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Abstract: The solution of multi-objective optimization problem always has much attention to the decision makers 

in management science as the objectives typically conflict each other. In this article, we devise a simplex technique 

approach to solve multi-objective linear programming problem (MOLP), in which all objectives are optimized 

simultaneously. Illustrations of computational details of the proposed technique is indicated via numerical methods. 

A real-life situation of a food processing problem is discussed and applied to the proposed technique to demonstrate 

the formulation of a MOLP. A comparative study is explicated by emphasizing on the comparison of the proposed 

approach with the preemptive goal programming approach. The computed results clearly show the usefulness, 

practicality and strength of the proposed technique in optimizing MOLP with reduced computational effort as 

compared to other goal programming technique. The results of the proposed technique are efficient, convenient and 

shows that the algorithm is applicable to almost all MOLP. 
 

Index Terms: Multi-objective linear programming, Goal programming, Simplex algorithm, multi-criteria 

optimization. 

 

1. Introduction 
 

Most linear programming methods traditionally have dealt with problems under the presupposition of a single 

quantifiable objective, for instance, either to minimize loss (or cost) or maximize profit. Conversely, when 

considering any kind of scenario, whether considering daily or professional setting, multiple conflicting criteria 

typically exist that must be evaluated in making ultimate decisions. Therefore, presenting a single objective is not 

considered as of practical use. Multiple dependent criteria or objectives may be required to have problems solved 

and have realistic and increased realization of the reality that most real-life decision problems typically comprise of 

multiple objectives. These decision-making problems alongside multiple linear objectives are generally recognized 

and so-called as multi-objective linear optimization or multi-objective linear programming (MOLP) problems. 

Numerous attempts have accomplished the development of techniques and algorithms to solve multi-objective 

linear programming problems. Goal programming concept was initially created and established by Charnes, 

Cooper, and Ferguson [2] with an application and implementation to a single objective linear programming 

problem. Subsequently, it was developed by Lee [8] and Ignizio [6] and as a result goal programming became an 

invent for solving and decision-making, specifically, multi-objective problems that allowed decision makers to 

incorporate organizational managerial and environmental deliberations into the model via goal priorities and levels. 

Preemptive Goal Programming was developed by Ignizio [6]. This programming approach, highlighted that the 

decision maker is compelled to prioritize goals into unrelated and non-identical priority levels, each of which 

consist of one or more goals. Later, Flavell [4] introduced Chebyshev goal programming, whereby the maximum 
deviation in any goal from the target is minimized. The ε - constraint method was initially proposed by Haimes et 

al. [5] that was based on revising the multi-objective optimization problem and recommendation was to set up a 
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procedure by keeping one of the objectives and restricting the rest of the objectives within user-specified values. 

Most publications in the past and latterly have been on the subject of fuzzy logic. A method to the solution of 

MOLP problems in fuzzy environments was proposed by De and Yadav [3] by means of which recognition is 

focused on the study of ideal compromise solutions for multi-objective fuzzy linear programming problems. 

Similarly, Yano and Sakawa [15] proposed an interactive fuzzy decision-making method for problems of multi-

objective fuzzy random linear programming fractile criteria optimization to acquire an acceptable solution from 

amidst an extended Pareto optimal solution. Zangiabadi and Maleki [16] extended fuzzy goal programming 

application to the linear multi-objective transportation problem. The bi-level linear multi-objective problem was 

proposed by Pieume [9]. Similarly, an algorithm was developed that is incorporated in group of interactive methods 

to solve multi-objective problems by Sadrabadi and Sadjadi [10]. Implementation of MOLP to factual situations 

have been researched and applied by many authors. New algorithms and newly discovered techniques have been 

introduced and put to an application to factual situations, taking into account multiple-objective linear programming 

problems. A MOLP model on an injection reservoir recovery system was proposed by Xiao et al. [14]. Some 

researchers concentrated on generating every one of the efficient solutions of multi-objective integer linear 

programming (MOILP) similarly as Jahanshahloo [7], who instigated a method for creating all the efficient 

solutions of MLP 0-1 problem with a bounded feasible region. Tohidi and Razavyan [12] elongated the same 

method to detect efficient solutions, possibly all, of an MOILP problem which are categorized when the number of 

efficient solutions is limited. The concept and development of MOLP techniques and algorithms have been 

deliberated upon by several authors, who have developed and implemented several techniques that are available in 

the literatures. However, the commonly used technique that deals with multi-objective problems is the goal 

programming which seeks a compromise solution by positioning the relative significance of each objective referred 

to as a goal. Nevertheless, there are some circumstances, when no feasible solution is available in satisfying all the 

goals, it is necessary for the decision makers to search for a technique that optimizes several objectives 

simultaneously. In this article, a simplex like solution procedure is developed to obtain a compromise solution of 

the problem of multi-objective linear programming that optimizes all the objectives of the problem simultaneously. 

