving 71.08%
and 69.49% respectively. This surpasses the CNN, which, while having a higher
sensitivity of 77.00%, lagging behind in specificity, scoring only 61.00%. The
balance between sensitivity and specificity is vital, as it signifies the model’s
capacity to accurately identify both positive and negative classes. Among other
models, the LDA, SVC, and DNN also display notable performance. However,
none achieves the balanced efficacy of the STFM across all performance metrics.
Ablation Experiments. During the temporal patterns extraction process, we
set the hidden size to 4096 and the number of LSTM layers to 3 in the Bi-LSTM
model. For spatial patterns extraction, the parameters of our 2DCNN are ker-
nel size = (25, 25) and pool kernel size = (5, 5). The learning rate is set to 0.0001
for both processes. Our strategy involves using the dataset’s provided labels for
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supervised learning to optimize the model parameters. After the training pro-
cess, both feature extraction models have converged in terms of loss, and there
has been a notable improvement in their classification accuracy, which are illus-
trated in Fig. 3. The results show that the classification accuracy of both types
of patterns is higher than that of the original data. The classification accuracy
for the temporal patterns is 69.72%, while the spatial patterns achieve a classi-
fication accuracy of 68.31%, both presenting an improvement compared to the
original data (67.61%). The spatial temporal patterns integration introduced in
STMF surpasses the classification performance when only temporal or spatial
patterns are present, demonstrating the effectiveness of our proposed pattern
fusion mechanism. The results are presented in Table 3.

(a) The accuracy in training (b) The loss in training

Fig. 3. The accuracy and loss in training

Table 3. Result of Ablation Experiment

Methods Performance

Accuracy Sensitivity Specificity

Original Data 67.61 66.06 67.02

Temporal Patterns 69.72 79.52 55.93

Spatial Patterns 68.31 77.11 55.93

STFM 70.42 71.08 69.49

5 Conclusion and Future Work

This paper presents the STFM as an autism detection model, drawing on the con-
cept of ensemble learning. We separately extract temporal and spatial patterns
of brain networks and employ cross attention to integrate these patterns into a
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more complex classification model, effectively detecting autism. Experimentally,
we compare our model with studies using basic machine learning classification
models, and our model achieves the highest classification accuracy. In future
research, we will focus on modifying the classifier component, attempting to use
more sophisticated classification models to improve classification accuracy and
fully exploit the hidden information in the patterns extracted by the STFM.
Furthermore, as we progress in refining and implementing AI-based models like
STFM, it’s crucial to address ethical considerations, ensuring that patient data
is protected and the application respects privacy and non-discrimination stan-
dards.
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Abstract. Despite large-scale deployment in industry and daily life sce-
narios, the black-box nature of Connectionism-based deep neural net-
works is still criticized. Counterfactual explanation can shed light on
the inner mechanism of arbitrary deep-learning model, thus being a
preferable local interpretation method. There are a variety of methods
for counterfactual generation, however, exist two defects: (1) Disunity.
There is no agreement on model architecture and optimization meth-
ods of counterfactual generation. (2) Neglect of desiderata. There exist
several desiderata for a good counterfactual sample, but most existing
works only include a few of them. To address the above problem, we pro-
pose UNICE, a unified framework for counterfactual generations. UNICE
models the counterfactual generation as a multi-task optimization prob-
lem on a dense data manifold learn by auto-encoder. Besides, UNICE
addresses counterfactual desiderata to the best of our knowledge. What’s
more, one can custom UNICE components regarding specific tasks and
data modalities. An UNICE implementation for tabular data is provided
and surpasses state-of-the-art methods in five of six metrics, indicating
the effectiveness of our proposed method.

Keywords: Interpretable AI · Counterfactual explanation · Multi-task
optimization

1 Introduction

Algorithms based on deep neural network have achieved remarkable performance
in various data modalities. However, concerns about trustworthy AI grow with
its black-box nature. By European Union’s General Data Protection Regulations
(GDPR), not only personal privacy and data shall be protected, but also algo-
rithms are required to be transparent and interpretable when applied in critical
domains like finance [6], medicine [3], and autonomous-driving, etc [8]. Existing
interpretations methods can be categorized by two criteria: ad-hoc vs post-hoc
interpretation, in terms of interpretation time; global vs local interpretation, in
terms of interpretation scope [4,19,21–23]. In this paper, we instead focus on
Counterfactual Explanation [15] which is a post-hoc local interpretation method

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14327, pp. 422–433, 2024.
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answers the equivalent “Why not” question in counterfactual conditional sen-
tences. For example, Yonna’s loan application was rejected by a dense-connected
deep nerual network algorithm. An useful counterfactual explanation would gen-
erate a counterfactual individual with higher income or better credit records,
whose application was approved. By comparing Anna and the counterfactual
guy, The final explanation should be like “Have Yonna had a higher income up
to 10000$ per month, her loan would have been approved”.

Existing counterfactual explanation methods vary a lot as an emerging
research field of XAI. To give readers a brief understand about origin and recent
trends in this field, We first review some representative literature as well as
addressing common panic points.

Counterfactual, a concept originated from policy evaluation in economics [2],
attempts to mimic parallel worlds where politicians make opposite policies and
get different results. Casual Effect of a policy can be measured by compare results
in parallel worlds with that in the real world. Inspired by the Comparison, the
first Counterfactual explanation research [11] was proposed in 2017. However,
counterfactual get a little different in AI explanation. Given a Dataset X, y, a
data sample x ∈ X and a black-box model fblack. A data sample xcf is defined
as Counterfactual when its corresponding decision made by fblack is different
from that of the to-be-explained data sample x. Put it plainly, Counterfactual
for XAI By comparison of Counterfactual data sample and the to-be-explained
data sample, key features are identified to generate explanation, in that their
changes result in different outcome of a local decision made by black-box models.
Such an idea has been described in the above loan example.

In recent XAI research, it is consensus that counterfactual explanation is
decided by a very important part, namely counterfactual sample generation in
metric space. However, specific implementations of this key parts vary a lot.

Counterfactual Data Sample Generation: To generate feasible coun-
terfactual data samples in metric space, one needs to first define a list of
desired counterfactual properties as optimization goals, namely Counterfactual
Desiderata. Afterwards, an optimization method is adopted to achieve these
Desiderata. We find that a majority research [6,7] in Counterfactual explanation
recognized three Counterfactual Desiderata:

Validity is the minimum requirement of a feasible counterfactual. To enforce
the generated sample xcf to be counterfactual, researchers measure the distance
between the predicted class f(xcf ) and the user-given class ycf , where the cross-
entropy loss is mostly used [5,10,18]

CElossvalidity = −ycf log (f (xcf )) + (1 − ycf ) log((1 − f (xcf )) (1)

Other work leverages hinge loss function to calculate distance [16].
Proximity is another basic principle for the counterfactual generation. Mea-

surements for distance vary, such as L1 norm, L2 norm and cosine distance. For
continuous tabular data, L1 norm or L2 norm is the most commonly used. To
normalize features of different values, DiCE [16] add mean absolute deviation as
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the denominator, such that

Conlossproximity =
1
m

m∑

i=1

∣∣∣xi
cf − xi

∣∣∣
madi

(2)

where m is the number of continuous features, and xi
cf , xi, madi are the ith

feature of the generated samples, the ith feature of the raw sample, and the mean
absolute deviation of the ith feature respectively. When it comes to categorical
feature, an indicator function is used to calculate the distance, such that:

Catlossproximity =
1
n

n∑

i=1

I
(
xi

cf , xi
)

(3)

where I(· | ·) = 0 if xi
cf = xi, and I(· | ·) = 1 otherwise.

Sparsity means fewer features are changed in the generated counterfactual
samples, thus readability of interpretation is guaranteed [14]. To ensure the spar-
sity of the generated sample, the most commonly used way is to add L1 norm
to perturbations in feature space [20], such that:

losssparsity = ‖ε‖1 (4)

There also exist some other ways like post-processing to filter out samples that
do not meet the sparsity requirement [16]. Such neglect and chaos will prevent
the XAI community from leveraging existing work and making more advances.

However, existing approaches usually address only one or a few of the above
three properties, among which validity and proximity are the most reported.
What’s more, model architecture and optimization methods vary when con-
fronted with different data modalities and interpretation task types. Such neglect
and chaos will prevent the XAI community from leveraging existing work and
making more advances.

To address this problem, we propose UNICE, a Unified Counterfactual
Explanation framework to generate counterfactual samples and interpretations
in natural language. By unified, our method (I) Summarizes the commonness
of existing research. (II) addresses major desiderata of counterfactual genera-
tion to the best of our knowledge. By framework, components of our method
can be customized according to different task types. Besides, our method is
model-agnostic, which can be applied to arbitrary black-box decision models or
classification models.

UNICE consists of three components, namely data representation learner,
counterfactual generator, and explanation generator. Before conducting pertur-
bation and optimization to solve the counterfactual generation problem, the data
representation learner leverages an auto-encoder (AE) or its variants to get a
low-dimension latent representation of raw data [18]. Afterward, the counterfac-
tual generator conducts a search or optimization on learned data representation.
Last, the explainer generator maps factual-counterfactual samples pair to natural
language explanation and bridges the semantic gap. Each component of UNICE
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is decoupled and can be customized, and a formula description of UNICE in
detail will be given in Sect. 3.

To conclude, the contributions of this paper are three-fold:
(1) We propose UNICE, a unified framework for the counterfactual explana-

tion, which is comprehensive and can be customized. To the best of our knowl-
edge, UNICE is the first unified framework that handles the intractable coun-
terfactual explanation problem.

(2) We give UNICE implementation for tabular data, where desiderata of
counterfactual generation to the best of our knowledge are addressed. However,
we leave the counterfactual explanation generation part as future work and it is
not claimed as our contribution.

(3) We conduct comparative experiments with multiple metrics on two air
combat datasets and the effectiveness of UNICE is identified.

2 Method

2.1 UNICE Framework

Recall UNICE in the introduction, our framework consists of three components,
namely data representation learner, counterfactual generator, and explanation
generator. To better understand the mechanism and interaction between the
above components, consider a supervised binary classification dataset D ={
X ∈ R

n∗m, y ∈ R
n∗1} with a classifier f := X → y and a UNICE framework

(L,O,E), among which: (1) data representation learner L aims to map feature
space to a data manifold in hidden space, such that:

Z = L(X), L := R
n∗m → R

n∗pp � m, (5)

where Z is the data manifold in hidden space. Such design aims to prepare a low-
dimension space with data manifold proximity, which is beneficial to proximity
desiderata as well as reduces the time complexity of downstream optimization.
(2) Optimizer O models generation process as a multi-objective optimization
problem in learned data manifold Z, where n desideratum is treated as n loss
function respectively, such that:

Xopt
cf = argmin

Zcf∈Z
L−1 {

loss1
(
L−1 (Zcf )

)
, loss2

(
L−1 (Zcf )

)
, . . . , lossn

(
L−1 (Zcf )

)}
(6)

where Xopt
cf is the optimal counterfactual sample of X, Zcf is the latent repre-

sentation of generated samples Xcf , and L−1 is the decoder mapping from latent
space to feature space.

(3) Explainer generator E maps factual-counterfactual samples pair to natu-
ral language explanation and bridging the semantic gap between counterfactual
sample and counterfactual generation, such that:

NL = E (x, xcf ) NL ∈ � (7)

where NL is the generated natural language explanation, � is a human-readable
interpretation domain. Please refer to Fig. 1 for a sketch of the proposed UNICE
framework.
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Fig. 1. A sketch of the UNICE framework. Z is the learned data manifold by auto-
encoder; ‘raw’ is the given factual sample; cf1, cf∗ and cf3 are representations of gen-
erated diverse counterfactuals, among which cf∗ is the optimal one. Take the black-box
model, the raw data point, and counterfactual desiderata as inputs, and multiple coun-
terfactual representations are generated on the data manifold. Afterward, the optimal
one cf∗ is decoded to generate explanation text with comparison to the raw data point.

2.2 UNICE Implementation

The UNICE framework proposed above is conceptual and can be customized to
arbitrary data modality. In this section, we give an implementation for tabular
data.

Auto-Encoder for Tabular Data. One needs to handle various data types
(continuous or categorical) and anomaly points when confronted with tabular
data. We choose dfencoder [1], an auto-encoder variant for tabular data. The
core idea of dfencoder is to separately train continuous features, category fea-
tures, and binary features into three latent variables, and data points with large
construction error are dropped to mitigate anomaly bias, such that

argmin
L

dist
(
L−1 (L ({Xcon ,Xcat,Xbin })) , {Xcon ,Xcat ,Xbin })

(8)

where L, L−1 are encoder and decoder respectively. We do not claim dfencoder
as our contribution.

Desiderata as the Optimization Goal. Obviously that some frequently
reported desiderata have mature design optimization goals, hence we follow the
line and leverage some aspects of existing research. Specifically, we choose a part
of our optimization goal as in Table 1.
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Table 1. Optimization goals of validity, proximity, sparsity, and diversity. We use the
existing goals directly due to less controversy.

Desiderata Optimization goals

validity lossvalidity =
∑n

i=1 −yi
cf log

(
f

(
L−1

(
zi
cf

)))
+

(
1 − yi

cf

)
log

(
1 − f

(
L−1

(
zi
cf

)))

proximity lossproximity =
∑n

i=1 conlossiproximity + catlossiproximity

sparsity losssparsity = ‖ε‖1

diversity lossdiversity = − det(K), Kij = 1

1+dist
(
xi
cf

,x
j
cf

)

Where n is the number of generated counterfactual samples, L−1 as the
decoder and zi

cf as the latent representation of ith counterfactual. Please refer
to Sect. 2.2 for detailed information on the above optimization goals. We disclaim
the existing optimization goal as our contribution.

Our main concern is about the causal feasibility of counterfactual sam-
ples. Existing work, which sums up the difference between feature value itself
and endogenous counterfactual feature value calculated by parent features, can
impose causal constraints on the optimization process to some extent. However,
we argue that simply summing up all differences is still far from enough. Vio-
lation of the causal constraint will accumulate in descendent nodes’ value and
should also be accounted for causality loss. We conduct a heavier penalization to
take such accumulation into account. Let exogenous variables set in the ground
truth SCM G as U, we calculate the causal feasible counterfactual as:

xcausal opt
cf = G

(
x1

cf , x2
cf , . . . , xu

cf , ε
)

(9)

where xi
cf is the ith exogenous feature in xcf , G(·) means calculating endogenous

features in a breadth-first manner given desired SCM G and exogenous features.
Last, we calculate the causality loss as L2 norm between xcausal opt

cf and xcf ,
such that:

losscausality =
∥∥∥xcausal opt

cf − xcf

∥∥∥
2

(10)

We also leverage a trick called counterfactual prototype [13] to guide the search
process of the counterfactual sample. A counterfactual prototype is the repre-
sentation of fact samples that have an opposite label to the given fact sample
x. Such a representation could carry information about the decision boundary,
hence guide the search process to a roughly right direction. Existing work show
that a well-designed prototype can both speed up generation as well as improve
fidelity [5,13], but they simply calculate the mean of k-nearest neighbors with
an opposite label of given sample x. We follow this line and give a prototype
implementation of more fidelity. Inspire by LIME’s fidelity in neighborhood [19],
we calculate a weighted prototype as:

proto =

∑k
i=1 zi

knn ∗ exp
(

−D(z,zi
knn)2

σ2

)

∑k
i=1 exp

(
−D(z,zi

knn)2
σ2

) (11)
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where exp
(

−D(z,zi
knn)2

σ2

)
is an exponential kernel defined on a certain distance

with width σ, z, zi
knn are the latent embedding of given sample x and its ith k-

nearest neighbor embedding with an opposite label respectively. Our prototype
loss is defined as:

lossproto = ‖ proto − Zcf‖2 (12)

Finally, our optimal counterfactual is calculated by a multi-objective optimiza-
tion:

x
opt
cf = argminxcf

{lossvalidity, lossproximity, losssparsity, lossdiversity, losscausality, lossproto}
(13)

We adopt NGSA-II, an improved version of the nondominated sorting genetic
algorithm to solve the above optimization target.

3 Experiments

3.1 Experimental Settings

Datasets. We evaluate UNICE on two air combat datasets, DCS-AtoA and
DCS-AtoG. Both datasets are collected from simulated scenarios of DCS-world,
a digital battlefield game on the Steam platform. DCS-AtoA simulates an air-to-
air dog fight scenario, with binary labels that (0-no action, 1-ariel gun fire), while
DCS-AtoG simulates an air-to-ground attack scenario, with multiple labels that
(0-no action, 1-search, 2-aiming target, 3-attack, 4-disengage). Both simulator
scenarios are controlled by human pilots, and we take the labels as ground truth.
Please see detailed feature information in Table 2 and, and causal constraints in
Fig. 2.

Black-Box Models. We use a fully-connected neural network with five layers to
build our air combat decision model on DCS-AtoA and DCS-AtoG. To guarantee
our black-box models’ performance, we conduct five-fold cross-validation and
report an average AUC metric on two tasks, such that 0.93 for DCS-AtoA and
0.95 for DCS-AtoG. We believe such a performance can benefit downstream
counterfactual generation and explanation.

Metrics. We compare different models on the following metrics:
Target-class validity is the percentage of counterfactual samples with oppo-

site or user-defined labels. Target-class validity measures the basic standard that
whether generated samples are counterfactual.

Proximity is the distance between generated counterfactual and raw sample.
Since features in two datasets are all continuous, we implement a feature-wise
L2 distance normalized by mean absolute deviation.

Diversity averages the distance of every generated sample pair to measure
how informative the generated counterfactuals are. When calculating one sin-
gle distance, we reuse the distance definition in the proximity metric. Higher
diversity is preferred.



Unified Counterfactual Explanation Framework for Black-Box Models 429

Causal feasibility is the percentage of counterfactual samples conforming to
causal constraints. Since there exists a precision error in floating-point numbers,
we set an error tolerance δ = 0.1 when measuring the distance between a causal
feasible counterfactual and a generated counterfactual.

IM1 and IM2 are proposed by Van Looveren [13], among which IM1 is
designed to measure the manifold closeness of generated counterfactuals, and
IM2 is designed to measure the distance between generated counterfactuals and
all factual instances.

IM1 =
‖xcf − AEcf (xcf )‖22

‖xcf − AEori (xcf )‖22 + ε
IM2 =

‖AEcf (xcf ) − AEfull (xcf )‖22
‖xcf‖1 + ε

(14)

where AEcf is the auto-encoder trained on counterfactual class (not counterfac-
tual sample), AEori trained on origin class and AEfull trained on the full dataset
(all classes). A lower IM1 means counterfactual can be better reconstructed by
auto-encoder trained on the counterfactual class, thus close to the data manifold
of counterfactual class. A lower IM2 means reconstructed counterfactual samples
from AEcf and AEfull are similar, thus counterfactual samples are avoided as
outliers. Both lower IM1 and IM2 are preferred.

Baselines. Please see Table 2 for four baselines and their desiderata and opti-
mization tricks.

Table 2. Desiderata and optimization tricks in four baselines and UNICE. Proto means
whether a prototype is used to guide counterfactual generation, AE means whether the
counterfactual generation is conducted in a data manifold learned by an auto-encoder.
Only UNICE address all listed points.