The proposed technique is illustrated with an application to a MOLP of an advertising and local food processing 

company. Finally, the results of the proposed technique are compared with other techniques and methods to 

demonstrate and substantiate the strength of the proposed method.  

 

2.  The Problem of Multi-objective Linear Programming (MOLP)  
 

Consider that a Multi-objective Linear Programming problem (MOLPP) has p objective functions of n variables 

subjected to m constraints where the objective functions and constraints are linear. The standard form of the 

MOLPP may be written as: 
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2.1 A Necessary and Sufficient Condition of Optimality 

 

In order to solve the MOLPP (1) utilizing simplex method, it is important that the necessary and sufficient 

condition of the optimality is met as given in Theorem 2.1. (See Swarup et al. [11] and Bazaraa [1]) 

 

Theorem 2.1: If a necessary and sufficient condition for a basic feasible solution  Bx
 
of MOLPP (1) with a single 

objective function ; ( 1,2,..., )kz k p  to be an optimum (maximum) is 0kj kj kjz c   
 
for all ; ( 1,2,..., )j j n  for 

which the column vector ja A  but ja B , then a necessary and sufficient condition for 
Bx  to be an optimum to 

1

k

kk
z z


  is 

1
0

p

j kjk
     for all j  for which ja B . 

 

Proof: Let the MOLPP (1) be to determine x  and   m A  be the rank of A  so that we can choose as m m  

submatrix B  of A  as a basis matrix. 

 

Assuming that a basic feasible solution 
Bx  exists to the MOLPP (1). Let kBc  be the cost vector confirming to the 

basic variables in kz . 
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As kj k jz  Bc y , j  possibly be expressed as: 
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Also note that 
1

m

k j ik ij

i

y


B Bc y c . Thus, (2) becomes 

 
1 1 1 1 1

p pm n n

ik ij j kj j

i k j k j

y x c x
    

  Bc                              (3) 

 

for all j  for which ja B . 

Note that    1 1   Bx B Ax B A x Yx  

Thus,  
1

; 1,2,...
n

Bi ij j

j

x y x i m


  . 

Therefore, the equation (3) can be altered as 

  
1 1 1 1

p pm n

ik Bi kj j

i k k j

x c x
   

 Bc

              (4)

 

 or *

1 1

p p

k B k

k k

x z
 

 Bc  

 or *

0 z z  

where *

kz  is the value of the kth objective function and * *

1

p

k

k

z z


 . 

 

2.2  Simplex Algorithm for Solving MOLP Problems 

 

To solve an MOLPP using a simplex algorithm, express the problem as a standard form as in (1) by introducing 

artificial, slack and surplus variables. However, inclusion of artificial variable causes a violation of the 

corresponding constraints. Thus, allocate a very large penalty M  for maximization and M  for minimization to 

the objective functions in order to eradicate these variables from the final solution. Then, the following simplex like 

algorithmic steps explained below may be used to solve an MOLP: 

Step 1: Examine whether the objective functions are to be maximized or minimized considering any objective, 

say kz , is to be minimized, then convert it into a maximization as: 

Minimize kz = Maximize (– kz ) 

Step 2:  Check whether all ib ’s are positive. If any of the ib ’s is negative, multiply both sides of that constraint by – 

1 so as to make its right hand side positive. 

Step 3: By introducing artificial, slack and surplus variables, convert the inequality constraints into equations and 

express the given MOLPP into its standard form as in (1). 

Step 4: Set the simplex like table with the following changes: 

(i) Insert p rows ( 1 2, ,...,j j p jC C C ) for the coefficients of the variables of the p objective functions. 

(ii) Insert p columns ( 1 2, ,...,B B BpC C C ) for the coefficients of the basic variables in the p objective functions. 

(iii) Split the net-evaluations row into 1p   rows as: 

  1 1 1j j jz c   = net-evaluations for the 1z  

  2 2 2j j jz c   = net-evaluations for the 2z  

        

  pj pj pjz c   = net-evaluations for the pz  

and 
1

p

j kjk
   = net-evaluations of variable j for the 

1

p

kk
z z


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Where, kjz  ( 1,2,...,k p  and 1,2,...,j n ) are calculated as: 
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Step 5: Test the optimality of the solution by using the rules given below: 

Rule 1: The solution under the test will be optimal, provided if all 0,j  . Alternate optimal solution will exist if 

any non-basic j  is also zero. 

Rule 2: The solution is not optimal if at least one j  is negative, and further proceeds to amend the solution in the 

next step. 

Rule 3: All elements of the column jx  are negative or zero, if corresponding to any negative ,j
 
then the solution 

under test will be unbounded.  

Step 6: The variable entering the basis matrix and the variable leaving the basis matrix are determined as follows in 

order to improve the solution: 

 Entering variable: The entering variable (for some  ),rx j r  is selected every time when corresponding to the 

most negative value of .j   

 Leaving variable: The method of leaving variable is the same as in simplex method for linear programming 

problem (LPP). Thus, the leaving variable (say, 
lx ) in MOLPP is selected corresponding to the basic variable 

that has least positive ratio value, that is, the ratio lB

lr

X

a
 is minimum. 

Step 7: At the intersection of the leaving and entering variable, the pivot element is marked. The method of 

determining new values corresponding to new basic feasible solution is the same as in simplex method for LPP.  

Step 8: Repeat the steps 5 through 7 till an optimal solution is acquired. 

 

3.  Numerical Example 
 

The example on advertising presented in Section 3.1 as reported in Swarup et al. [12] and Winston and 

Venkataramanan [14] illustrates the computational details of the proposed solution procedure. The example is 

modified to formulate the problem as an MOLPP. 

 

3.1 Example 

The Leon Burnit Advertising Agency is attempting to decide on a TV advertising schedule for Priceler Auto 

Company; Swarup et al. [11]. The agency can purchase two types of ads and these are those shown during football 

games and those shown during soap operas. On the maximum, $600,000 can be spent on ads and at least 35 million 

high-income women (HIW) should view the ads and these are Leon Burnit is expected to determine how many 

football ads and soap opera ads to purchase for Priceler that has 2 goals: 
 

Goal 1: Its ads should be seen by at least 40 million high-income men (HIM) 

Goal 2: Its ads should be seen by at least 60 million low-income people (LIP)                    (5) 

 

The specific ads along with viewers, advertising costs and potential audiences of a one-minute ad of each type are 

shown in Table I. 
 

Table I: Cost and number of viewers of ads 

 

Ad 

Viewers (in million)  

Cost/minute HIM LIP HIW 

Football 7 10 5 100,000 

Soap opera 3 5 4 60,000 

 

Let 1x and 2x  be the required number of minutes of ads that is expected to be shown during the football games and 

soap operas, respectively. Assuming that Priceler has two objectives that are to maximize the number of HIM 

viewers and to maximize the number of LIP viewers, as opposed to satisfying the goals provided in (5) on the 

expected number of viewers. The problem can then be formulated as MOLP problem with the following two 

objectives: 
 

 

http://www.jetir.org/


© 2024 JETIR March 2024, Volume 11, Issue 3                                                                       www.jetir.org (ISSN-2349-5162) 

JETIR2403096 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org a706 
 

1 1 2Maximize ( ) 7 3z x x     (HIM viewers)        
 

 

2 1 2Maximize ( ) 10 5z x x       (LIP viewers) 

subject to  1 25 4 35  (HIW viewers)x x   

1 2100 60 600 (Budget constraint)x x   

                                                        1 2, 0x x                                      (6)  

 

Since the first constraint in (6) is ‘ ’ type, the initial basic feasible solution can be obtained using a two-phase 
simplex or Big-M method.  

 

To use a Big-M method, introducing 1 0s 
 
as slack variable, 

2 0s 
 
as surplus variable and

1 0A 
 
as artificial 

variable, the standard form of the MOLPP is written as: 
     

                              

 

 

 

 

 

 

 

Then, using the multi-objective simplex algorithm discussed in Section 2.2, the initial basic feasible solution and 

subsequently the iterative solutions are obtained and shown in Tables II and III. Note: BX column values are in 

millions. 
 

 

Table II: Is the initial iteration where the slack variable 1,s surplus variable
 2s  and artificial variable 1A  form the initial 

basis. In iteration 1, entering variable is determined for Table II and the value of j  which is 10 17M   a value lesser 

of all negative is chosen. This fifth column is the pivot column. The entering variable is 1x  with the pivot value of 100. 

For the leaving variable, the minimum ratio is calculated for the fourth and fifth rows. The minimum ratio is 6 ( 1/BX x  = 

600/100) corresponding to the fifth row. Thus, entering variable is 1x  for Table III and the leaving variable is 1s  

corresponding to 5th row. 
 