Method validity proximity diversity sparsity Causal feasibility Proto AE

DiCE [17] � � � �
GRACE [12] � � � �
MACE [9] � � � �
ProCE [5] � � � �
UNICE � � � � � � �

3.2 UNICE Performance

In this section, we first report the performance of four baselines and UNICE on
DCS-AtoA and DCS-AtoG, then a thorough analysis is provided.

Comparison with Baselines. Performance measured by six metrics on two
datasets is reported in Table 4 and Table 5. For the multi-classification task DCS-
AtoG, we average performance on each class as the final result. The four baselines
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mainly differs in counterfactual desiderata they involves, which is detailed in
Table 2. Among all six metrics, validity and Causal feasibility are expressed as
a percentage, while others are in floating-point numbers. We add pre-defined
causal constraints to MACE, ProCE, and UNICE. We do not compare sparsity
because all our features are continuous and we find that none of them remain
unchanged during optimization.

Table 3. Counterfactual generation performance of four baselines and UNICE on DCS-
AtoA. Higher validity, diversity, and causal feasibility are preferred, while lower prox-
imity, IM1, and IM2 are preferred.

Method validity proximity diversity causal feasibility IM1 IM2

DiCE 100% 0.8524 6.7582 40.32% 0.6954 0.8082

GRACE 100% 0.8237 5.3252 38.95% 0.8299 0.9537

MACE 100% 0.9237 7.5729 66.85% 0.7237 0.7739

ProCE 100% 0.7850 N/A 65.40% 0.4362 0.6878

UNICE (ours) 100% 0.6540 6.5826 78.50% 0.3667 0.5544

Table 4. Counterfactual generation performance of four baselines and UNICE on DCS-
AtoG. The setting are the same as those in Table 3.

Method validity proximity diversity causal feasibility IM1 IM2

DiCE 100% 0.1893 7.2819 43.92% 0.5673 0.6529

GRACE 100% 0.1681 4.4733 45.28% 0.7032 0.8421

MACE 100% 0.2384 6.3812 82.96% 0.6742 0.6531

ProCE 100% 0.1536 N/A 85.32% 0.4441 0.7215

UNICE (ours) 100% 0.1195 6.1839 94.30% 0.2879 0.5324

Performance Analysis. As is shown in Table 4 and 5, we can find that:
(1) All models can provide 100% valid counterfactual samples. This is because

the algorithm does not stop iterating until the counterfactual condition is satis-
fied.

(2) UNICE surpasses all other baselines in terms of proximity, causal feasi-
bility, IM1, and IM2 metric, and achieves the second-highest performance when
it comes to diversity.

(3) Taking a step further, the causal feasibility of UNICE outperforms ProCE
and MACE which add causal constraints as well, by conducting a heavier penal-
ization to unfeasible counterfactuals. Such a performance indicates the rational-
ity of our design to consider error accumulation in a structured causal model.
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(4) By IM1 and IM2 metrics, counterfactuals generated by UNICE are obvi-
ously more interpretable, or say, closer to the data manifold. A plausible expla-
nation is because UNICE conducts optimization in data manifold representation
learned by dfencoder. Besides, our prototype’s guidance may also contribute to
more realistic counterfactual samples. We will discuss what contributes to a more
interpretable counterfactual later in Sect. 4.3.1.

3.3 Analysis and Discussion

Ablation Study. We use UNICE to conduct an ablation study where (1) opti-
mization is conducted on raw feature space and (2) prototype loss is dropped
from the optimization goal. Please see Table 6 for our UNICE’s performance in
two datasets:

Table 5. Ablation results on DCS-AtoA. ‘Drop AE’ means conduct optimization
directly on raw feature space. ‘Drop proto’ means counterfactual generation is not
guided by a prototype.

DataSet Ablation operation IM1 IM2

DCS-AtoA drop AE 0.4231 0.6145

drop proto 0.3701 0.5832

None 0.3667 0.5709

DCS-AtoG drop AE 0.3701 0.5866

drop proto 0.3573 0.5392

none 0.3542 0.5324

It is found that IM1 and IM2 on both datasets increase slightly when the
optimization is not guided by a prototype. However, whether the optimization
is performed on a dense data manifold representation has a greater influence
on two metrics. Based on the above comparison, we strongly suggest adding a
task-specific auto-encoder or its variant as an optimization device for the coun-
terfactual generation.

Robustness Experiment. To validate the robustness of data representation,
we study UNICE’s performance under different embedding sizes of dfencoder.
We report results on two datasets with embedding sizes of 32, 64, 128, 256, and
512 as in Fig. 2:

It is shown that IM2, proximity, and causal feasibility are stable on DCS-
AtoA when embedding size varies from 32 to 512. Meanwhile, a larger embedding
size causes a lower IM1, a plausible interpretation is that we need a latent space
with a larger size to learn the overall pattern of tabular data. However, things
are different when it comes to the AtoG dataset. We observe that all metrics are
stable with different embedding sizes. Such a phenomenon might be related to
the data distribution and remains to be explored.
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(a) DCS-A2A (b) DCS-A2G

Fig. 2. UNICE performance with different embedding sizes on (a) DCS-AtoA and (b)
DCS-AtoG. Most of the metrics are stable with the change of embedding size.

4 Conclusion

We propose a conceptual framework, called UNICE, to address the disagreement
and neglect in the counterfactual explanation domain. Consisting of a data repre-
sentation learner, counterfactual generator, and explanation generator, UNICE
addresses desiderata of a counterfactual sample and achieves competitive per-
formance on two air fight datasets.

Currently, UNICE models the counterfactual generation as a multi-object
optimization task, where optimizations are performed once for each sample. To
speed up the generation process, we plan to integrate reinforcement learning
into the counterfactual generator. Meanwhile, how to bridge the semantic gap
remains an open question. We leave the above points for future work.
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Abstract. Video inpainting techniques based on deep learning have
shown promise in removing unwanted objects from videos. However, their
misuse can lead to harmful outcomes. While current methods excel in
identifying known forgeries, they struggle when facing unfamiliar ones.
Thus, it is crucial to design a video inpainting localization method that
exhibits better generalization. The key hurdle lies in devising a network
that can extract more generalized forgery features. A notable observa-
tion is that the forgery regions often exhibit disparities in forgery traces,
such as boundaries, pixel distributions, and region characteristics, when
contrasted with the original areas. These traces are prevalent in vari-
ous inpainted videos, and harnessing them could bolster the detection’s
versatility. Based on these multi-view traces, we introduce a three-stage
solution termed VIFST: 1) The Spatial and Frequency Branches capture
diverse traces, including edges, pixels, and regions, from different view-
points; 2) local feature learning via CNN-based MaxPoolFormer; and 3)
global context feature learning through Transformer-based Interlaced-
Former. By integrating local and global feature learning networks, VIFST
enhances fine-grained pixel-level detection performance. Extensive exper-
iments demonstrate the effectiveness of our method and its superior gen-
eralization performance compared to state-of-the-art approaches. The
source code for our method has been published on GitHub: https://
github.com/lajlksdf/UVL.

Keywords: Video inpainting localization · Spatial-frequency joint
learning · Multi-view forgery traces · Generalization analysis

1 Introduction

Malicious video inpainting techniques have raised significant concerns due to
their potential for misinformation and deception [4,13,20,22]. Existing video
inpainting localization methods heavily reliant on specific data-related features
encounter challenges when dealing with unknown forgery instances, leading to
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14327, pp. 434–446, 2024.
https://doi.org/10.1007/978-981-99-7025-4_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7025-4_37&domain=pdf
http://orcid.org/0000-0001-9944-9104
http://orcid.org/0000-0002-5617-8399
http://orcid.org/0000-0002-4588-7798
http://orcid.org/0000-0003-3433-0764
https://github.com/lajlksdf/UVL
https://github.com/lajlksdf/UVL
https://doi.org/10.1007/978-981-99-7025-4_37


Video Inpainting Localization Using Multi-view Spatial-Frequency Traces 435

diminished performance in their detection. Similarly, prevailing video inpaint-
ing localization techniques tend to lack precise pixel-level outcomes in intri-
cate sections of the manipulated areas, such as limbs or smaller components.
Furthermore, the widespread utilization of social media platforms introduces
challenges to the robustness of forgery detection, as various video processing
operations like compression and cropping can disrupt the forgery traces present
in videos [4]. Therefore, improving generalization performance and extracting
forgery-independent features are crucial.

To address these challenges, we focus on identifying common characteristics
among tampered videos. We observe that the pixel distribution of generated
forgery regions using deep learning differs from natural distributions, and forgery
regions inevitably leave traces on their boundaries. Moreover, the forgery and
real regions in videos often have different sources, resulting in inconsistent region
correlations [10]. Harnessing these generalized features is vital to bolster the
method’s overall robustness and generalization capabilities. We accomplish this
by jointly learning multi-view forgery traces encompassing edges, pixels, and
regions, as these features are prevalent in diverse object inpainting videos and
transcend specific inpainting methods.

We introduce an innovative approach for localizing Video Inpainting Forgery
using Spatial-Frequency Traces (VIFST). VIFST encompasses three key stages.
In the first stage, we leverage the spatial branch, employing Sobel and Lapla-
cian operators to extract boundary artifacts and the Spatial Rich Model (SRM)
operator to capture pixel distribution features. Simultaneously, recognizing that
frequency domain alterations can unveil characteristics that are hard to discern
in the spatial domain, we utilize the frequency branch to capture region-level
forgery cues [10]. In the second stage, as CNNs are effective in capturing local
data patterns, we have developed a MaxPoolFormer that is grounded in CNNs
and MaxPooling. This architecture aids in extracting local forgery features. In
the third stage, recognizing that Vision Transformers (ViTs) excel in capturing
sequential data patterns, we have employed the InterlacedFormer [18] to glean
global features. The InterlacedFormer breaks down the dense affinity matrix into
two sparse matrices: a short-range matrix and a long-range matrix. This sparse
matrix structure, compared to the traditional self-attention approach, results in
an almost 2× acceleration in processing speed while maintaining effectiveness
[18]. The ultimate outcome is the identification of pixel-level forgery regions.

The primary contributions of our work can be summarized as follows:

– We introduce an innovative multi-stage network that proficiently captures
forgery traces in both spatial and frequency domains, thereby enhancing the
effectiveness of our method in detecting unknown video forgeries.

– Leveraging CNN-based MaxPoolFormer and ViT-based InterlacedFormer,
our model seamlessly integrates local and global features, significantly enhanc-
ing detection accuracy.

– Extensive experiments demonstrate that our approach outperforms state-of-
the-art methods, exhibiting robustness and superior generalization.
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2 Related Work

2.1 Object Inpainting Localization

Object inpainting has found wide applications in real-world scenarios, including
object removal [6,16,20]. However, methods relying on 3D CNNs have shown
limitations in video inpainting. To address this, recent approaches have incorpo-
rated optical flow into the inpainting networks [6], which helps alleviate temporal
issues but can introduce temporal artifacts in the generated results. Correspond-
ing to these detection methods, VIDNet [22] uses LSTM-based Error Level Anal-
ysis (ELA) and temporal structures to localize video inpainting. Wei et al. [13]
utilize spatial and temporal traces, which encompass enhanced residuals and
a dual-stream network with bidirectional convolutional LSTMs, to effectively
localize inpainted regions. Zhang et al. [20] presents an efficient feature enhance-
ment network for detecting inpainted regions in digital images. However, these
methods often experience a substantial decline in performance when confronted
with novel forgery techniques.

2.2 Vision Transformer

Currently, ViT-based networks are considered effective structures for feature
extraction in sequential data, making them suitable for capturing temporal
features in videos [2,3,18]. However, early versions of ViT require training on
large-scale datasets and incur significant computational and memory costs. To
address this, several approaches have been proposed. HRFormer [18] leverages
the multi-resolution parallel design from high-resolution convolutional networks
and performs local window self-attention on small non-overlapping image win-
dows, enhancing memory and computational efficiency. PoolFormer [3] refines
the self-attention-based ViT structure into a hybrid architecture combining CNN
and ViT, resulting in significant reductions in computational costs. This hybrid
architecture of CNN and ViT has gained considerable attention [2].

3 Method

Figure 1 presents an overview of the VIFST framework, while Algorithm 1 pro-
vides a detailed procedural outline. The VIFST method encompasses three dis-
tinct stages. In Stage 1, the spatial branch incorporates SRM, Laplacian, and
Sobel operators, yielding outputs labeled ‘a’, ‘b’, and ‘c’, respectively. The fre-
quency branch employs Discrete Cosine Transform (DCT) filters of varying sizes
to capture region features. Notably, spatial features maintain the original frames.
Additionally, the frequency branch generates outputs denoted as ‘d’, ‘e’, ‘f’, and
‘g’, corresponding to filters of full, high, middle, and low sizes, respectively.
Moving into Stage 2, MaxPoolFormer blocks are harnessed to learn local fea-
tures, building upon the spatial and frequency features from the previous stage.
In Stage 3, InterlacedFormer blocks are employed to capture global contextual
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Fig. 1. Architecture of the proposed VIFST. It consists of three stages: Stage 1 extracts
multi-view features from spatial and frequency branches. Stage 2 focuses on learning
local features, and Stage 3 captures global context relations. The final output is a
grayscale image indicating the detected forged regions.

Algorithm 1: Pseudocode for the detailed processing flow of VIFST.
Input : Video frame sequence frames
Output: Detected forged regions detected regions

1 Stage 1: Multi-view Features Extraction

// Spatial Branch: Extract edge and pixel features

2 sobel edges, laplacian edges, srm pixels ← OperatorFilters(frames);
3 spatial 56 ← CNN(sobel edges, laplacian edges, srm pixels, frames);

// Frequency Branch: Extract region features

4 low ← DCTFilter(0, image size//16);
5 middle ← DCTFilter(image size//16, image size//8);
6 high ← DCTFilter(image size//8, image size);
7 all ← DCTFilter(0, image size ∗ 2);
8 frequency 28 ← CNN(low,middle, high, all);

9 Stage 2: Learning Local Features

10 local s 56, local f 28 ← MaxPoolFormer(spatial 56, frequency 28);
11 local sf 14 ← MaxPoolFormer(CNN(spatial 56, frequency 28));

12 Stage 3: Learning Global Features

13 global 56, global 28, global 14 ←
InterlacedFormer(local s 56, local f 28, local sf 14);

14 global 7 ← InterlacedFormer(CNN(local s 56, local f 28, local sf 14));

15 detected regions ← Fusion(global 56, global 28, global 14, global 7);

16 return detected regions;
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relations, extending the understanding developed in Stage 2’s local features. The
culmination of this process is the generation of a grayscale image highlighting
the suspect regions.

3.1 Spatial Branch

Enhanced Forgery Edge Learning. To achieve forgery edge detection, we
replace the convolutional kernels of the CNN with the Sobel operator [14] and
the Laplacian operator [1]. The Sobel operator calculates the image intensity
gradient at each pixel, enabling edge detection. Mathematically, the Laplacian
operator can be expressed as the divergence of the gradient of a scalar function.
It is rotation invariant and can detect edges more robustly. By combining the
Sobel and Laplacian operators, we can improve the pixel-level accuracy and
robustness of edge detection.

Pixel Non-natural Distribution Learning. Deep learning-based video
inpainting methods often create forged regions with pixel distributions that devi-
ate from natural patterns, thereby disrupting the original pixel distributions. To
detect these forged traces, we substitute the traditional convolutional kernels of
CNN with the SRM operator [12]. We compute SRM features based on neigh-
boring pixel statistics. For a pixel block X = (x1, x2, ..., xn) of size n, the SRM
feature S(X) is represented by S(X) = 1

n

∑n
i=1(xi − x̄)k. Here, xi represents

individual pixel values in the block, x̄ is the mean of the pixel values in the
block, and k is a chosen positive exponent. This calculation helps in capturing
the statistical characteristics of neighboring pixel values, which can then be used
to analyze and characterize disrupted pixels.

Original RGB Information Learning. To preserve the details of the forgery
while minimizing disruption to the original video information, we directly input
frames into the spatial branch. The comprehensive spatial feature representa-
tion is denoted as Yspatial = Concatenate(Yframes, Ysobel, Ylaplacian, YSRM), where
Yframes, Ysobel, Ylaplacian, and YSRM represent the original video frames, Sobel
features, Laplacian features, and SRM features, respectively.

3.2 Frequency Branch

The frequency branch implements DCT filters using CNN, as illustrated in
Algorithm 1. The DCT filters are designed in four distinct scales, emphasizing
details and capturing broader spatial information. Through frequency domain
analysis, the method discerns compression artifacts, anomalies in specific fre-
quency components, and manipulated effects. DCT partitions the image into
various frequency-based blocks while preserving low-frequency components for
later reconstruction. The inherent correlation features of DCT enable the iden-
tification of forgery traces that could be elusive in the spatial domain. This
enhances the overall accuracy and sensitivity of forgery detection in manipu-
lated videos.
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Fig. 2. This displays the structures of different Transformers. While the Transformer
is based on the mutual computation of (Q,K, V ) matrices, MaxPoolFormer relies on
CNN and max-pooling operations, and InterlacedFormer decomposes the (Q,K, V )
matrix into two identical short-range (Q,K, V ) and long-range (Q,K, V ) matrices.

3.3 Learning Local Features

As shown in Fig. 2, the MaxPoolFormer architecture is a CNN-based structure
specifically designed for learning local forgery features. It incorporates a residual
CNN to capture local image characteristics such as edges, textures, and shapes.
By replacing the self-attention modules based on (Q,K, V ) matrices with max
pooling operations, MaxPoolFormer effectively extracts local regions of forgery
while reducing computational complexity and memory usage. By leveraging the
CNN’s sensitivity to local features, the model progressively learns high-level
features, resulting in enhanced pixel-level detection within regions.

3.4 Learning Global Contextual Correlation Features

Figure 2 illustrates the structure of InterlacedFormer [18]. The interleaved design
of InterlacedFormer allows the model to learn short-range and long-range con-
textual features concurrently, resulting in the effective capture of essential infor-
mation within the video.

Short-Range Context Learning. The short-range matrices capture intricate
details at the pixel level within forgery regions, such as arms, legs, or wheels.
This enables the model to prioritize pertinent features within a short distance
while filtering out irrelevant ones. By focusing on short-distance features like
edges and textures, the model optimizes forgery localization performance and
improves the detection of fine-grained details.
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Long-Range Context Learning. Incorporating long-range sparse matrices
facilitates the acquisition of correlations among features in distant video regions.
By mitigating the influence of irrelevant short-range correlations, these sparse
matrices emphasize features in distant regions, underscoring their significance.
This approach captures extensive relationships across varying positions and
empowers the model to seamlessly integrate global-scale contextual information.
Consequently, this enhancement bolsters the model’s accuracy.

4 Experiment

4.1 Experimental Setup

Dataset. Yu et al. [17] introduced the DAVIS-VI dataset, which is a video
inpainting dataset based on DAVIS dataset. They utilized three video inpainting
methods, namely OPN [11], CPNET [8], and DVI [7], to generate corresponding
tampered videos. In order to expand the dataset, we included three additional
video inpainting methods: FGVC [5], DFGVI [15], and STTN [19]. The DAVIS-
VI dataset consists of 50 original videos and 300 tampered videos, comprising
a total of 33,550 frames. The training set comprises 200 tampered videos, while
the test set contains 100 tampered videos.