Table II 

 

 
 

 

 

Table III: In iteration 2, the value of j  in Table III is 2 11/ 5,M  a value lesser of all negative is chosen and is the 

pivot column. The entering variable is 2x  with the pivot value of 1. For the leaving variable, the minimum ratio is 

1 1 2 1 2 1

2 1 2 1 2 1

1 2 1 2 1

1 2 1 2 1

1 2 1 2 1

Maximize ( ) 7 3 0 0

Maximize ( ) 10 5 0 0

subject to 5 4 0 35

100 60 0 0 600

, , , , 0

z x x s s MA

z x x s s MA

x x s s A

x x s s A

x x s s A

    

    

    

    


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calculated for the fourth and fifth rows. The minimum ratio is 5 (
2/BX x  = 5/1) corresponding to the fourth row. 

Entering variable is 
2x  and the leaving variable is 

1A  corresponding to fifth row. 

 

Table III 

 
 

Table IV: The final iteration 3 indicates that all the coefficients in last row are positive, so the stop condition is fulfilled 

and the optimum solution to MOLPP (6) is obtained as indicated in equation (7). 
 

Table IV 

 
 

Thus, the optimum solution to MOLPP (6) is:  
 

1x =3 and 2 5x   with maximum 1 36 millionZ  and maximum 2 55 million.Z                      (7) 
 

Although the solution in (7), indicates that Priceler falls 4 million exposures short of meeting the Goal 1 and 

similarly 5 million exposures short of meeting Goal 2, however. Such results implies that the goal sets in (5) cannot 

be attained. 
 

4. Application of MOLP Problem 
 

In Section 4, the MOLP is applied to solve a local food processing company known as VitiFoods Limited (Fiji) that 

specializes in the production of tinned fish sold locally and abroad. Specifically, five different tinned products are 

produced as indicated in Table V. 
 

  Table V: VitiFoods Limited (Fiji) – Tinned Product details 

Products Name & specification of product 

Product #1 Skipper Blue 425g (flakes) 

Product #2 Skipper Blue 170g (flakes) 

Product #3 Angel Gold 425g (chunks) 

Product #4 Angel Yellow 425g (chunks) 

Product #5 Sea King 425g (chunks) 
 

 

VitiFoods Limited (Fiji) desires to determine the monthly optimum production of tinned products to achieve 

maximum profit with minimum labour hours. In order to produce a unit of each product, the company provides data 
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based on selling price; cost incurred due to specific labour hours assigned to each product as shown in Table VI. 

The data, on which the calculations and formulations are made, is based on the month of June 2013. 
 

 
 

Table VI: Selling price and Cost incurred per unit of each product 

Products Selling Price Cost Labor hours 

Skipper Blue 425g (flakes) $2.50 $0.94 0.040 

Skipper Blue 170g (flakes) $1.10 $0.85 0.026 

Angel Gold 425g (chunks) $1.90 $1.14 0.043 

Angel Yellow 425g (chunks) $2.20 $1.33 0.043 

Sea King 425g (chunks) $1.75 $0.98 0.043 
 

 

Let ; ( 1,2,...,5)jx j   be the number of units of jth product to be produced. Then, the two objectives of the 

VitiFoods Limited (Fiji) can be written as: 
 

 

4.1 Objective 1: Maximize Profit 
 

 

  

   

        (8)                                    

 

 

 

4.2 Objective 2: Minimize labour hours 
 

              2 1 2 3 4 5Minimize ( ) 0.040 0.026 0.043 0.043 0.043z x x x x x               (9) 
 

Considering market demand as one of the various limitations, the company prefers to restrict the availability of raw 

materials, etc. on the production as depicted in the set of constraints provided below: 
 

 

 

 

4.3 Constraints 

i) 1 48000x  : The initial constraint specifies that the production of Skipper Blue 425g (flakes) that can be limited 

to 48000 units. 

ii) 2 90000x  : The second constraint forbids restriction in the production of Skipper Blue 170g   (flakes) and 

would be at least 90,000 units to meet market demand. 

iii) 3 39000x  : This constraint forbids restriction on the production of Angel Gold 425g (chunk), that can be at 

least 39000 units.  

iv) 
 4 40000x  : This implies that at most 40000 units of Angel Yellow 425g (chunk) should be produced. 

v) 5 120000x  : 120,000 or more units of Sea King 425g (chunk) can be produced to meet market demand. 

vi) 1 2 144000:x x   The constraint indicates that the total production of Skipper Blue 425g and 170g should be 

summed to 144, 000 units. 

vii) 3 4 5 220000x x x   : The constraint indicates that the sum of the production of Angel Gold, Angel Yellow 

and Sea King should be at most 220,000 units.
 

 

Thus, from the objectives in (8) and (9) and considering the constraints above, the VitiFoods Limited (Fiji) problem 

can be formulated as an MOLP as: 
 

1 1 2 2 3 3

4 4 5 5

(2.50 0.94 ) (1.10 0.85 ) (1.90 1.14 )

(2.20 1.33 ) (1.75 0.98 )

x x x x x x

x x x x

     

  

1Maximize ( )z 

1 1 2 3 4 5Maximize ( ) 1.56 0.25 0.76 0.87 0.77z x x x x x    
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1 1 2 3 4 5Maximize ( ) 1.56 0.25 0.76 0.87 0.77z x x x x x    
                   

and
 

2 1 2 3 4 5Minimize ( ) 0.040 0.026 0.043 0.043 0.043z x x x x x      

  

        

 

 

 

 

 

 

 

 
 

 

Converting, the objective 2 from minimization to maximization and  introducing 1 0s  , 
2 0s  , 

3 0s   as slack 

variables,
4 0,s 

 5 0,s 
 6 0s 

 
as surplus variables and  

1 0,A 
 2 0,A 

 3 0,A 
  4 0A 

 
as artificial variables, 

the standard form of the MOLP (10) can be expressed as: 

 
 

Solving the problem (10) using the proposed simplex technique, the final iterative table obtained is shown in Table 

VII. The results of Table VII is obtained by iterating the tabulated data of equation (10).  

 
 

Table VII: In initial iteration, the slack variables; 1 2 3, , ,s s s
 

surplus variable;
 4 5 6, , ,s s s  and artificial variables; 

1 2 3 4, , , ,A A A A  form the initial basis for first tabulation. In iteration 1, value of j  is 2 0.224M   and minimum ratio is 

calculated to be 90000 ( 2/BX x  = 90000/1) corresponding to the eighth row. The leaving variable is 2A for first tabulation 

and entering variable is 2x  for second tabulation. In iteration 2, j  is 1.52M    and the entering variable is 1x  with the 

pivot value of 1 in fifth column. Minimum ratio is calculated to be 48000 ( 1/BX x  = 48000/1). Leaving variable is 1A  for 

second tabulation and the entering variable is 1x  for third tabulation.  In iteration 3, j  is 0.727M  . This nineth column 

is called the pivot column with value of 1. Minimum ratio is calculated to be 120000 ( 5/BX x  = 120000/1) corresponding to 

the eleventh row. Therefore, the leaving variable is 4A  for third tabulation and the entering variable is 5x  for fourth 

tabulation. The value of j  in iteration 4 is 0.717M  and the entering variable is 3x  with the pivot value of 1. Minimum 

ratio is calculated to be 39000 ( 3/BX x  = 39000/1) corresponding to the nineth row. The leaving variable is 3A  for fourth 

tabulation and the entering variable is 3x  for fifth tabulation. In iteration 5, the value of j  is 0.25.M   Minimum ratio is 

6000. The leaving variable is 1A  for fifth tabulation and the entering variable is 4s  for sixth tabulation. In iteration 6, j  is 

0, minimum ratio is calculated to be 40000. The leaving variable is 2s  for sixth tabulation and the entering variable is 4x  for 

1

3 4 5

4

1 2

2

3

5

1 2 3 4 5

subject to 48000

220000

40000

144000

90000

39000

120000

, , , , 0 (10)

x

x x x

x

x x

x

x

x

x x x x x



  



 








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seventh tabulation. At iteration 7, the value of j  is 0.727,  minimum ratio is calculated to be 21000. The leaving variable 

is 
3s  for seventh tabulation and the entering variable is 

6s  for eighth tabulation. In the eighth tabulation, the coefficients are 

positive and this is indicated in Table VII, so the stop condition is fulfilled and the optimum solution to MOLPP is obtained 

for equation (10). 

 

 

 

Table VII 

 
 

Thus, the optimum solution is 1 48000,x 
 2 96000,x 

 3 141000,x 
 4 40000,x  5 120000x   with maximum 

1 271890z 
 
and minimum 2 13876.z   

 

 

 

5. A Comparative Study and Discussion 
 

An investigation is accomplished in this section to compare the efficiency of the proposed multi-objective simplex 

method to that of a preemptive goal programming approach - a well-known multi-objective optimization method 

(see Section 4.16, [13]). For this purpose, we use the numerical example discussed in Section 3 and its results 

presented in equation (7) obtained by the proposed method. 
 