Evaluation Metrics. We employ several evaluation metrics, including mean
Intersection over Union (mIoU), Area Under the Curve (AUC), F1-score, and
pixel-level Precision, to assess the performance of our method. These metrics
quantitatively measure the method’s performance in terms of its overlap with the
ground truth, similarity to the ground truth, accuracy, completeness, and pixel-
level precision. Higher values of mIoU, AUC, F1-score, and pixel-level Precision
indicate superior performance of the method.

Baseline Methods. We selected several recent methods, namely NOI [22],
CFA [22], CosNet [17], HPF [9], GSR-Net [21], VIDNet [22], and FAST [17], as
baseline approaches. To ensure a fair comparison and due to the unavailability
of publicly available pre-trained models, we directly cite the results reported in
the corresponding papers for these methods.

Implementation Details We train the model using a single 24 GB GPU. Each
video is treated as a 4-frame input sequence, and we use a batch size of 10 with a
learning rate of 1e−4. In order to increase the diversity of the training data, we
apply various commonly used data augmentation methods. The mean squared
error (MSE) loss function and the Adaptive Moment Estimation (ADAM) opti-
mization algorithm are utilized for model training.
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Table 1. Comparison experiments on the DAVIS-VI dataset with recent approaches
that test on one subset and train on the remaining subsets (*).

Methods VI* mIoU/F1 OP* mIoU/F1 CPmIoU/F1 VImIoU/F1 OP* mIoU/F1 CP*mIoU/F1 VI* mIoU/F1 OP mIoU/F1 CP* mIoU/F1

NOI 0.08/0.14 0.09/0.14 0.07/ 0.13 0.08/0.14 0.09/0.14 0.07/0.13 0.08/0.14 0.09/0.14 0.07/0.13

CFA 0.10/0.14 0.08/0.14 0.08/0.12 0.10/0.14 0.08/0.14 0.08/0.12 0.10/0.14 0.08/0.14 0.08/0.12

COSNet 0.40/0.48 0.31/0.38 0.36/0.45 0.28/0.37 0.27/0.35 0.38/0.46 0.46/0.55 0.14/0.26 0.44/0.53

HPF 0.46/0.57 0.49/0.62 0.46/0.58 0.34/0.44 0.41/0.51 0.68/0.77 0.55/0.67 0.19/0.29 0.69/0.80

HPF+LSTM 0.50/0.61 0.39/0.51 0.52/0.63 0.26/0.36 0.38/0.44 0.68/0.78 0.53/0.64 0.20/0.30 0.70/0.81

GSR-Net 0.57/0.68 0.50/0.63 0.51/0.63 0.30/0.43 0.74/0.80 0.80/0.85 0.59/0.70 0.22/0.33 0.70/0.77

GSR-Net+LSTM 0.55/0.67 0.51/0.64 0.53/0.64 0.33/0.45 0.60/0.72 0.74/0.83 0.58/0.70 0.21/0.32 0.71/0.81

VIDNet 0.55/0.67 0.46/0.58 0.49/0.63 0.31/0.42 0.71/0.77 0.78/0.86 0.58/0.69 0.20/0.31 0.70/0.82

VIDNet-BN 0.62/0.73 0.75/0.83 0.67/0.78 0.30/0.42 0.80/0.86 0.84/0.92 0.58/0.70 0.23/0.32 0.75/0.85

VIDNet-IN 0.59/0.70 0.59/0.71 0.57/0.69 0.39/0.49 0.74/0.82 0.81/0.87 0.59/0.71 0.25/0.34 0.76/0.85

FAST 0.61/0.73 0.65/0.78 0.63/0.76 0.32/0.49 0.78/0.87 0.82/0.90 0.57/ 0.68 0.22/0.34 0.76/0.83

Ours 0.73/0.84 0.81/0.89 0.72/0.82 0.75/0.85 0.72/0.83 0.82/0.89 0.85/0.91 0.79/0.87 0.84/0.90

Table 2. Robustness testing on the DAVIS-VI dataset. The OP subset is used for
testing, while the remaining five subsets (FGVC, STTN, DFGVI, CP, VI) are used for
training.

Processing mIoU F1 AUC Precision

None 0.8233 0.8964 0.9601 0.9854

Compression 0.8235 0.8966 0.9599 0.9854

Detail 0.8231 0.8963 0.9596 0.9853

Gaussian blur 0.7931 0.8760 0.9478 0.9825

Blur 0.8028 0.8827 0.9549 0.9835

Median filtering 0.8140 0.8904 0.9580 0.9845

Flip 0.7816 0.8695 0.9481 0.9814

4.2 Comparison Experiments

Table 1 showcases the pixel-level detection performance of various models.
Notably, the VIDNet-BN method exhibits exceptional performance on both the
OP and CP subsets, outperforming all other methods. This can be primarily
attributed to the robust within-dataset learning capabilities of VIDNet-BN. In
comparison to baseline methods, our approach consistently achieves superior
performance in most cases and particularly excels in detecting unknown forg-
eries. This can be attributed to our method’s proficiency in extracting more
comprehensive synthetic tampering features, which enhances its generalization
capability. Our experimental outcomes substantiate that our approach surpasses
existing methods and showcases superior generalization capabilities.

4.3 Robustness Experiments

To evaluate the robustness of our method in real-world social media scenarios,
we assess its performance under various video processing operations. Table 2
presents the performance after applying different video processing operations.
In most cases, these operations have minimal impact on the evaluation met-
rics. Nevertheless, a slight performance degradation is observed when applying
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(a) Different branches. (b) Different component combina-
tions.

Fig. 3. Ablation studies with spatial-frequency branches and different component
combinations. In the ablation experiments of the branches, ‘Spatial’, ‘Frequency’, and
‘Twin’ represent the results of the spatial branch, frequency branch, and twin branches,
respectively. ‘None’ and ‘None-RGB’ indicate the results without any branch and with-
out incorporating the original RGB information. In the ablation experiments of dif-
ferent components, the results are obtained by varying the combinations of MaxPool-
Former (Max) and InterlacedFormer (IF) modules.

blur operations. This decline can be attributed to the disruption of pixel-level
statistical features intrinsic to the forgery traces. These insightful experiments
effectively underscore the robust nature of our method in addressing the chal-
lenges posed by videos circulated on social media platforms.

5 Ablation Study

5.1 Influence of Spatial and Frequency Branches

Figure 3a presents the analysis of the impact of the spatial and frequency
branches. Compared to the baseline result of ‘None’, the ‘Spatial’ and ‘Fre-
quency’ branches demonstrate superior performance, indicating the beneficial
effect of spatial and frequency features on the detection task. The ‘Twin’ com-
bines both spatial and frequency branches, achieves the best result. The ‘None-
RGB’ result is only slightly inferior to the ‘Twin’ result. This suggests that
incorporating the original RGB information is beneficial in preserving the origi-
nal forgery information and improving detection efficiency. The joint learning of
frequency and spatial features in the twin-bottleneck architecture proves to be
highly advantageous for detecting forged traces from multi-views.

5.2 Impact of Different Component Combinations

As shown in Fig. 3b, the impact of different component combinations. The
‘Max+IF’ combination, which utilizes MaxPoolFormer in Stage 2 and Interlaced-
Former in Stage 3, achieves the best performance and is recommended in this
paper. Conversely, the ‘IF+IF’ combination, lacking local feature extraction,
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Fig. 4. Qualitative visualization results on the VI subset of the DAVIS-VI dataset.
We present the inpainting frames in the first row. The last row is the ground truth
mask of the input frame. The remaining rows are the results of comparison methods
and ours.

exhibits significantly poorer performance. These results emphasize the impor-
tance of incorporating local feature extraction for effective tampering localiza-
tion. Furthermore, compared to ‘Max+IF’, the ‘Max+Max’ combination, lack-
ing the InterlacedFormer module, demonstrates a significant decrease in perfor-
mance, indicating the significance of learning global features in improving detec-
tion performance. Moreover, swapping the learning order of MaxPoolFormer and
InterlacedFormer in Stages 2 and 3 of the network (‘IF+Max’), which learns
global features before local features, performs the worst, even lower than the
results with only one component. This finding further demonstrates the ratio-
nale and effectiveness of our component design, where learning local features
before global contextual features aligns with common intuition.

6 Results Analysis and Discussion

Figure 4 illustrates that our method outperforms the baseline approach in achiev-
ing precise pixel-level detection, especially in regions like wheels and arms. The
effectiveness of our method lies in its comprehensive multi-view feature learning.
This advantage is attributed to our multi-stage design. Firstly, we learn forgery
traces from various perspectives. Subsequently, we focus on learning local fea-
tures, followed by analyzing these features from a global perspective to identify
suspicious areas. This hierarchical feature extraction strategy enables us to bet-
ter capture various forgery traces present in manipulated videos. This further
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emphasizes the effectiveness of our method in capturing subtle forgery features.
Notably, our method demonstrates strong generalization performance across dif-
ferent data distributions, owing to our multi-stage design that facilitates a more
comprehensive understanding of different types of forgery. Through these discus-
sions, we underscore the importance and potential of our approach in the field
of video inpainting detection.

7 Conclusion

In this paper, we propose VIFST, a novel approach for video inpainting local-
ization. By jointly considering spatial and frequency traces, VIFST effectively
learns more general features from multi-views, including edge artifacts, pixel
statistics, and region frequency information, thereby enhancing its ability to
detect unknown forgery methods. Furthermore, the network architecture fol-
lows a sequential order of local-to-global learning, combining the advantages of
CNN and ViT to achieve fine-grained pixel-level detection. Experimental results
confirm VIFST’s superior generalization compared to existing methods and its
robustness in handling processed videos on social media platforms. In the future,
we aim to enhance the capabilities of VIFST, holding significant prospects for
reinforcing content authentication on social media platforms within real-world
scenarios. Furthermore, our efforts could empower law enforcement agencies to
more effectively identify manipulated video evidence in legal proceedings.

Ethics-Related Considerations

In the evolution of video inpainting methods, concerns about their potential
misuse for creating convincing forgeries have grown significantly, prompting eth-
ical considerations. The purpose of video inpainting localization is to address the
potential spread of misleading and deceptive content facilitated by video inpaint-
ing techniques. Simultaneously, the data used in this paper is sourced solely from
publicly available datasets. It strictly adheres to all ethical guidelines without
any violations.
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Abstract. This study applies a popular data mining algorithm, as a
branch of Artificial Intelligence (AI), to investigate the characteristics
that influence the adoption of Enterprise Resource Planning (ERP) sys-
tems within SMEs in Fiji. A logistic regression classifier is utilised to
identify the key determinants that contribute to the adoption of ERP sys-
tems. The study incorporates a comprehensive analysis of various demo-
graphic, organizational, technological and behavioral factors that pro-
vide valuable insights into the ERP-adoption patterns. From the model
evaluations, the learnt model reveals that key influencing factors include
SMEs knowledge and awareness, attitudes and beliefs, competitive pres-
sure, perception of business process improvements, having high job spec-
ifications, and also having about 21–50 employees. All of these predictors
have substantial effects on ERP adoption.

Keywords: Binary Logistic Regression · Classification · Machine
Learning · ERP-adoption · Small and Medium Enterprise (SME)

1 Introduction

ERP systems bring the world’s best practices that help streamline business pro-
cesses and reduce costs by automating routine tasks and eliminating inherent
process bottlenecks and redundancies. Furthermore, ERP systems provide a
centralized platform for managing resources such as stocks, human resources,
and organization finances, which can help to improve overall operational perfor-
mance. With these benefits in mind, adopting an ERP system can be a valuable
investment for SMEs who face enormous challenges and are always looking to
improve their business processes and stay competitive in the current business
context.

Business organizations in small developing countries like Fiji face enormous
challenges in arriving at the adoption decision itself. While the penetration of
ERP systems remains low among Fijian SMEs, there is a lack of in-depth research
to guide them on the adoption and non-adoption of such systems. Given that an
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organization understands the strengths of ERP systems in terms of modern-day
information management, the mere adoption can be construed as a success.

AI and machine learning models consist of algorithmic models (data min-
ing methods) that are trained on historical data or human experiences to pro-
duce data-driven insights that assist an expert to understand the dynamics of
relationships present in the data [1]. These algorithmic decision-making applica-
tions provide an opportunity for businesses to learn from data, make inferences
and predictions, and identify relationships, which can guide businesses to make
knowledge-based decisions [2,3].

This research presents the findings from an empirical study conducted among
405 randomly sampled SMEs in Fiji and tries to ascertain the key determinants
that influence ERP systems adoption. It further analyzes the captured data and
creates a classification model using the method of Binary Logistic Regression,
which is a branch of AI and falls under the area of Supervised Learning Methods.
The traditional ERP adoption determinants documented in the literature are
used as a basis to develop the survey instrument for data collection and to
conduct the analyses.

2 Literature Review

The existing body of literature has numerous outputs on ERP systems, their
characteristics, implementations, usages, challenges, and future predictions. The
ERP domain has attracted significant scholastic contributions in diverse and
comprehensive forms [4]. In a study by [5], the authors assert that top man-
agement support, training of users, and quality of software are among the key
determinants of ERP systems adoption. A similar study by [6] additionally indi-
cates that firm maturity is a major determinant of ERP systems adoption where
inherent factors like general organizational support, motivation of employees and
receptiveness to change are major drivers. Similarly, [7] uncovered that ERP
implementation success was very much dependent on top management support,
robust communication, training and education, proper project management, and
effective vendor support.

Highlighting the challenges in the adoption decision itself, [8], proposed a
Decisions Making Model to help small and medium organizations to adopt ERP
systems. Basing their assessment of construction companies, the authors went
on to carefully review the existing technology models and incorporated new ele-
ments to formulate and project a new ERP adoption model. A similar study
undertaken by [9] used earlier developed models and the concept of critical suc-
cess factors to re-design the ERP adoption model. Combining the adoption of
ERP and Business Intelligence (BI), [10] proposed a comprehensive model which
incorporates factors like quality of the system, quality of service, quality of infor-
mation, change management, communication, training, future vision and plan-
ning, competitive pressure, and the role of government.
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3 Research Methodology

This study utilized the Stratified Random Sampling (StRS) survey design
as the key methodology. The SME population data, i.e., sampling frame, was
obtained from 8 Fijian towns spread across the main Islands of Fiji, namely,
Viti Levu, Vanua Levu, and Ovalau. The eligibility criteria of a business with
an employee number greater than 5 and less than 51 were used for SME clas-
sification. The sampling frame was stratified by location, which resulted in a
representative sample from each of the main districts in Fiji. Using the sample
size calculation suggested by [11], a sample size of 405 SMEs was obtained as a
suitable sample size. A structured questionnaire was used to capture detailed
quantitative information regarding business profile, knowledge and awareness,
attitudes and beliefs, practices, adoption, impact, and theoretical model ques-
tions. In terms of the mode of data collection, each of the sampled companies
was approached for a face-to-face interview.

The Binary Logistic Regression (BLR) classifier was utilized to predict
the probability of the occurrence of adoption and non-adoption based on a set of
predictors. The mathematical representation is given as logit(y) = β0 + β1x1 +
β2x2 + · · · + βkxk, where βi, i = 1, 2, ..., k are the beta weights or the coefficient
estimates of the model, x1, x2, · · · , xk are the predictors, and y is a response
to predict (adopter/non-adopter), and logit(y) = ln(1/(1 − y)). The model was
created using the machine learning workflow whereby the classifier is learned
using 75% training data with 10-fold Cross Validation and its model performance
and evaluations were done on the 25% test data. This algorithm was carried out
in R using the tidymodels framework.

4 Results and Discussion

The data showed that there were 41% adopters and 59% non-adopters. To model
the classifier, predictors were selected systematically based on the assessment of
the effects of the various combinations of predictors on the outcome. Table 1
presents the Odds Ratio (OR) which assesses the effect of a predictor variable
on the response variable.

The OR for Location means that the odds of adopting an ERP for the
SMEs in rural or remote areas is 0.45 times to that of those that are situated in
urban or city areas. Alternatively, we could say that for SMEs in urban or city
areas, there is 1/0.45 = 2.2, or more than twice the odds of adopting an ERP
compared to SMEs in rural or remote areas, after keeping all other predictors
in the model constant. This effect is statistically not significant at the 5% level
of significance. Similarly, for SMEs with more than 16 years of Existence, the
odds for adopting an ERP is 2.4 times compared to an SME with ≤ 5 years
of existence, after adjusting for other predictors in the model. Alternatively,
11–15 years and 6–10 years will have negative effects when compared with
the reference category of ≤ 5 years. For the 11–15 years category, the odds of
adopting an ERP for SMEs with ≤ 5 years of existence is about 1.75 times
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Table 1. Binary Logistic Regression Model Results

Predictor Category Odds Ratio 95% CI p-value

Location (ref: Urban or City) Rural or Remote 0.45 0.02, 8.58 0.6

Existence (yrs) (ref: <= 5 years) 6–10 years 0.88 0.01, 81.9 >0.9

11–15 years 0.57 0.01, 51.2 0.8

>= 16 years 2.36 0.04, 183 0.7

No. of employees (ref: 1–20) 21–50 4.98 0.48, 88.7 0.2

Job specification (ref: High) Low 0.06 0.00, 0.87 0.064

Others 0.43 0.03, 4.53 0.5

Competitive pressure (ref: No) Yes 47.8 6.24, 874 0.001

State regulations (ref: No) Yes 0.6 0.07, 4.37 0.6

Improve business process (ref: No) Yes 31.5 4.14, 577 0.004

Knowledge and awareness continuous 87.8 16.7, 1,117 <0.001

Attitudes and beliefs continuous 172 10.4, 12,543 0.003

to that of 11–15 years of existence. Similarly, for SMEs with ≤ 5 years of
existence, the odds of adopting an ERP is about 1.14 times (or we could say
14% higher chance) compared to SMEs with 6–10 years of existence, keeping
all other predictors in the model constant. Looking at the No. of employees, for
SMEs with 21–50 employees, the odds of adopting an ERP is about 5 times to
SMEs with <= 20 employees, after adjusting for other predictors in the model.
For Job specification in SMEs, employees having high job specification, the
odds of adopting an ERP is about 1/0.06 = 17 times compared to that of an
SME with low job specification. For the other category of job specification, the
SMEs with employees having high job specification, the odds of adopting an
ERP is about 2.3 times to that of an SME with low job specification, keeping
all other predictors in the model constant.

In terms of potential driving factors affecting the SMEs’ intention to adopt
an ERP in the future, the model found competitive pressure amongst SMEs,
state regulations, and ERPs improving business processes to be statis-
tically significant factors that influence the ERP adoption behavior of SMEs.
The two behavioural predictors, knowledge & awareness and attitudes &
beliefs reveal that both of these effects are so substantial that a minor increase
could mean a high likelihood for the SME to adopt an ERP.

Figure 1 below presents the effects plot and the variable importance plot.
The effects plot and the VIP plot reveal that the five predictors, in order of
importance, are: knowledge and awareness, competitive pressure, attitudes and
beliefs, improve business process, and job specification help predict the adoption
behaviour very strongly.