5.1 Preemptive Goal Programming Approach: 

The Preemptive Goal Programming (PGP) approach compels the decision maker to rank goals into different 

priority levels, specifically, 1, 2, 3 etc. Thus, to apply PGP, the decision maker must prioritize the goals according 

to its importance levels i.e., from most important (goal 1) to least important (goal p), that is: 

 

1 1 2 2 p nG P G P G P       

Clearly, the weight for goal 1 is larger than the weight for goal 2 and so forth. The definition of 1P , 2P , … pP  

assumes that the decision maker first tries to satisfy the goal 1. Then, amidst all points that fulfills goal 1, the 

decision maker attempts to come as precise as possible to satisfying goal 2, and so forth. The coefficient of the 

   1 jc  1.56 0.25 0.76 0.87 0.77 0 0 0 0 0 0  

   2 jc
 

-0.040 -0.026 -0.043 -0.043 -0.043 0 0 0 0 0 0  

 

2B
C

 
2B

C  
 

Basis  B
X  

1x  
2x  

3x  
4x  5x  

1s  
2s  

3s  
4s  

5s  
6s

 

 

1.56 -0.040 1x  48000 1 0 0 0 0 1 0 0 0 0 0  

0.87 -0.043 4x  40000 0 0 0 1 0 0 1 0 0 0 0  

0 0 6s   21000 0 0 1 1 1 0 0 1 0 0 0  

0 0 4s  6000 1 1 0 0 0 0 0 0 0 0 0  

0.25 -0.026 2x  96000 0 1 0 0 0 0 0 0 -1 0 1  

0.76 -0.043 3x  141000 0 0 1 0 0 0 0 0 0 -1 0  

0.77 -0.043 5x  120000 0 0 0 0 1 0 0 0 0 0 -1  

1 1 1j j jz c    271890 0      0 0 0 0  1.31 0.1 0.77 0 0.01 0  

2 2 2j j jz c  
 

-13876 0 0 0 0 0 - 0.014 0.1 0.77 0 0.01 0  

j j jz c  
 

258014 0 0 0 0 0 1.296 0.1 0.727 0 0.01 0  
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objective function for the variable representing goal i will be 
iP . Use of the preemptive goal programming approach 

to solve Example 3.1, the following deviation variables is defined corresponding to the two goals given in (5): 
 

 is  = amount by which we numerically exceed the thi goal 
 

is =  amount by which we are numerically under the thi goal 
 

Then, the goals in (5) can be expressed as: 

1 1 1 17 3 40x x s s    
        

  1 2 2 210 5 60x x s s                                      (11) 
 

We assume that each is  and is
 
is measured in millions of exposures. If Priceler determined that the HIM goal was 

more important that the LIP goal, the preemptive goal programming formulation for the problem (6) is obtained by 

replacing the objective functions by 1 1 2 2Ps P s  . Thus, using the deviational variables, we can express the problem 

as the PGP problem as: 
 

1 1 2 2

1 2 1 1

1 2 2 2

1 2

1 2

1 2

Minimize ( )

subject to        7 3 40

10 5 60

5 4 35

100 60 600

, 0 (12)

Z Ps P s

x x s s

x x s s

x x

x x

x x

 

 

 

 

   

   

 

 



 

 

In order to apply the preemptive goal programming technique in (12), the objective function must be separated into 

2 components:  

 

     1 1 1z Ps  

and  2 2 2z P s  

Then the PGP problem (12) can be solved by an extension of the simplex method, known as goal programming 

simplex, for which we compute 2 row 0’s with the ith row 0 corresponding to goal i. Thus, we have: 
 

                         
1 1 1

2 2 2

Row 0 (goal 1) : 0

Row 0 (goal 2) : 0 (13)

z Ps

z P s





 

 
 

 

If 3s  is the slack variable for the HIM constraint, 4s  and 5s  are the surplus and artificial variables respectively for 

the budget constraint, then  1 2 3 4 5, , , ,s s s s s 

 
is a starting basic feasible solution that could be used to solve (12) via 

the goal programming simplex algorithm. As with the regular simplex, we must first eliminate all variables in the 

starting basis from each row 0. 
 