4.1 Model Evaluation

Several evaluation metrics (accuracy, confusion matrix, precision, recall, roc auc)
are utilized to measure the effectiveness of the model (presented in Fig. 2). From
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Fig. 1. LHS: Effects Plot; and RHS: Variable Importance Plot

Fig. 2. The Confusion Matrix and its Measures

the model’s confusion matrix, the accuracy of 0.993 signifies that the model
makes about 99% correct predictions. A precision of 1 identifies the model can
correctly predict 100% of the positive instances (i.e., ERP adopters) out of the
total ERP adopters. A recall (sensitivity or true positive rate) value of 0.95 tells
us that the model captures the 95% of the ERP adopters in the dataset. The F1
score of 0.94 indicates that the model is able to identify ERP adopters correctly
(recall) and has the ability to avoid misclassifying the non-adopters (precision).
The area (AUC) under the Receiver Operating Curve (ROC) was found to be
0.993, which indicates a very good overall measure of the model’s discriminatory
power and top-notch model performance.

5 Conclusion

From this empirical study of a representative sample of Fijian SMEs, we find
that there are some key characteristics that strongly influence the adoption of
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ERP systems. From the classification model created via 10-Fold Cross Valida-
tion techniques, we find that behavioral factors like knowledge and awareness,
and attitudes and beliefs are key determinants of ERP adoption. Other influen-
tial determinants include ERP driving factors like competitive pressure amongst
SMEs, the perception of business process improvements caused by ERP solu-
tions, SMEs having high job specifications, and having about 21–50 employees.
All of these predictors have substantial effects on ERP adoption. The location
and years of existence for SMEs have a moderate influence on ERP adoption,
however, they are not statistically significant. The learned model can contribute
to understanding the dynamics of ERP-systems adoption and diffusion in a small
economy like Fiji. This will assist SMEs in making more informed decisions and
also the ERP vendors in doing targeted marketing based on the findings.
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Abstract. We conduct an empirical study of neural machine translation
(NMT) for truly low-resource languages, and present a training curricu-
lum fit for cases when both parallel training data and compute resource
are lacking, reflecting the reality of most of the world’s languages and
the researchers working on these languages. Previously, unsupervised
NMT, which employs back-translation (BT) and auto-encoding (AE)
tasks has been shown barren for low-resource languages. We demonstrate
that leveraging comparable data and code-switching as weak supervi-
sion, combined with pre-training with BT and AE objectives, result in
remarkable improvements for low-resource languages even when using
only modest compute resources. The training curriculum proposed in this
work achieves BLEU scores that improve over supervised NMT trained
on the same backbone architecture, showcasing the potential of weakly-
supervised NMT for low-resource languages.

Keywords: Machine Translation · Low Resource Languages · Code
Switching

1 Introduction

Neural Machine Translation (NMT) has witnessed remarkable advancements,
especially in benefiting low-resource languages via unsupervised NMT method-
ologies. Techniques anchored by multilingual language models (LMs) pre-
training offer promising improvements in translation capabilities [7]. Nonethe-
less, while large-scale LMs suggest that comprehensive pre-training can bolster
low-resource NMT, these claims often falter when confronted with authentic low-
resource scenarios. Traditional assumptions regarding abundant data and com-
putational resources don’t universally hold for these “left-behind” languages. As
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a result, languages distinct from English frequently observe marked downturns
in translation performance [5,6,8].

In this study, we introduce a training curriculum optimized for low-resource
NMT. Focusing on Gujarati (gu), Somali (so), and Kazakh (kk), we employ
strategies like code-switching LM pre-training and unsupervised NMT training.
Additionally, we utilize comparable data training when accessible

2 Related Work

Low-Resource NLP. Recent studies indicate that a mere 6% of the world’s
7000 languages feature in NLP research [5]. This work underscores the pressing
need to focus on underrepresented and typologically varied languages. Echoing
this sentiment, our research hones in on the under-explored languages: Somali
(so), Gujarati (gu), and Kazakh (kk).

Unsupervised NMT. While unsupervised NMT thrives in settings with ample
parallel data, its efficacy wanes in low-resource contexts [6,9]. We seek to invig-
orate its performance by coupling it with training on comparable text [7].

Mining Comparable Sentences. Research on extracting pseudo-parallel sen-
tences is vast [3,4,10], yet its application for low-resource languages is scarce.
Modern methods like CCMatrix and WikiMatrix often hinge on supervised sys-
tems or require hefty computational power [11,12].

Code-Switching. Our methodology leans on code-switching during LM train-
ing to amplify cross-lingual alignment, diverging from approaches like [16] but
aligning with [15]. We spotlight monolingual data from low-resource languages,
presenting a fresh perspective in this domain.

3 Proposed Methods

3.1 Dictionary Creation and Sentence Mining

Starting with the backbone architecture based on XLM [2], we first create a foun-
dational word dictionary. This dictionary is seeded from crowd-sourced data
via the Panlex’s World vocabulary list, which we refer to as dict(Panlex). To
enhance coverage, we train monolingual word embeddings for each language
using fastText’s skipgram model. Leveraging these embeddings, a linear map-
ping is learned between source and target languages with the MUSE methodol-
ogy, using dict(Panlex) as initial translations. This process, depicted in Fig. 1,
culminates in the creation of a high coverage dictionary, termed dict(Projected).
For sentence mining, we access linked Wikipedia pages in distinct languages
using the Wikimedia dumps. By translating source sentences to English using
our word dictionary, and evaluating overlap through the Jaccard similarity score,
we extract pairs with a minimum 0.1 Jaccard Similarity. This method of mining
comparable sentences is illustrated in Fig. 2.
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Fig. 1. Dictionary Creation Process

Fig. 2. Sentence Mining Process

3.2 Training Curriculum

The initial phase involves bilingual LM pre-training on monolingual corpora of
both languages (e.g., so and en for en-so MT). A unique aspect of our method
is the incorporation of a third “language” for pre-training, composed of code-
switched sentences. These sentences merge English and the target foreign lan-
guage, which, under the MLM objective, encourages alignment between the
respective language embeddings. This method, as depicted in Fig. 3, emulates
the Translation Language Modeling (TLM) objective in XLM but bypasses the
need for parallel sentences. Following LM pre-training, we dive into unsuper-
vised NMT training. Both the encoder and decoder leverage the pre-trained LM
encoder block. We employ back-translation (BT ) and denoising auto-encoding
(AE) losses for unsupervised NMT, using the monolingual data from LM pre-
training. The transition from unsupervised BT +AE pre-training to BT +MT ,
where MT can either use supervised parallel data (MTs) or our mined compa-
rable data (MTc), is illustrated in Fig. 3.

Fig. 3. Training Curriculum
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4 Experiment Setup and Results

4.1 Experimental Setup

We evaluate using the WMT 2019 news test set for Gujarati and Kazakh, and
DARPA’s LORELEI [14] for Somali. Training durations were set based on aver-
age monthly incomes in regions speaking each language, using Amazon AWS
EC2 rates, which allocated specific GPU-hours to each training step. Quick pro-
cesses like lexicon induction were exempted. Our detailed training scripts can be
found in supplementary materials, mostly adhering to the original XLM repos-
itory1. We utilize a common 60k subword vocabulary via Byte-Pair Encoding
[13], with model configurations noted in the main text.

Table 1. BLEU scores for previous supervised and unsupervised results from 1 [8], 2 [1]
and our models. Test and validation sets are from WMT19 for Gujarati and Kazakh
and from [14] for Somali. MLM, AE, BT and MT stand for MLM, Auto-Encoding
loss, Back Translation loss and Machine Translation loss, respectively. MT s and MT c

utilize human-labeled parallel data and mined comparable data, respectively. MLM cs

utilizes both code-switched and original forms of monolingual data. Best results overall
are bolded while best results in each section are underlined. All our models here use 1
(32GB) GPU. Parentheses in training objectives refer to two simultaneous losses while
the ones separated with “+” are used successively.

Name Supervision en-gu gu-en en-kk kk-en en-so so-en

Baseline (Time-Constrained)

(BT + MT s) Supervised 3.7 1.2 1.9 3.1 20.1 23.1

MLM + (BT + AE) Unsupervised 1.7 1.2 1.0 1.3 8.1 7.4

Ours (Time-Constrained)

MLM + (BT + MT s) Supervised 6.8 3.0 5.6 8.4 23.1 29.4

MLM + (BT + AE) + (BT + MT s) Semi-supervised 11.6 6.9 7.2 10.7 23.5 29.2

MLM cs + (BT + AE) + (BT + MT s) Semi-supervised, Code-switching 13.1 7.7 7.9 10.7 23.6 29.3

MLM cs + (BT + AE) + (BT + MT c) Weakly-supervised, Code-switching 15.0 11.8 5.5 7.5 14.7 13.9

Ours (Best of Time-Constrained, ↑ batch size: 4k tokens per batch)

MLM cs + (BT + AE) + (BT + MT ) Semi/weakly-supervised, Code-switching 16.3 12.8 9.7 12.7 23.7 29.7

Ours (Best of Time-Constrained, ↑ batch size: 4k tokens per batch, ↑ time: MT trained to convergence)

MLM cs + (BT + AE) + (BT + MT ) Semi/weakly-supervised, Code-switching 17.3 13.6 11.5 14.2 23.8 30.7

Large Multilingual Models (MT trained to convergence)

mBART251 Supervised 0.1 0.3 2.5 7.4 – –

XLM-R2 + (BT + MT ) Supervised 13.2 7.8 6.0 8.4 22.5 27.5

4.2 Results

Table 1 highlights BLEU scores for diverse NMT settings. Under time con-
straints, pre-trained LMs bolstered NMT performance, especially when enhanced
with unsupervised MT goals and code-switching data. Training with vast com-
parable data proved beneficial when it surpassed available parallel data volumes,
notably for Gujarati.
1 http://github.com/facebookresearch/XLM.

http://github.com/facebookresearch/XLM
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Overall, merging code-switching LM pre-training, unsupervised NMT objec-
tives, and vast comparable datasets can heighten MT results. Contrasted with
power-intensive models like mBART and XLM-R, our approach yields better
outcomes with fewer resources.

5 Conclusion

In our study, we investigate NMT techniques for low-resource languages, intro-
ducing a training curriculum optimized for low-data and low-compute scenarios.
Notably, leveraging comparable data with strategic training objectives leads to
marked gains. For instance, bitext mining produces quality comparable corpora,
even for the low-resource languages studied.

The value of using comparable data varies by its size relative to supervised
data; it greatly benefits Gujarati but is less effective for Somali. Pre-training
models with a language modeling objective consistently enhances results across
all languages. This effect is amplified when followed by unsupervised machine
translation tasks before supervised/semi-supervised steps. However, starting
with a large multilingual LM isn’t always advantageous.

Incorporating code-switched corpora during LM pre-training significantly
bolsters NMT performance (Table 1). As our methods don’t rely on high-resource
languages or parallel sequences, they provide a foundation for future exploration
in other low-resource languages.
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Abstract. The use of drones as an efficient delivery solution is a promis-
ing technology, addressing the growing demand for deliveries. Unlike the
traditional vehicle routing problem (VRP), we introduce a new drone
routing problem (DRP) that considers distinct drone delivery attributes,
especially the need for dynamic, collision-free routes in non-grid settings.
To optimize team rewards in DRP, cooperative efforts of all drones are
essential. Thus, we employ cooperative multi-agent reinforcement learn-
ing (MARL). We present MARL4DRP , a comprehensive benchmark tai-
lored for applying cooperative MARL to DRP. Our contributes to the
optimization of drone delivery using MARL, offering a solid foundation
for future research in this domain. All code is available at the repository:
https://github.com/DING-1994/MARL4DRP

Keywords: Multiagent path finding · Drone routing problem ·
Multiagent reinforcement learning

1 Introduction

Delivering goods with drones poses logistical challenges [2]. As such, multi-drone
delivery has become indispensable [5]. We define a novel drone routing problem
(DRP) emphasizing the need for collision-free paths, drawing parallels to multi-
agent path finding (MAPF). To identify optimal paths in DRP, cooperation
among all drones is essential. This can be addressed through multi-agent rein-
forcement learning (MARL). While various MARL methods exist, there’s a lack
of a standardized DRP environment. To fill this gap, we introduce MARL4DRP
with key features: Non-grid Map: MARL4DRP operates on non-grid maps,
where each node can connect to multiple adjacent nodes from any direction,
rendering traditional grid maps as specific instances. Dynamic Goal: Distinct
from most MAPF problems, MARL4DRP features dynamic start and end goals
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14327, pp. 459–465, 2024.
https://doi.org/10.1007/978-981-99-7025-4_40
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for drones. Gym-standard Environment: The DRP is formulated as a gym-
standard environment [1], ensuring compatibility with multiple MARL frame-
works. This has been confirmed with platforms like EpyMARL [3].

2 Drone Routing Problem

2.1 Definition of the DRP

Without loss of generality, we formulate the DRP problem on a non-grid map.
Consider a group of drones N = {1, . . . , i, . . . , |N |} moving on a two-dimensional
non-grid map represented by G =< V,E >. Here, V = {v1, . . . , v|V |} denotes
the set of nodes, with each node vk having a location given by lk = (lxk , lyk).
Additionally, E = {(vk, vl)|a link exists between nodes vk

and vl} symbolizes the set of edges. Each drone i ∈ N is assigned a starting
point stiepi ∈ V and a goal goi

epi ∈ V for every episode epi.
For a finite episode of T steps, the path pathi for each drone is described

as: pathi = (li[0], li[1], . . . , li[T ]), where li[0] = sti and li[t′] = goi if drone i
reaches the goal at step t′. Once the drone arrives at its goal, it stays there, i.e.,
li[t]|t>t′ = goi. The cost function cost for the moving path pathi is given by:
cost(pathi) =

∑T−1
t=0 ‖li[t + 1] − li[t]‖2. The primary objective is to determine

a set of paths for each drone i that arrives its own goal goi while minimizing
the total movement cost subject to the constraints such as collision-free, i.e.,
min

∑
epi

∑
i cost(pathi

epi), subject to (∀i ∈ N, li[T ] = goi
epi) ∧ (∀t,∀i �= j, li[t] �=

lj [t]), where li[T ] = goi
epi ensures that the drone remains at its goal goi

epi at the
terminal step T of episode epi.

2.2 Formulating DRP as a MAPF

In this section, we reformulate the DRP problem in terms of MAPF. We define
its elements as follows:

State: We consider three state representations in this paper. One simple way
is coordinate-based representation, designating each drone’s position as (lx, ly).
The another is one-hot Representation: each grid cell corresponds to a one-hot
encoded vector. The length of this vector si = [si

1, ..., s
i
j , ...s

i
|V |] equates to the

total number |V | of the nodes. It marks a node si
j with 1 if the drone occupies

it, while the rest remain zero. For drones located on the edges, vector values are

defined by: si
j = 1− len(loci−vi

j)

len(vj ,vk)
, si

k = 1−si
j when drone i traverses edge (vj , vk),

and 0 otherwise. Here, loci = (lx
i

, ly
i

) represents drone i’s current coordinates
and len(, ) represents the distance. As drone i approaches node vi

j , the value of si
j

increases. An additional format is the one-hot with Field of View ( onehot fov),
which marks a node si

j in onehot with −1 if another drone occupies it.
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Action: At each step, drones can choose a node to move. Consequently, we
represent the action set A using the node set V . Actions available fluctuate
based on the drone’s current state si, i.e., A(si).

Reward and Objective Function: Commonly in MAPF studies, the reward
function ri(s, a, s′) is structured based on: ri

move when the drone moves (typi-
cally the inverse of the movement cost), ri

wait when the drone remains stationary,
ri
collision when a collision transpires, and ri

goal when the drone reaches its des-
ignated goal goi. Given that each drone i adheres to a policy πi, the objective
function is represented as: J(π1, ..., π|N |) = Eπ1,...,π|N|

[
R(h)

]
. Here, R(h) denotes

the discounted sum of immediate rewards received by all drones within a given
timeframe, defined as: R(h) =

∑T
t=1 γt−1

∑
i ri(s[t],a[t], s[t + 1]).

3 Cooperative MARL for DRP

Cooperative MARL focuses on optimizing team rewards by considering actions
from all agents. One method, independent Q-Learning (IQL), has each agent use
a deep Q-Network, treating other agents’ actions as parts of the environment.
Another approach, such as value decomposition networks (VDN) [6], centralizes

(a) 1drone map 3x3 (b) 2drone map 3x3

(c) 1drone map 5x4 (d) 2drone map 5x4

Fig. 1. Comparison of different state representations.
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training but decentralizes execution. VDN combines individual Q-values to get
a total Q-value, Qtot, that reflects team rewards, aiming to ensure Qtot/Qi = 1.
QMIX [4], similar to VDN, relates Qtot to individual Q-values but employs a
hypernetwork for weight adjustments. We’ll explore three main considerations
for applying cooperative MARL to DRP: 1) state representation, 2) collision
mechanism, and 3) reward design.

State Representation. As described in Sect. 2.2, we test three state repre-
sentations: coordinate representation, one-hot representation, and one-hot with
FOV representation.

Collision Mechanism. Two primary mechanisms exist for collision handling:
the collision-bounce-back pattern and the collision-terminate pattern. In the for-
mer, drones bounce back upon collision, receiving a penalty. In contrast, the
latter terminates the current episode if any two drones collide.

(a) 2drone map 3x3 (c) 3drone map 3x3

(b) 2drone map 5x4 (d) 3drone map 5x4

Fig. 2. Comparison of different collision mechanisms.
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Reward Setting. The reward function, detailed in Sect. 2.2, plays a pivotal
role in reinforcement learning. It steers the learning process, directing drones
towards optimal actions. We evaluate different values for the four reward types
in our model: rmove, rwait, rcollision, and rgoal.

4 Evaluation

We tested on three maps: map 3 × 3 (9 nodes) and map 5 × 4 (20 nodes) for
1×106 steps in total (2×106 in some cases). The settings of the hyper-parameters
are as follows: learning rate = 0.01 and discount factor = 0.99.

State Representation. In a single-drone test, both the coordinate and one-
hot representations performed similarly. However, for larger maps, the onehot
representation was superior, as evidenced in Fig. 1(a)(b). For the two-drone test,
we compared only the one-hot and onehot-fov due to the inefficiency of the coor-
dinate representation. As depicted in Fig. 1(c)(d), both representations yielded
similar results on the larger maps. However, the one-hot-fov excelled on the 3×3
map. The smaller size of this map resulted in more collisions, rendering the fov
information more critical for the drone. This suggests that on smaller maps,
where collisions are more frequent, the fov information becomes invaluable for
the learning process of the drone.

Collision Mechanism. We utilized the one-hot state representations for all
drones. We then tested two patterns for the collision mechanism, with the results
displayed in Fig. 2. In the scenarios involving two drones, as shown in Fig. 2(a)(b),
both the collision-bounce-back and collision-terminate mechanisms had similar
performance levels. Yet, with a higher number of drones, the collision-terminate
mechanism was more effective than the collision-bounce-back, as illustrated in
Fig. 2(c)(d). This can be ascribed to the fact that when a collision occurs, leading
to the termination of the episode, there’s an increase in the proportion of collision
data. This surge makes it more efficient for the drones to learn collision avoidance
strategies.

Reward Design. Using the one-hot representation, we examined three reward
settings, which are depicted in Fig. 3: i) rmove =-0.005, rwait =-0.005; ii) rmove =-
5, rwait =-5; iii) rmove =-5, rwait =-50. The first setting achieved a nearly 100%
goal rate but exhibited minor oscillations due to some drones choosing to wait
near the goal. In the second setting, by penalizing both movement and waiting
equally, the oscillations diminished, and a 100% goal rate was realized for the
3 × 3 map. In the third setting, by further penalizing waiting, we achieved a
100% goal rate across all map sizes.
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(a) 1drone map 3x3 (c) 2drone map 3x3

(b) 1drone map 5x4 (d) 2drone map 5x4

Fig. 3. (a)-(b): Comparison of different reward designs. (c)-(d): Comparison of IQL,
VDN and QMIX

Cooperative MARL Comparison. Maintaining the one-hot representation,
we conducted a comparative analysis of the value-based MARL algorithms: IQL,
VDN, and QMIX. The comparative results are showcased in Fig. 3(c)(d). For
the map 3 × 3 scenario, the performance differences among the algorithms were
marginal. However, with an increase in map size, which necessitated enhanced
cooperation, both VDN and QMIX surpassed IQL, highlighting their superior
capability in fostering inter-agent collaboration.

5 Conclusion

In this research, we introduced a gym-standard environment for DRP, ensuring
compatibility with cooperative MARL frameworks. This ensures easier bench-
marking of MARL algorithms in drone routing contexts. We also examined three
pivotal DRP settings, conducting extensive evaluations for each setting.
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Abstract. The petroleum industry is crucial for modern society, but
the production process is complex and risky. During the production,
accidents or failures, resulting from undesired production events, can
cause severe environmental and economic damage. Previous studies have
investigated machine learning (ML) methods for undesired event detec-
tion. However, the prediction of event probability in real-time was insuf-
ficiently addressed, which is essential since it is important to undertake
early intervention when an event is expected to happen. This paper pro-
poses two ML approaches, random forests and temporal convolutional
networks, to detect undesired events in real-time. Results show that our
approaches can effectively classify event types and predict the probabil-
ity of their appearance, addressing the challenges uncovered in previous
studies and providing a more effective solution for failure event manage-
ment during the production.

Keywords: Machine learning · sustainability · petroleum industry

1 Introduction

Background. Petroleum is dubbed as the “blood” of modern industry, as it is
essential for a wide range of industries. The growing awareness of preserving a
green planet for our future generations has prompted the petroleum industry to
produce energy in a more sustainable practice [1]. However, the production of
petroleum is still a complex and risky process that can have significant adverse
consequences, if not managed effectively. During the petroleum production, acci-
dents or failures, often resulting from undesired events, can cause severe environ-
mental damage. For example, oil spills can lead to water pollution and habitat
destruction, which will have long-term negative ecological impacts on our society
and lead to economic losses. Therefore, it is vital to detect undesired events dur-
ing production to minimise environmental damage and protect ecosystems. Addi-
tionally, detecting undesired events can assist engineers in performing accurate
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14327, pp. 466–473, 2024.
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Fig. 1. (a) An offshore oil platform and production well (b) Undesired event detec-
tion: finding faulty stages via analysing sensor measurements. The illustrated fault is
Spurious downhole safety valve closure, which means that the system reports that a
safety valve has closed, while actually it has not. The subjective label provided by the
domain expert indicates the faulty stage starts around 15000 s, but the actual fault
should already start somewhere before 15000 s.

failure event management, which will optimise production processes, increase
production efficiency, minimise energy consumption, and reduce maintenance
costs. A safe and environment-sustainable production will help the petroleum
industry to demonstrate social responsibility and addresses the concerns about
ecological stewardship.

Related Work. The petroleum industry has adeptly incorporated AI into the
production through the adoption of digitisation and Industry 4.0 methods. Due
to the large data volume collected from oil well sensors, using AI techniques to
assist undesired event detection is becoming feasible. Some studies [2–7] have
investigated several machine learning (ML) methods for event classification on
datasets such as 3W dataset [8].

Challenge. However, the previous studies have deficiencies in detecting and
predicting failures. There are two key challenges (C) that should be addressed.
(C1) the current classification and prediction methods are not performed in real-
time, with large window sizes ranging from many minutes to more than one hour.
This is insufficient for industrial needs. (C2) simple classification of faulty stages
cannot give accurate information to engineers for when to take intervention:
Although the event detection appears to be a classification task according to the
labels in the dataset, it is not always so straightforward, because the labels are
subjectively given by domain experts [8]. From Fig. 1b, it can be seen that some
values in the transient stage between normal and faulty stages do not necessarily
show drastic changes (Fig. 1): they are not normal but also not fully “faulty”.
There is no sharp separation between the transient stage and the faulty stage,
which makes conventional classification not accurate enough. We argue that
it is better to predict the probability of emerging failures, rather than simply
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classifying the time period as normal, transient or faulty. For having a sustainable
production, it is both critical (1) to take early intervention to prevent potential
undesired events, and (2) to balance the intervention cost and failure cost to
avoid excessive expenditure on false positives.

Our Contributions. In this paper, to support the sustainable petroleum pro-
duction, we propose two ML approaches (Sect. 2), based on Random Forests
(RF) and Temporal Convolutional Networks (TCN), for real-time probabilis-
tic detection of undesired events. Our approaches can classify the event type
and also predict the probability that the given event type appears. The pre-
diction is done for every minute, which we consider a sufficient window length
for real-time industry applications. Both real-time prediction and probabilistic
prediction have been limitedly discussed in past works; we are the first (to our
best knowledge) to experiment with TCN for the undesired event detection task
in the domain. The evaluation (Sect. 3) shows very promising results.

2 Data and Methodology

Data Description. We investigate the problem with the 3W dataset provided
by Petrobras [8], which contains more than 20000 subsets of time series labelled
with undesired events, amounting to in total 829,161 min (Table 1). The dataset
consists of both data from real production platforms and simulated data gener-
ated from the OLGA system [9], which is an established tool in the petroleum
domain for providing physically-realistic data. The data have labels of normal
operation and eight undesired event classes (Event1-8). These undesired events
are important events that can cause potential accidents or failures (for details,
please refer to [8]). The data are acquired from eight different sensors per sec-
ond, however, most subsets contain only five features, which are sensor mea-
surements of downhole gauge pressure (P1), transducer temperature (T1) and
pressure (P2), upstream choke pressure (P3), and downstream choke tempera-
ture (T2). The target value, in general, contains normal, transient, and faulty
three stages in chronological order (Fig. 1b): the normal stage is always followed
by the transient stage.

Methodology. Our methods are depicted as the data pipelines in Fig. 2. First,
we select the meaningful features (non-empty, non-constant) as input data, then
segment the input data (2D matrices) per minute and reshape them to 3D matri-
ces. After that, the data is fed to (1) feature engineering (FE) and random forests
and (2) to temporal convolutional networks for both event type classification and
event probability regression. We choose feature engineering and RF because they
are frequently used classic ML methods and have proven to be effective in past
works [2], while TCN has been known as deep learning methods suitable for
processing time series [10].

Time Series Decomposition: For the purpose of real-time prediction in every
minute, the segmentation window length is set to 60, as raw data are collected
each second.
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Table 1. Statistics of the 3W dataset [8], including normal operation and 8 types of
undesired events. The data number is counted by minutes.

No. Event Name #Real data #Simulated data #Total data

Normal Normal operation 165860 - 165860

Event1 Abrupt basic sediment water increase 2177 150485 152602

Event2 Spurious downhole safety valve closure 2778 7991 10769

Event3 Severe slugging 9769 71619 81388

Event4 Flow instability 40961 - 40961

Event5 Rapid productivity loss 6215 214534 220749

Event6 Quick production choke restriction 1306 96583 97889

Event7 Scaling in production choke 5262 45345 50607

Event8 Hydrate in production line 2370 35966 38336

Probability Interpolation: The 3W dataset does not provide event probability.
To allow probability prediction, we set the probability for normal stages 0, for
faulty stages 1, and perform linear interpolation for the transient stages. This
approach takes a naive assumption that the probability increases steadily as the
production proceeds from normal stages to faulty stages. Although simplistic, it
can already provide valuable insights.

Feature Engineering and RF: Before feeding the data to the RF model, we per-
form feature engineering to extract statistical measurements from the input data
features. The extracted features are based on the work of [2], including mean
value, standard deviation, skewness, kurtosis, minimum, maximum, median, and
first- and third-quartile values in a window size of 60. The extracted features were
normalised before using.

TCN: For the TCN model, there is no need for feature engineering, and the
reshaped input data can feed directly to the model. Compared with ordinary
convolutional neural networks that look at data both in history and the future
two directions, the architecture of TCN uses causal convolutional layers to forces
the model only look back to the history data to make a prediction, which fits
the study task. The filter decides the receptive field of the network, and dilation
(d) refers to the spacing between the values in the filter to increase the receptive
field.

Benefits. In contrast to conventional classification approaches in previous
works [2,3,5], our methodology offers two significant benefits. Firstly, the pre-
diction window size has been reduced to 60 s. We recognise that continuous
prediction every second is not always practical or feasible in the industry, as it
may consume excessive time and resources and reduce prediction accuracy. We
aim to achieve a more efficient and accurate prediction than past works [2,3,5]
by predicting the event every minute. Secondly, our prediction method is based
on a probabilistic approach, which provides a prediction of the likelihood of an
undesired faulty event. This allows domain experts to make informed decisions
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Fig. 2. We employ both RF and TCN with the illustrated workflow/architecture for
event classification and probability regression, resulting in two RF models and two TCN
models for each event, one of each for classification, and another each for regression.
We adopt the window length so that we achieving real-time prediction (every minute)
of event class and its probability.

about when to intervene and take preventive measures. The ability to make
such decisions in advance can significantly reduce the potential damage caused
by a faulty event, and reduce the economic and environmental impact of such
incidents.

3 Evaluation and Conclusion

Experiment Setting and Implementation. We experiment with two RF
and two TCN models for each event, with one RF and one TCN models for
event classification and the other two for event probability regression. We choose
separate models for each event than one single model for all events because of
the uneven distribution of event data numbers, as evident from Table 1. Previous
studies have tested a single classifier for all event classes, resulting in suboptimal
results for some events (Event 2, 6, 7) [2,3]. For example, Event 1 has fifteen
times as many data points as Event 2. This issue is critical for the industry,
because the prediction for each event is essential, and inaccurate predictions can
lead to severe consequences.

The proposed approach is then trained and tested with data from feature
engineering for RF. Following common practice, we split 80% data to training
set and 20% to test set. At the same time, the segmented data for TCN is divided
into train-validation (for hyper-parameter tuning)-test data at 70%-10%-20%.
We experiment with various hyper-parameter settings, adopting random search
and partial grid search [3]. For the RF, a tree number of 175 and a maximum
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Table 2. Results for classification (precision, recall, F1 score) and regression (rmse,
mae) for the test set. The better results in comparison are underlined. M1 and M2
stand for our proposed methods Probability-RF and Probability-TCN, respectively. B:
baseline of decision trees [3]).

Method Event1 Event2 Event3 Event4 Event5 Event6 Event7 Event8

M1 M2 B M1 M2 B M1 M2 B M1 M2 B M1 M2 B M1 M2 B M1 M2 B M1 M2 B

Precision 0.95 0.80 0.83 0.98 0.98 0.42 0.99 1 0.97 1 1 0.94 0.97 0.90 0.91 0.97 0.81 0.76 1 0.95 - 0.98 0.73 0.84

Recall 0.95 0.80 0.98 0.98 0.98 0.60 0.99 1 0.91 1 1 0.96 0.97 0.90 0.94 0.97 0.81 0.87 1 0.95 - 0.98 0.73 0.90

F1 Score 0.95 0.80 0.90 0.98 0.98 0.49 0.99 1 0.94 1 1 0.95 0.97 0.90 0.92 0.97 0.81 0.81 1 0.95 - 0.98 0.73 0.89

rmse 0.10 0.15 - 0.02 0.05 - 0.00 0.00 - 0.00 0.01 - 0.11 0.23 - 0.09 0.24 - 0.08 0.20 - 0.06 0.18 -

mae 0.06 0.10 - 0.01 0.02 - 0.00 0.00 - 0.00 0.01 - 0.04 0.14 - 0.04 0.15 - 0.04 0.12 - 0.04 0.15 -

tree depth of 10 shows the best result. For the TCN model in this study, we
have set one stack of the residual block with a filter size of 3, dilations [1,2,4],
and epochs 30 to get the best result. The Adam algorithm is selected as the
optimizer for the TCN model.

We choose common metrics for binary classification, including precision,
recall and F1 score, because they consider false positives and false negatives
in uneven class distribution, providing more information than accuracy [2]. We
choose root mean squared error (rmse) and mean absolute error (mae) for regres-
sion, as rmse is good to measure the differences between target and prediction,
and mae is less sensitive to outliers.

Results and Discussion. According to our experiment results in Table 2,
both random forests and temporal convolutional networks models have achieved
promising results for the domain users, on the dataset in real-time classification
and regression tasks. The RF model yields superior results to the TCN model
(Event 1, 2, 5, 6, 7, 8), while TCN models show better results in Event 3 and
4. This is because Event 3 and 4 have only faulty targets and no normal or
transient targets. Our experimental reproduction indicates that both real-time
classification and probabilistic regression models generate good results, while the
RF regression model yields the best results.

Figure 3 shows the probabilistic predictions of simulation and real train-test
data made by the RF regression model for the undesired event 2. The predicted
probability results are compared to the target probability labels in Fig. 3a, which
show impressive good performance. In Fig. 3b, we plot the probability prediction
using the 80%-20% train-test data split for both simulation and real data. The
results show that the predictions almost overlap completely with the labels for
simulation data. For real data, the predictions are also very close to the tar-
get labels. A comparison of the prediction results for simulation and real data
indicates that the latter has lower accuracy. This is likely due to real data are
more noisy than the simulation data. An example prediction of Event 2 (Fig. 3c)
shows that our approach can indeed address challenge 2 (C2) deficiency of sim-
ple classification. Although the labels provided in the dataset show the faulty
stage starts at 15000 s, our approach can regardless detect that the probability
of Event2 is already very high at around 10000 s, which should be the actual
case judging from the sensor data. Providing a probability of undesired events



472 Y. Qu et al.

during the transient stage is crucial for the industry, as undesired events are typ-
ically labelled based on unfortunate consequences. With probabilistic prediction,
early detection can perform more accurately to help avoid excessive expenditure
on false positives and minimise the risk of actual undesired events occurring,
which will reduce the environmental damage during the production. We also
see that the probability prediction is not perfect as the second rise of predicted
probability corresponds to no obvious sensor data change. This is due to the
limitation of the simplistic interpolation strategy. A better prediction requires
more sophisticated interpolation strategy.

Fig. 3. Plots of probabilistic prediction of the Spurious downhole safety valve closure
events by Probability-RF (a) scatter plot of prediction result and target. (b) line-plot
of the no-shuffle data (partial). (c) an example Event2 (Fig. 1) stacked with the target
labels and probabilistic prediction.

Conclusion. This paper proposes ML approaches with random forests and
temporal convolutional networks for real-time undesired event detection during
petroleum production, which can correctly classify the event type and provide
a promising prediction of event probability. Our work contributes to a more
sustainable petroleum production, by predicting event probability to engineers
for performing event management and timely intervention to prevent undesired
events. This proactive approach could help the industry to minimise ecological
impacts, increase production efficiencies, reduce maintenance costs, and miti-
gate the growing concerns about industrial sustainable development. In future
research, we plan to improve the probability prediction with better interpolation
strategy and study the role of the work in the context of the digital twins.
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Abstract. Computer-aided skin lesion segmentation with high precision
is crucial to diagnose skin cancers in the early stage. However, the lack of
pixel-level labels makes the skin lesion segmentation tasks challenging.
To tackle this problem, a new weakly-supervised skin lesion segmenta-
tion network with self-attentions named SLSNet is proposed. SLSNet
contains two modules and uses image-level labels as supervision infor-
mation. One module named Intra-image Self-attention Seed Expansion
(ISE) digs intra-image self-attentions with an expansion loss and a con-
fidence loss to expand seed areas. The other module named Inter-image
Affinity-based Noise Suppression (IAS) suppresses the noise pixels in
attention maps via inter-image correlations. Extensive experiments con-
ducted on ISIC-2017 dataset show that SLSNet achieves relatively high
performance while reducing human labeling efforts.

Keywords: Healthcare · Skin Lesion Segmentation · Self-attentions

1 Introduction

Skin cancer [13] has become one of the most common diseases around the world.
According to the American Cancer Society, over 100,000 new melanoma cases
were diagnosed and more than 7,000 deaths [12] were recorded in the United
States during 2021. With the rapid development of deep convolutional neural
networks (DCNNs), methods like [2,3,9,10] have applied DCNNs to skin lesion
segmentation. However, they need massive number of pixel-level labels to train
for a high performance. It is labor- and time-consuming [15] for professional
doctors to annotate pixel-level labels of dermoscopy images.

In order to reduce the pressure of labeling, researchers have proposed weakly
supervised learning (WSL) methods for segmentation tasks. To increase useful
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14327, pp. 474–479, 2024.
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semantic information with only image-level labels, methods like [4,8] explores
self-attentions of images as extra supervision signals.

In this work, we propose a two-stage weakly-supervised segmentation network
with self-attentions named SLSNet. It contains two modules. We propose an
intra-image self-attention seed expansion module called ISE to expand initial
seed areas. Inspired by [8], we enlarge the initial seed areas by extracting self-
attention between original images and the corresponding image blocks cut from
them. An expansion loss and a confidence loss are in use in ISE. Besides, an inter-
image affinity-based noise suppression module named IAS is proposed to make
the boundary of lesion areas clearer. We minimize the affinity of lesion features
and normal features calculated in different images via a noise suppression loss
to suppress the noise pixels, the lesion boundary will be clearer as well.

The main contributions are summarized as below.

1. We propose the ISE module who uses the image blocks and an expansion loss
to expand the initial seed areas. Besides, a novel confidence loss is designed
to decrease the unsure pixels.

2. We propose the IAS module with the novel noise suppression loss to suppress
the noise pixels and obtain clearer boundaries of lesion areas.

3. Experimental results on public skin lesion dataset ISIC-2017 demonstrates
that SLENet produces results comparable to fully-supervised methods while
reducing human labeling efforts.

2 Lesion Expansion Network with Self-attentions

This section we mainly introduce the novel modules of ISE and IAS in SLSNet.
The architecture of ISE module and IAS module is shown in Fig. 1. Section 2.1
and Sect. 2.2 are the detailed descriptions of Fig. 1.