 

Adding 1P  (HIM constraint) to row 0 (goal 1) yields: 

1 1 1 1 1 1 1 1Row 0 (goal 1) : 7 3 40 (HIM)z Px Px Ps P     

 

Adding 2P  (LIP constraint) to row 0 (goal 2) yields: 

     2 2 1 2 2 2 2 2Row 0 (goal 2) : 10 5 60 (LIP)z P x P x P s P     

 

Then, using the goal programming simplex, the PGP (12) is solved (see Appendix) and the optimum solution is: 

1x =3 and 2 5x   with the values of the goals that can be achieved are: 
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(i) Goal 1: 
1 27 3 7(3) 3(5) 21 15 36x x      million 

(ii) Goal 2: 
1 210 5 10(3) 5(5) 30 35 55x x      million                  (14) 

 

Thus, the results in (7) and (14) shows that the proposed method generates the identical results as those shown by 

the PGP approach. 
 

Nonetheless, it can be noticed that the PGP technique consists of deviational variables for each individual goal. As 

the additional number of goals increases, so does the number of deviational variables. Such method requires 

additional columns in the simplex table. These extra columns are for positive and negative deviational variables. 

Furthermore, the method requires distinct objective function rows for every priority level. Thus, the introduction of 

additional columns for deviational variables and rows for priority levels increments immeasurably the 

computational time to solve MOLP problem using PGP, while in contrast, this is not the case in the proposed multi-

objective simplex method as this new method keeps the number of constraints constant. In addition, no additional 

row and column is introduced regardless of the number of goals/objectives. Thus, MOLP problem can be solved 

with a reduced computational effort utilizing the proposed technique, in comparison with the preemptive goal 

programming technique. 

 
 

6. Conclusion 
 

Multi-objective optimization is a very significant topic in linear programming problems. This technique is broadly 

utilized in majority real-life situations as decision makers often light upon optimizing several functions 

simultaneously. There are several techniques mentioned by authors that deal with the MOLP problem. Some 

techniques are commonly used in MOLP and generally non-classical. These techniques belong to methods 

including genetic algorithm or class of evolutionary methods. The major difficulty in applying some of these 

methods is that if the number of objective functions is relatively big, then the computational exertion required to 

generate an efficient set of solutions is prohibitive. Moreover, there is no assurance in detecting an optimal solution 

within a finite amount of time. An additional drawback is that the population tends to converge to solutions which 

are higher ranked in one objective function, against to other objective functions. 

 

In this article, a technique is developed for using the multi-objective simplex algorithm to solve MOLP problems.  

A new simplex tableau with additional rows and columns to cater for multiple objectives is created. Real life 

application is illustrated with computational details. In addition, a discussion on comparative study is also outlined. 

In the proposed simplex based multi-objective method, the number of constraints remains constant and no 

deviational variables are introduced. Thus, reduced computational effort is required to solve a MOLP problem as 

compared to other goal programming techniques, especially the PGP method. Comparative study along with 

discussion evaluate the efficiency of the proposed multi-objective simplex method.
 
 

 

7. References 

 
1. Bazaraa, M.S.; Jarvis, J.J. and Sherali, H.D. (2005). Linear Programming and Network Flows (3rd ed.). John 

Wiley & Sons, Inc. New Jersey, USA. 

2. Charnes, A.; Cooper, W.W. and Ferguson, R.  (1955). Optimal Estimation of Executive Compensation by Linear 

Programming. Manage Sci, 1, 138-151. 

3. De, P. and Yadav, B. (2011). An Algorithm for Obtaining Optimal Compromise Solution of a Multi Objective 

Fuzzy Linear Programming Problem. Int. J. Comput. Appl., 17(1), 20-24.  

4. Flavell, R.B. (1976). A New Goal Programming Formulation. Omega. 4(6), 731-732. 

5. Haimes, Y.Y.; Lasdon, L.S. and Wismer, D.A.  (1971). On a Bicriterion Formulation of the Problems of 

Integrated System Identification and System Optimization.  IEEE Trans. Syst., Man Cybern., 1(3), 296-297. 

6. Ignizio, J.P. (1976). Goal Programming and Extensions, Lexington Books, DC Health and Company, 

Massachusetts, Toronto, London. 

7. Jahanshahloo, G.R.; Hosseinzadeh, L.F.; Shoja, N. and Tohidi, G. (2004). A Method for Solving 0-1 Multi-

objective Linear Programming Problem using DEA. J. Oper. Res. Soc. Japan, 46(2), 189-202. 

8.   Lee, S.M. (1972). Goal Programming and Decision Analysis. Auerbach Publishers, Philadelphia. 

http://www.jetir.org/


© 2024 JETIR March 2024, Volume 11, Issue 3                                                                       www.jetir.org (ISSN-2349-5162) 

JETIR2403096 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org a713 
 

9.   Pieume, C.; Marcotte, P.; Fotso, L.P. and Siarry, P. (2011). Solving Bilevel Linear Multi-objective Programming 

Problems. Am. J. Oper. Res., 1, 214-219. 