Fig. 1. The architecture of ISE module and IAS module.
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2.1 Intra-image Self-attention Seed Expansion (ISE) Module

Given an input skin lesion image Iori, We first cut the original image Iori into Ns

blocks. We define these image blocks as Is = {I1, I2, . . . , INs
}. The original image

is cut equally in both the dimension of height and width. Note that Ns is a perfect
square. To extract the intra-image self-attention contained in Is, we design an
architecture of Siamese network. Iori and Is are sent into the Siamese network
as inputs. We fuse the features in the last two blocks of backbone network in a
channel-wise way. The fused features of Iori and Is are sent into classification
branch and CAM branch respectively. The classification branch includes a fully
connected layer with a sigmoid function. We adopt BCE loss as the classification
loss Lclass. The CAM branch adopts Gradient weighted CAM (Grad-CAM) to
obtain high-quality attention maps. In order to reduce the cost of computation,
we choose to sum the CAMs of Iori and Is on channel-wise. Then we get the
attention map of Iori and Is. We define them as AttMapIori and AttMapIs ,
respectively.

To spread the expanded semantic information of AttMapIs back to the net-
work, we design an expansion loss shown in Eq. 1 to realize this purpose.

Lexp =
Ns∑

a=1

∣∣|AttMapIori(a) − AttMapIs(a)|
∣∣
1

(1)

where || ∗ ||1 is the mean absolute error (MAE) loss. AttMapIori(a) is the image
block in Iori, which shares the same position with AttMapIs(a) in Iori.

We explore further and find that many pixels in AttMapIs are uncertain to
be either lesion pixels or normal pixels. We design a confidence loss defined in
Eq. 2 to minimize Shannon entropy [14], thus eliminating the uncertainty.

Lconfi = − 1
Ns

1
Np

Ns∑

j=1

Np∑

i=1

Attilog
(
Atti + epsilon

)
(2)

where j ∈ [1, Ns]. i is the i-th pixel in AttMapIj . Atti is the attention value of
the i-th pixel. Np is the number of pixels exists in AttMapIj . epsilon is used to
prevent the value of Atti turns into zero

2.2 Inter-image Affinity-Based Noise Suppression (IAS) Module

We observe that some pixels in AttMapIori are in the state of over-activated or
under-activated. They are defined as noise pixels. Thus, the IAS module who
explores extra semantic information between different images is proposed to
acquire correct activation areas of skin lesions.

We first obtain the probability maps of lesion and normal features. The atten-
tion map AttMapIori is normalized with the range of [0, 1] to transfer the atten-
tion value of AttMapIori to the probability scores of being the lesion areas. Then
we obtain the probability maps of lesion features PMaplesion and normal fea-
tures PMapnormal. After that we multiple them with Fori to separate lesion
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features SF lesion and normal features SFnormal. Next, we calculate the Affinity
matrix of the i-th SF lesion and the j-th SFnormal in the same batch in Eq. 3.

Aff (i, j) =
SF lesion(i)

⊙
SFnormal(j)

‖SF lesion(i)‖2 • ‖ SFnormal(j)‖2
, i �= j (3)

where
⊙

is matrix dot multiplication. || ∗ ||2 is L2 normalization. The range of
Aff is [0, 1]. Note that SF lesion and SFnormal calculated in Eq. 3 are not from
the same image since we need inter-image semantic information. Then, we design
a noise suppression loss Lns in Eq. 4 to minimize the Aff (i, j).

Lns = − 1
(N bsize)

2

Nbsize∑

i=1

Nbsize∑

j=1

log (1 − Aff (i, j)) (4)

where Nbsize is the number of images contained in a batch. i is the i-th image
in the batch and j is the j-th image in the batch.

3 Experiments

3.1 Dataset and Evaluation Metrics

We evaluate the proposed SLSNet on ISIC-2017 [5] dataset. ISIC-2017 contains
2000 training images, 160 validation images and 600 testing images. This dataset
has 3 types skin cancers, including MEL, NV and BKL. In order to improve the
training efficiency, we adopt another 8917 images in the dataset of ISIC-2018
with only image-level labels during training.

During the evaluation process, We choose Dice coefficient (DICE), Jaccard
Index (JA), Pixel accuracy (ACC), Specificity (SPE) and Sensitivity (SEN) as
evaluation metrics.

3.2 Comparison with Other Methods on the ISIC-2017 Dataset

We have compared SLSNet to other state-of-the-art methods with various super-
vision types. The fully-supervised methods we adopt include [2,3,9,10]. The
semi-supervised method is [6]. The unsupervised method is [11]. Besides, we also
choose two weakly-supervised methods include [1,7]. The comparative results are
shown in Table 1.

From Table 1 we observe that the highest metrics of JA, DICE, ACC, SPE
are all achieved by fully-supervised methods. However, the results of SLSNet are
very close or even higher to those methods. For example, the SPE of SLSNet is
1.33% higher than that of FrCN. When comparing the results with unsupervised
method, the JA and ACC of our SLSNet are 14.04% and 5.21% higher than Only-
superpixel, respectively. Furthermore, the results of our SLSNet also outperform
other recently-proposed weakly-supervised methods. The JA, DICE and SPE
of our SLSNet are 2.25%, 1.47% and 1.13% higher than the method proposed
in [1], respectively. It can be concluded from the results that SLSNet achieves a
slightly worse result compared with fully supervised methods, but it significantly
reduces the workload in annotating pixel-level labels.
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Table 1. Comparison with other advanced methods on ISIC-2017

Methods Supervision JA DICE ACC SPE SEN

FrCN [2] fully 77.11 87.08 94.03 96.69 85.40

MB-DCNN [3] fully 80.40 87.80 94.70 96.80 87.40

CSARM-CNN [9] fully 73.35 84.62 95.85 99.40 80.22

UNet-SCDC [10] fully 77.10 85.90 93.50 97.60 83.50

Ensemble-A [6] semi 79.30 87.10 94.10 95.00 89.90

Only-superpixel [11] unsupervised 60.60 – 86.90 – –

CNN-SRR [7] weak 73.00 – 90.20 – –

Zaid et al. [1] weak 72.39 83.30 93.76 96.89 87.07

SLSNet(Ours) weak 74.64 84.77 92.11 98.02 84.01

4 Conclusion

In this paper, we propose a two-stage weakly-supervised segmentation frame-
work with self attentions named SLSNet to improve the quality of skin lesion
segmentation masks. SLSNet is mainly composed of two modules named ISE
and IAS. ISE module digs the extra self-attention in image blocks of a single
image to expand the seed lesion areas. IAS module suppresses the noise pixels
by minimizing the affinity between lesion areas and normal areas in different
images. Comparative experiments with state-of-the-art methods on ISIC-2017
show that SLSNet achieves a balance between high accuracy and low human
efforts.

5 Compliance with Ethical Standards

This research study was conducted retrospectively using the open source dataset
ISIC-2017. Ethical approvals were not required as confirmed by the license
attached with the open access data.
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minimization for domain adaptation in semantic segmentation. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2517–2526 (2019)

15. Zlateski, A., Jaroensri, R., Sharma, P., Durand, F.: On the importance of label
quality for semantic segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1479–1487 (2018)

https://doi.org/10.1007/978-3-030-00937-3_83
https://doi.org/10.1007/978-3-030-00937-3_83


Trust and Reputation Management in IoT
Using Multi-agent System Approach

Mohammad Al-Shamaileh, Patricia Anthony(B) , and Stuart Charters

Faculty of Environment, Society and Design, Lincoln University,
Christchurch, New Zealand

Mohammad.Al-Shamaileh@lincolnuni.ac.nz,

{patricia.anthony,stuart.charters}@lincoln.ac.nz
http://www.lincoln.ac.nz

Abstract. The Internet of Things (IoT) facilitates the provision of
sophisticated services by linking an extensive array of diverse smart
objects. As IoT devices become more intelligent, they will have the abil-
ity to communicate and cooperate with each other. As such, it is impor-
tant to maintain effective cooperation among network deployed devices
and ensure that they operate in a reliable and dependable fashion. In
this paper, we describe IoT-CADM, an IoT agent-based decentralized
trust and reputation model to select the best service provider for a par-
ticular service based on multi-context quality of services. We evaluated
the performance of our model in a simulated smart factory environment
against three widely-known models ReGret, SIoT and R-D-C and the
result showed that our model outperformed these models.

Keywords: multiagent · trust and reputation · internet of things ·
trust calculation

1 Introduction

IoT is defined as a global infrastructure for information society which offers
sophisticated services by linking virtual or physical intelligent entities (such as
radio frequency identification (RFID) tags, sensors, and smart phones) through
existing interoperable information and communication technologies. Applica-
tions running on IoT include e-health, smart homes, smart cities, and smart
communities. These applications aim to help individuals make better decisions,
ultimately saving them time and money [3,5].

IoT enables smart devices to communicate and cooperate with each other on
behalf of human. To ensure that these devices operate in a trustworthy man-
ner, Trust Management systems (TMSs) have been developed to determine the
trustworthiness of these devices and to detect misbehaving actors in the system.
However, existing TMSs largely use physical characteristics (such as memory
rate, radio signal strength, delay factor and energy) to measure and evaluate
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trustworthiness [9,15]). Unfortunately, using physical characteristics is not suf-
ficient to measure trustworthiness, especially when these devices become more
intelligent and the IoT environments become more decentralized, dynamic, and
open for each other. TMSs which rely on non-physical parameters have been
developed but often have issues such as: how these systems gather the required
information about entities, store information, score and rank the entities, and
select entity. TMSs are used to evaluate the degree of confidence and the level of
trust that should be placed on other parties before they cooperate [2,4,8,9,15].

In this paper, we describe IoT-CADM (Comprehensive Agent-based Deci-
sion Making) that can be used to select the best provider in a smart dynamic
IoT environment based on the trustworthiness and the reputation of service
providers. The model gather information from entities and calculate their trust
scores using a trust and reputation scoring mechanism. The remainder of this
paper is organised as follows. The background knowledge and the state of art
are discussed in Sect. 2. Section 3 describes the design of IoT-CADM model.
Section 4 reports the experimental evaluation and Sect. 5 concludes and presents
future work.

2 Related Work

According to [11], trust encompasses the willingness of the trustor (evaluator)
to embrace a certain level of risk based on a subjective belief that a trustee will
consistently demonstrate reliable behaviour to maximize the trustor’s interests
in the face of uncertainty. On the other hand, reputation indicates the overall
quality or character as observed or assessed by the general public [7]. It can be
viewed as a collective assessment of trustworthiness based on the referrals or
ratings provided by the members within a community.

To date, several studies have highlighted the importance of evaluating trust-
worthiness to maximize the satisfaction and the performance of the IoT applica-
tions especially, for applications that deal with the decision-making and partner-
selection to maintain successful collaboration in the network [1,13–15]. In Public
Reputation Systems (PRS), users rate each other in order to build trust through
reputation. This kind of reputation system is based on a central unit (server)
that aggregates up all the feedback after any event. [1] introduced IoT-TM
(IoT-Trust Management) as a cluster-based approach to address the issues of
IoT trust management such as countering bad-mouthing attacks and memory-
efficient trust computation.

In [10], trust is evaluated by combining three main aspects “Reputation-
Distribute-Conflict” about all the other parties in the environment during the
trust evaluation process. The disrepute describes the negative opinions, while
the conflict implements the consistency of the agent behaviours; where the repu-
tation is used to indicate the positive opinions to enhance the process of selecting
a trustworthy provider in multi-agent systems. The ReGreT system [12] is one
of the earliest models that uses social interactions as a third source of infor-
mation. ReGreT extends the capabilities of the agent to deal with trust and
reputation in order to assist consumers to make rational decisions in a complex
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e-commerce environment setting. Kowshalya and Valarmathi [8] presented the
Social Internet of Things (SIoT) trust management scheme that integrates IoT
and Social Networking. They proposed a dynamic trust management model that
takes into account direct observations (Dij), Indirect Recommendations (CIij),
Centrality (Gij), Energy (E) and Service Score (S) to compute the trust score.
The experimental results show that the model can also handle On Off selective
forwarding attacks.

3 IoT-CADM

In this study, we simulated and implemented a smart factory supply chain which
represents intelligent machines working together in supply chain during the man-
ufacturing cycle. The IoT smart agents represent the intelligent machines in
the supply chain as sellers and buyers. IoT-CADM consists of agent-based Ser-
vice Consumer (aSC), agent-based Service Provider (aSP), Service Registry List
(SRL)and Market Value Registry List (MVL). SRL provides a list of service
of providers and the services they can offer. MVL contains the market value
information for all service providers. The proposed model was developed and
deployed using the JADE framework1.

In this setup, all components are connected to the Open-IoT network and that
they use the Suppliers, Inputs, Process, Outputs and Customers (SIPOC) supply
chain approach to define business activities. In addition, aSP must provide at
least one service. Services can be provided by different providers and aSC needs
to select the best provider based on the multi-context QoS trust and reputation
model provided by the model.

3.1 IoT-CADM Trust Evaluation and Selection Model (IoT-TESM)

IoT-CADM provides IoT-TESM (IoT-CADM Trust Evaluation and Selection
model) that is used by aSCs to evaluate the trustworthiness of aSPs by com-
bining information from different sources including Direct experiences (DtSPi),
Indirect experiences (IndtSPi), and Market evaluation (MrkV al). The service
consumer (aSC) selects service provider (aSP ) by evaluating the IoT-TESM for
every service provider aSP who provides a particular service SRV i. IoT-TESM
is computed using Eq. 1, where the aSP with the highest evaluation value will be
selected to perform the service. Here, α, β, and γ are weights and α+β +γ = 1.
The values of these weights are set manually by the system’s user or automat-
ically using the ASW (Auto-Scale Weights) which aims to give a balanced and
fair values of the weights to increase the overall performance depending on what
the agents see as important at that particular time.

Trust = αDtSPi% + βIndtSPi% + γMrkV alSP i% (1)

1 https://jade.tilab.com/.

https://jade.tilab.com/
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Direct experiences (DtSPi) is the main source of information, which reflect
all the previous transactions between the aSC and aSP . Th Indirect experi-
ences (IndtSPi reflects the experience and relation between the same aSP with
the others, and it indicates how the others think about the aSP . The Market
evaluation (MrkV al) is used to increase the evaluation accuracy and reduce the
risk of dealing with a new provider. MrkVal is the market value of the aSP .
MrkVal provide more opportunity for new providers to be selected as DtSPi
and IndtSPi are not available for new entrants.

4 Experimental Evaluation

The purpose of this experiment is to evaluate the performance of IoT-CADM
against ReGreT [12], S-IoT [8] and R-D-C [10]. All models were implemented
in the simulated smart factory environment.

We evaluated the performance of these models based on fourteen parameters
which include quality of service, the quality of provider, total cash utility, and
evaluation of trustworthiness. The trustworthiness score for each service provider
is calculated using IoT-TESM. A high trust score signifies a high level of trust-
worthiness. We used TOPSIS, a multi-criteria decision analysis method [6] to
rank the performance of these models.

The environment is populated with 230 agents. These agents may be active
all the time during the simulation or only run for a specific period. Agents
are distributed according to 4 different levels in the supply chain. L1 is service
consumer only, L4 is the raw material providers. Between L1 and L4, the agents
in L2 and L3 consume the services from the lower levels and provide services to
the higher levels. These 230 agents are distributed across L1 (50), L2(55), L3(60)
and L4(65). Here, when a consumer agent needs certain services, it collects the
required information, evaluates and selects the service providers. The simulation
is run for 10000 time ticks, which represent a duration of seven years where each
time tick is equals to 6 h. In this experiment, we assume all agents are honest.

Figure 1 shows the performance of the four models across the fourteen para-
meters. It can be seen that our model, IoT-CADM is the top finisher for 8 out of
the 14 parameters being evaluated. Using TOPSIS method, IoT-CADM is ranked
as the best performer followed by ReGreT, SIoT and R-D-C. IoT-CADM and
ReGreT are the top two performers since they use social information rather than
just using physical behaviours.
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Fig. 1. TOPSIS performance ranking for all models

5 Conclusion and Future Work

In this paper, we discussed IoT-CADM, an IoT agent-based decentralized trust
and reputation model to select the best service provider for a particular service
based on multi-context quality of services. To ensure a successful and efficient
collaboration among the IoT entities, they need to operate in a reliable and
dependable manner. The IoT-TESM is used to evaluate the trustworthiness by
combining information gathered from different sources including Direct experi-
ences (DtSPi), Indirect experiences (IndtSPi), and Market evaluation (MrkVal).
The proposed model aims to aid devices in the IoT environment to determine
when, how and who they should collaborate with.

This work advances the state of the art by providing a trust and reputation
model than can facilitate decision-making amongst agents in IoT environment
such as smart factory, smart houses and smart city. The availability of such model
can be beneficial to humans to provide better decision-making which indirectly
saves time and money. In addition, the inclusion of artificial intelligence through
the use of agents for decision making means that the IoT-CADM model can
adapt to different environments when compared with traditional IoT trust and
reputation models.

In this study, we assume that all agents are honest. It will be interesting to
investigate the performance of our model in environments that are partially and
fully populated with dishonest agents.



Trust and Reputation Management 485

References

1. Alshehri, M.D., Hussain, F.K., Hussain, O.K.: Clustering-driven intelligent trust
management methodology for the internet of things (CITM-IoT). Mob. Netw.
Appl. 23(3), 419–431 (2018). https://doi.org/10.1007/s11036-018-1017-z

2. Ben Saied, Y., Olivereau, A., Zeghlache, D., Laurent, M.: Trust management sys-
tem design for the Internet of Things: a context-aware and multi-service approach.
Comput. Secur. 39, 351–365 (2013). https://doi.org/10.1016/j.cose.2013.09.001

3. Caminha, J., Perkusich, A., Perkusich, M.: A smart trust management method to
detect on-off attacks in the Internet of Things. Secur. Commun. Netw. 2018, 1–10
(2018). https://doi.org/10.1155/2018/6063456

4. Copigneaux, B.: Semi-autonomous, context-aware, agent using behaviour mod-
elling and reputation systems to authorize data operation in the Internet of Things.
In: 2014 IEEE World Forum on Internet of Things (WF-IoT), pp. 411–416 (2014)

5. Guo, J., Chen, I.R., Tsai, J.J.: A survey of trust computation models for service
management in Internet of Things systems. Comput. Commun. 97, 1–14 (2017).
https://doi.org/10.1016/j.comcom.2016.10.012

6. Hwang, C.L., Yoon, K.: Methods for multiple attribute decision making. In: Mul-
tiple Attribute Decision Making. Lecture Notes in Economics and Mathematical
Systems, vol. 186. Springer, Berlin, Heidelberg (1981). https://doi.org/10.1007/
978-3-642-48318-9 3

7. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decis. Support Syst. 43(2), 618–644 (2007). https://doi.
org/10.1016/j.dss.2005.05.019. emerging Issues in Collaborative Commerce

8. Kowshalya, A.M., Valarmathi, M.L.: Trust management in the social Internet
of Things. Wireless Pers. Commun. 96(2), 2681–2691 (2017). https://doi.org/10.
1007/s11277-017-4319-8

9. Maddar, H., Kammoun, W., Youssef, H.: Effective distributed trust management
model for Internet of Things. Procedia Comput. Sci. 126, 321–334 (2018). https://
doi.org/10.1016/j.procs.2018.07.266. knowledge-Based and Intelligent Information
& Engineering Systems: Proceedings of the 22nd International Conference, KES-
2018, Belgrade, Serbia

10. Majd, E., Balakrishnan, V.: A reputation-oriented trust model for multi-agent
environments. Ind. Manag. Data Syst. 116(7), 1380–1396 (2016). https://doi.org/
10.1108/imds-06-2015-0256

11. Ruan, Y., Durresi, A.: A survey of trust management systems for online social
communities - trust modeling, trust inference and attacks. Knowl.-Based Syst.
106, 150–163 (2016). https://doi.org/10.1016/j.knosys.2016.05.042

12. SABATER, J.: Evaluating the regret system. Appl. Artif. Intell. 18(9–10), 797–813
(2004). https://doi.org/10.1080/08839510490509027

13. Shayesteh, B., Hakami, V., Akbari, A.: A trust management scheme for IoT-
enabled environmental health/accessibility monitoring services. Int. J. Inf. Secur.
19, 93–110 (2018)

14. Sun, G., Li, J., Dai, J., Song, Z., Lang, F.: Feature selection for IoT based on
maximal information coefficient. Futur. Gener. Comput. Syst. 89, 606–616 (2018).
https://doi.org/10.1016/j.future.2018.05.060

15. Yu, Y., Jia, Z., Tao, W., Xue, B., Lee, C.: An efficient trust evaluation scheme for
node behavior detection in the Internet of Things. Wireless Pers. Commun. 93(2),
571–587 (2016). https://doi.org/10.1007/s11277-016-3802-y

https://doi.org/10.1007/s11036-018-1017-z
https://doi.org/10.1016/j.cose.2013.09.001
https://doi.org/10.1155/2018/6063456
https://doi.org/10.1016/j.comcom.2016.10.012
https://doi.org/10.1007/978-3-642-48318-9_3
https://doi.org/10.1007/978-3-642-48318-9_3
https://doi.org/10.1016/j.dss.2005.05.019
https://doi.org/10.1016/j.dss.2005.05.019
https://doi.org/10.1007/s11277-017-4319-8
https://doi.org/10.1007/s11277-017-4319-8
https://doi.org/10.1016/j.procs.2018.07.266
https://doi.org/10.1016/j.procs.2018.07.266
https://doi.org/10.1108/imds-06-2015-0256
https://doi.org/10.1108/imds-06-2015-0256
https://doi.org/10.1016/j.knosys.2016.05.042
https://doi.org/10.1080/08839510490509027
https://doi.org/10.1016/j.future.2018.05.060
https://doi.org/10.1007/s11277-016-3802-y


Author Index

A
Akyürek, Afra Feyza III-453
Albrecht, David II-91
Alotaibi, Hissah II-481
Al-Shamaileh, Mohammad III-480
Anthony, Patricia III-480
Aoyama, Hideki III-459
Arakawa, Yutaka I-438
Arisaka, Ryuta I-487

B
Bai, Quan III-307
Bai, Yun III-129
Banzhaf, Wolfgang II-385
Bao, Feilong II-349
Bao, Xiaoyi II-159
Bao, Yuzhi II-172
Bercher, Pascal II-448
Bu, Chenyang II-436

C
Cai, Hongming I-467
Cai, Jingye III-370
Cai, Xintian I-150
Cameron, David III-466
Cao, Ke I-415
Cao, Xiaolu III-41
Cao, Xueyang II-198
Cao, Yun III-434
Cao, Yunbo II-275
Cao, Zhi II-104
Celine, Karen Frilya I-23
Chai, Linzheng II-275
Charters, Stuart III-480
Cheikh, Faouzi Alaya III-294
Chen, Bin I-305
Chen, Chih-Chia I-186
Chen, Cui III-396
Chen, Fangyi II-469
Chen, Gang II-423
Chen, Gaode I-313

Chen, Hao I-415
Chen, Haopeng I-92
Chen, Li III-117
Chen, Liang I-92
Chen, Mingsong I-353
Chen, Qi II-385
Chen, Qingliang II-342
Chen, Shifeng III-67
Chen, Tingxuan I-389
Chen, Wei-Han I-186
Chen, Wenyu I-113
Chen, Wu I-52
Chen, Xiuqi III-216
Chen, Xucan III-165
Chen, Yuang III-16
Chen, Zhenxiang II-198
Chi, Xuebin I-274
Chiang, Jen-Shiun I-186
Chien, Chun-Tse I-186
Chikatsuji, Shuichi I-480
Chow, Yang-Wai II-287
Chu, Xiaomin II-159
Chung, Tae-Sun II-223, II-375
Cong, Jinmiao I-164

D
Dasgupta, Pallab I-137
Dawton, Billy II-236
de Silva, Anjali II-423
Deng, Yuwen III-422
Dey, Soumyajit I-137
Diao, Yongqing II-368
Ding, Hao I-249
Ding, Shiyao II-298, III-257, III-459
Ding, Weiwei I-262
Ding, Yan II-375
Dong, Anming I-29
Dong, Jikun II-185
Dong, Yan III-28
Doraisamy, Shyamala II-287
Du, Haiyun II-133

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14327, pp. 487–492, 2024.
https://doi.org/10.1007/978-981-99-7025-4

https://doi.org/10.1007/978-981-99-7025-4


488 Author Index

Du, Hongfei I-113
Du, Xiangyu II-310
Dzulfikar, Muhammad Ayaz I-23

E
Eguchi, Koji II-355

F
Fan, Wei II-41
Fan, Xiangyu II-41
Fan, Yaxin II-159
Fan, Yu I-415
Fan, Zijing II-310
Fang, Ruidong II-133
Fang, Yunfei II-29
Fei, Minrui III-141
Fei, Zixiang III-141
Feng, Jiajie III-3
Feng, Jun I-340
Feng, Wenyu III-141
Feng, Xiao III-370
Fradi, Anis II-66
Fu, Xuzhou I-286

G
Gan, Haitao I-426, I-451
Gangopadhyay, Briti I-137
Gao, Fei III-41, III-216
Gao, Jie I-286
Gao, Jingnan III-16
Gao, Shihao II-172
Gao, Xuesong I-212
Gaov, Guanglai II-349
Ge, Liang I-79
Gong, Chen II-117
Gong, Lu III-240
Goundar, Sanmugam III-447
Guan, Donghai III-422
Guo, Chunxi II-262
Guo, Ning III-153

H
Halin, Alfian Abdul II-287
Han, Dingding I-353
Han, Jin II-362
Han, Liangzhe I-401
Han, Rui II-410
Han, Xinyi III-370
Han, Yadi II-198

Hassan, Saif III-294
Hawbani, Ammar III-228
He, Changxiang II-16
He, Honglian II-368
He, Longwang II-159
Higashi, Masaki II-457
Hu, Pan I-467
Hu, Xiaoyi I-274
Hu, Xue III-81
Hu, Xuegang I-104
Huang, Baiyin III-93
Huang, Bo III-396
Huang, Guanju II-145
Huang, Hanming I-262
Huang, Jiancheng III-67
Huang, Jincai I-389
Huang, Junjie III-474
Huang, Kun II-249
Huang, Limei II-198
Huang, Pei II-410
Huang, Shiyu I-125
Huang, Wanjun III-216
Huang, Weizhen II-133
Huang, Yidong III-16
Huang, Yiming III-409
Huang, Ying I-173
Huang, Yongjian II-342
Huang, Yun II-133
Huang, Zhongwei I-426, I-451

I
Imran, Ali Shariq III-294
Inamuro, Kenta II-457
Ishida, Shigemi I-438
Ishikawa, Yuichi I-438
Ishioka, Tsunenori II-236
Ito, Takayuki I-487, II-298, III-257
Iwaihara, Mizuho I-305
Izutsu, Jun II-323

J
Ji, Jiemin III-422
Jia, Fuqi II-410
Jia, Lichen I-249
Jiang, Feng II-159
Jiang, Lihong I-467
Jiang, Yuncheng I-377
Jiang, Zhihua II-145
Jiang, Zihan I-249



Author Index 489

Jiao, Kechen I-3
Jiao, Yuejun I-353
Jin, Pin I-92
Jin, Rize II-223, II-375
Jin, Rui III-28
Jones, Alex III-453
Ju, Rui-Yang I-186

K
Kalra, Bhavya II-53
Khan, M. G. M. III-447
Khan, Sabiha III-333
Khoo, Boo Cheong II-16
Kimura, Keigo II-79, II-124
Kobayashi, Ken II-457
Kobayashi, Nao I-438
Komatani, Kazunori I-480
Komiya, Kanako II-323
Kong, Junyang II-16
Kong, Lingti I-92
Koswara, Ivan Adrian I-23
Kudo, Mineichi II-79, II-124
Kuwanto, Garry III-453

L
Lai, Edmund M.-K. III-307
Lai, Yantong I-313
Li, Baoshan III-189
Li, Binglin I-377
Li, Bo I-199
Li, Chen I-415
Li, Guanlin III-129
Li, Haifeng I-79
Li, Hongxi I-377
Li, Jiajun I-249
Li, Jiansong I-249
Li, Jiaxin II-223
Li, Jinchuan III-434
Li, Jing II-41
Li, Jinglin I-150
Li, Lixuan III-345
Li, Meimei II-172
Li, Mingkang III-240
Li, Nan II-172
Li, Peifeng II-159
Li, Qingli I-353
Li, Qiwei I-415
Li, Shan I-199
Li, Shijun III-234, III-358

Li, Siyang III-453
Li, Tingting III-345
Li, Weihua III-307
Li, Weiling I-39
Li, Weitao III-234
Li, Weiyi I-157
Li, Wenkai II-398
Li, Xu I-15
Li, Xuewei I-286
Li, Yachuan III-129
Li, Zhengcao I-92
Li, Zhiwei II-124
Li, Zhixin I-173, I-327, II-210
Li, Zhoujun II-275
Li, Zongmin III-129
Liang, Dengzhe I-377
Liang, Shuang III-202
Liang, Yin III-409
Lin, Donghui III-459
Lin, Fanqi I-125
Lin, Jucai II-133
Lin, Yiping I-79
Lin, Yu-Shian I-186
Lin, Zhihao I-104
Lin, Zuoquan II-336
Liu, Changlin II-198
Liu, Chanjuan III-269
Liu, Chao II-172
Liu, Chuanjuan I-164
Liu, Di II-349
Liu, Jiamou I-52
Liu, Jiguo II-172
Liu, Lei I-249
Liu, Minghao II-410
Liu, Shaolei II-198
Liu, Tang III-281
Liu, Wenya I-426
Liu, Xin III-396
Liu, Xu I-401
Liu, Yang I-164, I-467
Liu, Yi II-29, III-3
Liu, Yifan III-67
Liu, Yihan I-365
Liu, Yilin I-150
Liu, Zhaorui III-28
Liu, Zheping II-398
Liu, Zhiqiang I-286
Long, Jun I-389
Long, Kaifang II-185
Long, Teng III-117



490 Author Index

Lu, Hezhen II-436
Lu, Xuesong I-157
Lu, Yan II-104
Lu, Yue I-353
Lua, Chong Ghee II-16
Luo, Guiyang I-150
Luo, Xiao II-133
Luo, Xin I-39
Lv, Chen II-185
Lv, Yining I-365

M
Ma, Feifei II-410
Ma, Hui II-423
Ma, Xiaojian I-401
Mahboubi, Shahrzad I-237
Manwani, Naresh II-53, III-384
Mao, Yapeng II-133
Mao, Yuanhui I-340
Maurya, Khushvind I-98
Meng, Xiong III-281
Mine, Tsunenori I-438, II-236
Mizuguchi, Haruhi II-79
Mohandas, Sreenivasan III-384
Mounir, Abdelaziz III-396
Mu, Caihong II-29, III-3

N
Nagai, Shota II-457
Nakamura, Yugo I-438
Nakata, Kazuhide II-457
Naruse, Yasushi I-438
Nekooei, Seyed Mohammad II-423
Nicholson, Ann II-91
Ning, Nianwen I-365
Ninomiya, Hiroshi I-237
Norowi, Noris Mohd II-287

P
Paik, Joon-Young II-223, II-375
Palit, Sarbani I-66
Pan, Qingyi III-153
Pei, Pengfei III-434
Pei, Songwen III-474
Peng, Tao III-28
Ping, Siyuan I-286
Pu, Peng I-157

Q
Qian, Lin I-104
Qiao, Zhongjian I-3
Qin, Xiaofei II-16
Qin, Zheng III-165
Qingge, Letu III-153
Qiu, Jiyan I-274
Qiu, Lyn I-15
Qiu, Song I-353
Qu, Hong I-113
Qu, Yuanwei III-466

R
Rao, Dongning II-145
Razali, Md Saifullah II-287
Reddy, Karuna III-333, III-447
Ruan, Yiwen III-28

S
Sabar, Nasser II-398
Sadhukhan, Payel I-66
Safwat, Sarah III-320
Salem, Mohammed A. -M. III-320
Samir, Chafik II-66
Samiullah, Md II-91
Shang, Lin III-234
Shao, Zengzhen II-185
Sharaf, Nada III-320
Shen, Jiahui I-313
Shen, Xinyi II-336
Shen, Yuling III-28
Shen, Zheyuan II-41
Shi, Bing II-104
Shi, Ming I-426, I-451
Shinnou, Hiroyuki II-323
Si, Qi I-157
Singh, Ronal II-481
Sleath, Kayleigh II-448
Song, Andy II-398
Song, Shouliang I-29
Song, Xin II-3
Soria P., Xavier III-129
Srigrarom, Sutthiphong II-16
Su, Qiang II-210
Sun, Lu II-79, II-124
Sun, Mingming I-15
Sung, Minje II-457



Author Index 491

T
Takeda, Ryu I-480
Tan, Boheng III-93
Tan, Zihao II-342
Tang, Jintao II-262
Tang, Xiaoqin III-93
Tao, Yanxin I-298, III-54
Tian, Lihua I-415
Tian, Yongmeng I-365
Tian, Zhiliang II-262
Tourni, Isidora Chara III-453
Tu, Wei-Wei I-125

U
Ullah, Mohib III-294

W
Waaler, Arild III-466
Wan, Sheng II-117
Wang, Bo II-236
Wang, Gang I-401
Wang, Guan III-307
Wang, Hao III-370
Wang, Jinfeng III-247
Wang, Jingya III-370
Wang, Li I-365
Wang, Lin III-228
Wang, Pancheng II-262
Wang, Ruohan I-313
Wang, Shanshan II-198
Wang, Shaoyu I-467
Wang, Shuai I-29
Wang, Siying I-113
Wang, Song III-345
Wang, Tianci I-313
Wang, Ting II-262
Wang, Weihua II-349
Wang, Xiangxiang III-370
Wang, Xiao II-469
Wang, Xiaoshu III-189
Wang, Xin II-368
Wang, Yining III-409
Wang, Yu II-3
Wang, Yuan I-262
Wang, Yubo III-117
Wang, Yujiang III-345
Wang, Zidong I-389
Watanabe, Kohei II-355
Wei, Haiyang II-3

Wei, Xiaopeng III-269
Wei, Xuefeng III-105
Wei, Yonggang II-3
Wei, Yuntao II-111
Wei, Zihao III-16
Wen, Zhihua II-262
Weng, Libo III-216
Wijaya, Derry III-453
Wu, Die III-281
Wu, Fangyu III-177
Wu, Hongzhuang III-28
Wu, Renjie II-133
Wu, Ruoyu III-81
Wu, Shiqing III-307
Wu, Zifan III-81

X
Xiang, Ji I-313
Xiao, Dongling II-275
Xiao, Guoqiang III-93
Xiao, Meihong I-389
Xiao, Qian III-129
Xie, Junwei I-79
Xie, Zhe I-39
Xiong, Guanming I-225
Xiong, Shengwu II-362
Xiong, Wenjing I-52
Xiong, Yan III-228
Xu, Hongbo II-249
Xu, Weizhi II-185
Xu, Yongxiu II-249
Xu, Yuyao I-298
Xue, Bing II-385
Xue, Xiao II-469

Y
Yamamoto, Kenta I-480
Yamane, Daiki II-457
Yamatomi, Ryo I-237
Yan, Jingsheng I-467
Yan, Junchi I-15
Yan, Zhao II-275
Yang, Chaozhi III-129
Yang, Jian II-275
Yang, Jilin III-281
Yang, Kang II-262
Yang, Keke II-41
Yang, Liqun II-275
Yang, Liu I-389



492 Author Index

Yang, Pei III-153
Yang, Yang I-249
Yang, Zhi I-426, I-451
Yang, Zijian II-124
Ye, Jianwei I-415
Ye, Na III-189
Yin, Jun II-133
Yu, Fang III-358
Yu, Hao III-165
Yu, Hui II-185
Yu, Jiguo I-29
Yu, Wei III-358
Yu, Weimin I-415
Yu, Yongbin III-370
Yuan, Quan I-150
Yuan, Ting I-249
Yuan, Weiwei III-422
Yuan, Wu I-274
Yuan, Yue II-117

Z
Zehmakan, Ahad N. I-98
Zha, Xupeng I-199, III-345
Zhan, Huayi II-368
Zhang, Chuang II-117
Zhang, Hantao II-410
Zhang, Hengzhe II-385
Zhang, Hone II-111
Zhang, Hongmin I-451
Zhang, Jiali III-240
Zhang, Jian I-274, II-410
Zhang, Jingyi III-153
Zhang, Lei III-28, III-81
Zhang, Mengjie II-385
Zhang, Penghui I-225
Zhang, Qiang III-269
Zhang, Qian-Wen II-275
Zhang, Ruining III-269
Zhang, Shuyang II-111
Zhang, Wen III-240

Zhang, Wenyuan II-249
Zhang, Xiang III-189
Zhang, Xinghua II-249
Zhang, Xuedian II-16
Zhang, Yanyu I-365
Zhang, Yaogong III-28
Zhang, Yuhong I-104
Zhang, Yuzhe II-111
Zhang, Zhijie III-189
Zhang, Zicong III-247
Zhang, Zili III-240
Zhang, Zixing III-345
Zhang, Zuping III-396
Zhao, Deze III-202
Zhao, Huan I-199, III-345
Zhao, Junfeng I-212
Zhao, Kaiqi I-52
Zhao, Shengjie III-202
Zhao, Wen I-225
Zhao, Xianfeng III-434
Zheng, Chenhao III-16
Zheng, Jiping I-298, III-54
Zhong, Xinfang I-327
Zhong, Yurong I-39
Zhou, Baifan III-466
Zhou, Ran I-426, I-451
Zhou, Wenju III-141
Zhou, Xuan III-105
Zhou, Yi I-365
Zhou, Ziyu III-409
Zhu, Honglei I-29
Zhu, Jian III-3
Zhu, Jiran II-185
Zhu, Kaiqin I-298
Zhu, Liang II-3
Zhu, Tongyu I-401
Zhu, Wenbin II-342
Zhuang, Jiayuan III-165
Zhuang, Yaozhong III-41
Zi, Yunfei II-362
Zou, Chengming III-177


	 Preface
	 Organization
	 Contents – Part III
	Vision and Perception
	A Multi-scale Densely Connected and Feature Aggregation Network for Hyperspectral Image Classification
	1 Introduction
	2 Proposed Method
	2.1 Spectral-Spatial Feature Extraction Module
	2.2 Multi-scale Feature Extraction Module
	2.3 Multi-level Feature Aggregation Module