10. Sadrabadi, M.R. and Sadjadi, S.J. (2009). A New Interactive Method to Solve Multi-objective Linear 

Programming Problems. J. Softw. Eng. and Appl., 2(4), 237-247.  

11. Swarup, K.; Gupta, P.K. and Mohan, M. (2001). Operations Research (9th ed.). Sultan Chand & Sons, New 

Delhi, India. 

12. Tohidi, G. and Razavyan, S. (2012). An L1-norm Method for Generating all of Efficient Solutions of Multi-

objective Integer Linear Programming Problem. J. Ind. Eng. Int., 8(17), 5-8. 

13. Winston, W. and Venkataramanan, M.  (2003). Introduction to Mathematical Programming Applications and 

Algorithms (4th ed.). Duxbury Press, Duxbury, Canada. 

14. Xiao, W.; Liu, Z. and Jiang, M. (1998). Multi-objective Linear Programming Model on Injection Oilfield 

Recovery System. Comput. Math. with Appl., 36(5), 127-135. 

15. Yano, H. and Sakawa, M. (2012). Interactive Multi-objective Fuzzy Random Linear Programming through 

Fractile Criteria. Adv. Fuzzy Syst., 2012(2012), 1-9. 

16. Zangiabadi, M. and Maleki, H. R. (2013). Fuzzy Goal Programming Technique to solve Multi-objective 

Transportation Problems with some Non-linear Membership Functions. Iran. J. of Fuzzy Syst., 10(1), 61-74. 

 

8. Appendix 

 
The problem (12) can be solved by the goal programming simplex as discussed below: 

 

Iteration 0: Initial tableau  

The goal programming simplex requires n row 0’s (one for each goal). Thus, the initial tableau is designed as 

follows: 

 

The row with 0’s is itemized in order of the goals priorities. The rows 2 and 3 consist of goals 1 and 2 respectively. 

The deviational variables 1 2 1 2, , ,s s s s   

 
and slack variables 3 4 5, ,s s s  form the initial basis. The current basic feasible 

solution is 1 40s  , 2 60s  , 5 35s   and 3 600s  . Because 1 140 ,z P  goal 1 is not satisfied. To diminish the 

penalty associated with not meeting goal 1, we enter the variable with the most positive coefficient 1( )x  in row 0 

(HIM). Considering the 1x column as pivotal column, the RHS of the constant is divided by the 1x  values. The 

minimum ratio is 40/7, which is corresponding to 1s

. Thus, 1s


 is the leaving variable.  

 
 

Iteration 1: First Tableau 

After entering 1x  into the basis, we obtain Table A2. The current basic feasible solution is 

1

40
,

7
x  2

20
,

7
s  5

45
,

7
s  and 3

200
.

7
s   Since 

1
0s   and 1 0,z   goal 1 is now satisfied. The variable with the 

most positive coefficient in row 0 is 2.x  Now, to satisfy goal 2 while ascertaining that the higher priority goal is still 

satisfied. Entering 2x  into the basis will not increase z, because the coefficient of 2x  in row 0 (HIM is 0). Thus, 

after entering 2x in the basis, goal 1 will still be satisfied. The ratio test is done considering column of 2.x  The 
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constraints of RHS is divided with the values of 
2.x  We arbitrarily choose to enter 

2x  into the basis in the Budget 

constraint. Thus, the leaving variable will be 
3s  and 

2x  will be the entering variable. 

 

 
 

Iteration 2: Second Tableau 

After pivoting  2x  into the basis, we obtain Table A3. Since z=0, goal 1 is satisfied, however, goal 2 is still not 

satisfied. The current basic feasible solution is 1 5,x   2

5

3
s  , 5

10

3
s   and 2

5

3
x  . Because 2s  is the only variable 

with a positive coefficient in row 6 (HIW), the only way to come closer to meeting goal 2 is to enter 1s
  in the basis. 

The RHS is divided by the pivot values of the 1s  column, so 5s will be the leaving variable.  

 

 

 
 

Iteration 3: Optimum Tableau for PGP 

The pivot row and other row values are updated in Table A4 below. 

 

 
Since 1 0z  and  2 0z   the optimum solution is: 1x =3 and 2 5x   with the values of the goals that can be achieved 

are: 

(i) Goal 1: 1 27 3 7(3) 3(5) 21 15 36x x      million 

(ii) Goal 2: 1 210 5 10(3) 5(5) 30 35 55x x      million   
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