	3 Experiment and Analysis
	3.1 Dataset Description and Experiment Setup
	3.2 Experiment Results and Analysis
	3.3 Parametric Analysis
	3.4 Ablation Experiments

	4 Conclusion
	References

	A-ESRGAN: Training Real-World Blind Super-Resolution with Attention U-Net Discriminators
	1 Introduction and Motivation
	2 Related Work
	2.1 GANs-Based Blind SR Methods
	2.2 Discriminator Models

	3 Method
	4 Experiments
	4.1 Implementation Details
	4.2 Testsets and Experiment Settings
	4.3 Comparing with the State-of-the-Arts
	4.4 Attention Block Analysis
	4.5 Multi-scale Discriminator Analysis
	4.6 Ablation Study

	5 Conclusions
	References

	AI-Based Intelligent-Annotation Algorithm for Medical Segmentation from Ultrasound Data
	1 Introduction
	1.1 Contributions
	1.2 Related Work 

	2 Methodology 
	2.1 Workflow
	2.2 Adaptive Polygon Tracking (APT) Model
	2.3 Historical Storage-Based Quantum-Inspired Evolutionary Network (HQIE)
	2.4 Mathematical Model-Based Contour Detection

	3 Experiment Setup and Results 
	3.1 Databases
	3.2 Performance on the Testing Dataset Disturbed by Noise
	3.3 Ablation Study
	3.4 Comparison with State-Of-The-Art (SOTA) Models

	4 Conclusion 
	References

	An Automatic Fabric Defect Detector Using an Efficient Multi-scale Network
	1 Introduction
	2 Related Work
	3 Proposed Model EMSD
	3.1 LSC-Darknet
	3.2 DCSPPF
	3.3 LSG-PAFPN
	3.4 Detection Head

	4 Experiments
	4.1 Setup
	4.2 Datasets
	4.3 Evaluation Metrics
	4.4 Comparison Experiment Results
	4.5 Ablation Experiments
	4.6 Visualization of Detection Results

	5 Conclusion
	References

	An Improved Framework for Pedestrian Tracking and Counting Based on DeepSORT
	1 Introduction
	2 FR-DeepSort for Pedestrian Tracking and Counting
	2.1 The FR-DeepSORT Framework
	2.2 Pedestrian Tracking
	2.3 Pedestrian Counting

	3 Experiments
	3.1 Analysis of Pedestrian Tracking Results
	3.2 Analysis of Pedestrian Counting Results

	4 Conclusion
	References

	Bootstrap Diffusion Model Curve Estimation for High Resolution Low-Light Image Enhancement
	1 Introduction
	2 Related Work
	2.1 Learning-Based Methods in LLIE
	2.2 Diffusion Models

	3 Methodology
	3.1 Curve Estimation for High Resolution Image
	3.2 Bootstrap Diffusion Model for Better Curve Estimation
	3.3 Denoising Module for Real Low-Light Image

	4 Experiments
	4.1 Datasets Settings
	4.2 Comparison with SOTA Methods on Paired Data
	4.3 Comparison with SOTA Methods on Unpaired Data
	4.4 Ablation Study

	5 Conclusion and Limitation
	References

	CoalUMLP: Slice and Dice! A Fast, MLP-Like 3D Medical Image Segmentation Network
	1 Introduction
	2 Method
	2.1 Overview
	2.2 Multi-scale Axial Permute Encoder
	2.3 Masked Axial Permute Decoder
	2.4 Semantic Bridging Connections

	3 Experiment
	3.1 Dataset
	3.2 Implement Details
	3.3 Comparison with SOTA
	3.4 Ablation Study

	4 Conclusion
	References

	Enhancing Interpretability in CT Reconstruction Using Tomographic Domain Transform with Self-supervision
	1 Introduction
	2 Methodology
	2.1 Radon Transform in CT Imaging
	2.2 CT Reconstruction Using Tomographic Domain Transform with Self-supervision

	3 Experimental Results
	3.1 Datasets and Experimental Settings
	3.2 Comparison Experiments

	4 Conclusion
	References

	Feature Aggregation Network for Building Extraction from High-Resolution Remote Sensing Images
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Transformer Encoder
	3.2 Feature Aggregation Module
	3.3 Feature Refinement via Difference Elimination Module and Receptive Field Block
	3.4 Dual Attention Module for Enhanced Feature Interactions
	3.5 Fusion Decoder and Loss Function

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Comparison with Other State-of-the-Art Methods
	4.4 Ablation Study

	5 Conclusion
	References

	Image Quality Assessment Method Based on Cross-Modal
	1 Introduction
	2 Related Work
	2.1 Deep Learning-Based Image Quality Assessment
	2.2 Cross-Modal Techniques

	3 Methods
	3.1 Exploring the Feasibility of Cross-Modal Models
	3.2 Image Quality Score Assessment Based on Cross-Modality

	4 Experiments
	4.1 Datasets
	4.2 Experimental Details
	4.3 Evaluation Metrics
	4.4 Feasibility Research
	4.5 Comparison Experiments
	4.6 Ablation Experiments

	5 Conclusion
	6 Outlook
	References

	KDED: A Knowledge Distillation Based Edge Detector
	1 Introduction
	2 Related Work
	2.1 Label Problems in Edge Detection
	2.2 Knowledge Distillation

	3 Method
	3.1 Compact Twice Fusion Network for Edge Detection
	3.2 Knowledge Distillation Based on Label Correction
	3.3 Sample Balance Loss

	4 Experiments
	4.1 Datasets and Implementation
	4.2 Comparison with the State-of-the-Art Methods
	4.3 Ablation Study

	5 Conclusion
	References

	Multiple Attention Network for Facial Expression Recognition
	1 Introduction
	2 Related Work
	2.1 Real-Time Classification Networks
	2.2 Attention Mechanism

	3 Methodology
	3.1 Multi-branch Stack Residual Network
	3.2 Transitional Attention Network
	3.3 Appropriate Cascade Structure

	4 Experiments
	4.1 Implementation Details
	4.2 Ablation Studies
	4.3 Comparision with Previous Results

	5 Conclusion
	References

	PMT-IQA: Progressive Multi-task Learning for Blind Image Quality Assessment
	1 Introduction
	2 Related Works
	3 Methods
	3.1 Overview of the Proposed Model
	3.2 Multi-scale Semantic Feature Extraction
	3.3 Progressive Multi-Task Image Quality Assessment

	4 Experiment
	4.1 Experimental Setup
	4.2 Performance Evaluation
	4.3 Ablation Study

	5 Conclusion
	References

	Reduced-Resolution Head for Object Detection
	1 Introduction
	2 Related Works
	3 Method
	3.1 Motivation and Analysis
	3.2 Reduced-Resolution Head for Object Detection

	4 Experiments
	4.1 Ablation Study
	4.2 Applied to Other Detectors

	5 Conclusion
	References

	Research of Highway Vehicle Inspection Based on Improved YOLOv5
	1 Introduction
	2 Related Work
	2.1 YOLOv5 Model
	2.2 The Improvement of YOLOv5

	3 Method
	3.1 Ghostnet-C
	3.2 GSConv+Slim-Neck
	3.3 CAS Attention Mechanism

	4 Experiment and Metrics
	4.1 Experimental Environment and Data Set
	4.2 Metrics
	4.3 Experiment and Experimental Analysis

	5 Conclusion
	References

	STN-BA: Weakly-Supervised Few-Shot Temporal Action Localization
	1 Introduction
	2 Related Work
	3 Method
	3.1 Feature Extractor
	3.2 Similarity Generator
	3.3 Video-Level Classifier
	3.4 Localization and Boundary-Check Algorithm

	4 Experiment
	4.1 Experiment Setup
	4.2 Main Experimental Results
	4.3 Ablation Experiment
	4.4 Generalization Test

	5 Conclusion
	References

	SVFNeXt: Sparse Voxel Fusion for LiDAR-Based 3D Object Detection
	1 Introduction
	2 Related Work
	2.1 Voxel-Based 3D Detectors
	2.2 Fusion-Based 3D Detectors
	2.3 Transformer-Based 3D Detectors

	3 SVFNeXt for 3D Object Detection
	3.1 Dynamic Distance-Aware Cylindrical Voxelization
	3.2 Foreground Centroid-Voxel Selection-Query-Fusion
	3.3 Object-Aware Center-Voxel Transformer
	3.4 Loss Functions

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Main Results
	4.4 Ablation Study

	5 Conclusion
	References

	Traffic Sign Recognition Model Based on Small Object Detection
	1 Introduction
	2 Related Work
	2.1 Data Augmentation
	2.2 Loss Function
	2.3 Deep Learning For Small Object Detection

	3 Method
	3.1 FlexCut Data Augmentation
	3.2 Keypoint-Based PIoU Loss Function
	3.3 The Proposed YOLOv5T

	4 Experiments
	4.1 Dataset
	4.2 Experimental Analysis

	5 Conclusion
	References

	A Multi-scale Multi-modal Multi-dimension Joint Transformer for Two-Stream Action Classification
	1 Introduction
	2 The Proposed Method
	2.1 Training Schemes

	3 Experiments
	3.1 Experimental Setups
	3.2 Results and Discussions
	3.3 Visualizations

	4 Conclusions
	References

	Adv-Triplet Loss for Sparse Attack on Facial Expression Recognition
	1 Introduction
	2 Method
	2.1 Problem Definition
	2.2 Adv-Triplet Loss Function
	2.3 Adv-Triplet Loss Search Attack

	3 Experiments and Results
	3.1 Sparsity Evaluation
	3.2 Invisibility Evaluation

	4 Conclusion
	References

	Credible Dual-X Modality Learning for Visible and Infrared Person Re-Identification
	1 Introduction
	2 Methodology
	2.1 Overview
	2.2 Dual-X Module
	2.3 Uncertainty Estimation Algorithm

	3 Experiment and Analysis
	3.1 Experimental Settings
	3.2 Ablation Study
	3.3 Comparison with State-of-the-Art Methods

	4 Conclusion
	References

	Facial Expression Recognition in Online Course Using Light-Weight Vision Transformer via Knowledge Distillation
	1 Introduction
	2 Related Work
	3 Method
	4 Experiments Results
	5 Conclusion
	References

	AI Impact
	A Deep Reinforcement Learning Based Facilitation Agent for Consensus Building Among Multi-Round Discussions
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Problem Description
	3.2 Formulation of Multi-round Discussion as a MDP

	4 Algorithm
	5 Evaluation
	5.1 Evaluation Setting
	5.2 Evaluation Results

	6 Conclusion
	References

	A Heuristic Framework for Personalized Route Recommendation Based on Convolutional Neural Networks
	1 Introduction
	2 Basic Concepts of PRR
	3 PNNH Framework
	3.1 Design of PNNH Framework
	3.2 Evaluation of PNNH Framework

	4 NDA* Algorithm Based on PNNH Framework
	4.1 Preference Modeling Based on NeuroMLR Neural Network
	4.2 Route Heuristic Algorithm

	5 Experimental Validation and Result Analysis
	5.1 Experimental Setup
	5.2 Baselines
	5.3 Experimental Results and Analysis

	6 Conclusion
	References

	Approximate Supplement-Based Neighborhood Rough Set Model in Incomplete Hybrid Information Systems
	1 Introduction
	2 Preliminaries
	2.1 Incomplete Hybrid Information Systems (IHISs)

	3 Approximate Supplement-Based NRSM
	3.1 Approximate Supplement in IHIS
	3.2 Construction of AS-NRSM in IHIS*

	4 Experiments and Analysis
	4.1 Performance Comparisons of Different Algorithms

	5 Conclusion and Future Work
	References

	Attention-Guided Self-supervised Framework for Facial Emotion Recognition
	1 Introduction
	2 Methodology
	2.1 CARD Model
	2.2 Convolutional Block Attention Modules (CBAM)
	2.3 Simple Contrastive Learning (SimCLR)
	2.4 Architecture Details

	3 Experiments
	3.1 FER2013 Dataset
	3.2 Performance Evaluation Metrics
	3.3 Implementation Details

	4 Results
	5 Conclusion
	References

	BeECD: Belief-Aware Echo Chamber Detection over Twitter Stream
	1 Introduction
	2 Related Work
	2.1 Echo Chambers on Social Platforms
	2.2 Content-Based Echo Chamber Detection

	3 Belief-Aware Echo Chamber Detection
	3.1 Formal Definitions
	3.2 Belief Graph Construction
	3.3 Belief Graph Partitioning
	3.4 Echo Chamber Detection

	4 Experiments and Analysis
	4.1 Data Collection and Organisation
	4.2 Experiment 1: Response Analysis
	4.3 Experiment 2: Belief Graph Impact Analysis

	5 Conclusion and Prospective Research Directions
	References

	Building an Egyptian-Arabic Speech Corpus for Emotion Analysis Using Deep Learning
	1 Introduction
	2 Related Work
	3 Dataset Collection
	4 Dataset Description
	5 Dataset Validation
	6 Deep Learning Model
	7 Independent-Speaker Multi-class Emotion Classification Results
	8 Conclusion
	References

	Finding the Determinants of Lower Limb Amputations Related to Diabetic Foot Ulcer - A Logistic Regression Classifier
	1 Introduction
	2 Literature Review
	3 Research Methodology
	3.1 Data Collection
	3.2 Classification Model

	4 Results and Discussion for the Binary Logistic Regression Classifier
	4.1 Model Evaluation

	5 Conclusion
	References

	Frequency Domain Feature Learning with Wavelet Transform for Image Translation
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Wavelet Transform Based Image Processing
	3.2 Training Objectives

	4 Experiments
	4.1 Baselines
	4.2 Dataset and Evaluation Indicators
	4.3 Implementation Details
	4.4 Experimental Results
	4.5 Ablation Study

	5 Conclusion
	References

	Graph-Guided Latent Variable Target Inference for Mitigating Concept Drift in Time Series Forecasting
	1 Introduction
	2 Related Work
	3 Graph-Guided Latent Variable Target Inference
	3.1 Variable Target Inference
	3.2 General Architecture
	3.3 The Evolution of Latent Graphs
	3.4 Decoding and Forecasting

	4 Experiments
	4.1 Evaluating Predictive Performance
	4.2 Ablation Experiments

	5 Conclusion
	References

	Optimization of Takagi-Sugeno-Kang Fuzzy Model Based on Differential Evolution with Lévy Flight
	1 Introduction
	2 TSK Fuzzy Neural Network
	2.1 Classical TSK Fuzzy Model
	2.2 Optimization Techniques Implementation

	3 DELF Algorithm Design
	3.1 Optimization Task Formulation
	3.2 Evaluation Function Design
	3.3 Mutation Operator with Lévy Flight
	3.4 Crossover Operator

	4 Simulation Result Analysis
	4.1 Searching Ability Comparison
	4.2 TSK Fuzzy Model Optimization

	5 Conclusion
	References

	RPL-SVM: Making SVM Robust Against Missing Values and Partial Labels
	1 Introduction
	2 Multiclass Partial Label SVM (PL-SVM)
	3 Imputing Missing Values
	4 RPL-SVM Linear: Robust Formulation for Linear Classifiers with Partial Labels and Missing Values
	5 RPL-SVM Nonlinear: Robust Formulation for Nonlinear Classifiers with Partial Labels
	6 Experiments
	6.1 Experimental Setup
	6.2 Performance Comparison Results of RPL-SVM with Baselines
	6.3 Effect of  on RPL-SVM

	7 Conclusions and Future Work
	References

	Spatial Gene Expression Prediction Using Coarse and Fine Attention Network
	1 Introduction
	2 Related Work
	3 Method
	4 Experiments
	4.1 Datasets
	4.2 Experimental Set-Up
	4.3 Experimental Results
	4.4 Ablation Study

	5 Conclusion
	References

	STFM: Enhancing Autism Spectrum Disorder Classification Through Ensemble Learning-Based Fusion of Temporal and Spatial fMRI Patterns
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 The Overview of Our Method
	3.2 Brain Network Construction
	3.3 Extraction of Temporal and Spatial Patterns
	3.4 Fusion of Patterns
	3.5 Classifier

	4 Experiments
	5 Conclusion and Future Work
	References

	Unified Counterfactual Explanation Framework for Black-Box Models
	1 Introduction
	2 Method
	2.1 UNICE Framework
	2.2 UNICE Implementation

	3 Experiments
	3.1 Experimental Settings
	3.2 UNICE Performance
	3.3 Analysis and Discussion

	4 Conclusion
	References

	VIFST: Video Inpainting Localization Using Multi-view Spatial-Frequency Traces
	1 Introduction
	2 Related Work
	2.1 Object Inpainting Localization
	2.2 Vision Transformer

	3 Method
	3.1 Spatial Branch
	3.2 Frequency Branch
	3.3 Learning Local Features
	3.4 Learning Global Contextual Correlation Features

	4 Experiment
	4.1 Experimental Setup
	4.2 Comparison Experiments
	4.3 Robustness Experiments

	5 Ablation Study
	5.1 Influence of Spatial and Frequency Branches
	5.2 Impact of Different Component Combinations

	6 Results Analysis and Discussion
	7 Conclusion
	References

	A Logistic Regression Classification Model to Predict ERP Systems Adoption by SMEs in Fiji
	1 Introduction
	2 Literature Review
	3 Research Methodology
	4 Results and Discussion
	4.1 Model Evaluation

	5 Conclusion
	References

	Low-Resource Machine Translation Training Curriculum Fit for Low-Resource Languages
	1 Introduction
	2 Related Work
	3 Proposed Methods
	3.1 Dictionary Creation and Sentence Mining
	3.2 Training Curriculum

	4 Experiment Setup and Results
	4.1 Experimental Setup
	4.2 Results

	5 Conclusion
	References

	MARL4DRP: Benchmarking Cooperative Multi-agent Reinforcement Learning Algorithms for Drone Routing Problems
	1 Introduction
	2 Drone Routing Problem
	2.1 Definition of the DRP
	2.2 Formulating DRP as a MAPF

	3 Cooperative MARL for DRP
	4 Evaluation
	5 Conclusion
	References

	Real-Time Event Detection with Random Forests and Temporal Convolutional Networks for More Sustainable Petroleum Industry
	1 Introduction
	2 Data and Methodology
	3 Evaluation and Conclusion
	References

	SLSNet: Weakly-Supervised Skin Lesion Segmentation Network with Self-attentions
	1 Introduction
	2 Lesion Expansion Network with Self-attentions
	2.1 Intra-image Self-attention Seed Expansion (ISE) Module
	2.2 Inter-image Affinity-Based Noise Suppression (IAS) Module

	3 Experiments
	3.1 Dataset and Evaluation Metrics
	3.2 Comparison with Other Methods on the ISIC-2017 Dataset

	4 Conclusion
	5 Compliance with Ethical Standards
	References

	Trust and Reputation Management in IoT Using Multi-agent System Approach
	1 Introduction
	2 Related Work
	3 IoT-CADM
	3.1 IoT-CADM Trust Evaluation and Selection Model (IoT-TESM)

	4 Experimental Evaluation
	5 Conclusion and Future Work
	References

	Author Index

