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RESEARCH ARTICLE

Time-variations of wave energy and forecasting power 
availability at a site in Fiji using time-series, regression 
and ANN techniques
Avikesh Kumar, Gabiriele Bulivou, Mohammed Rafiuddin Ahmed and Mohammad 
Golam M. Khan

School of Information Technology, Engineering, Mathematics & Physics, The University of the  
South Pacific, Suva, Fiji

ABSTRACT  
Recently, there has been a shift in the global energy landscape to 
move to reliable, clean, and eco-friendly renewable energy 
sources to address global issues such as climate change and 
greenhouse gas emissions. One such energy source is wave 
energy; researchers attempt to develop models that can 
accurately forecast the availability of wave energy as an 
alternative energy source. In this paper, an Artificial Neural 
Network (ANN) model along with statistical models such as time 
series models, and regression models are proposed for 
forecasting wave energy at a site in Fiji using the wave height 
and wave period as the independent variables. The performance 
of the proposed models developed is compared using Mean 
Squared Error (MSE), Root Mean Squared Error (RMSE), Mean 
Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), 
and the goodness-of-fit (R2) value. The proposed model is then 
further benchmarked with the naïve model. The empirical results 
reveal that the proposed ANN model outclassed all the other 
models and was more efficient and accurate in forecasting wave 
energy than the regression and time series models. By accurate 
wave modelling and by incorporating impedance matching, 
maximum power generation can be achieved.
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Introduction

Forecasting plays a key role in providing realistic energy figures, assisting policymakers in 
making informed decisions about using different renewable energy sources. This is 
crucial as we transition into an era where alternative energy sources aim to provide 
cleaner energy while meeting rapidly increasing demands (Thomas et al. 2015). 
As renewable energy sources become more cost-competitive against oil-generated 
electricity, more nations are considering these substitutes to combat climate change 
(IEA 2020; Posterari and Waseda 2022). Twidell and Weir (2015) state that renewable 
energy supplies are much more compatible with sustainable development than fossil 
fuels, considering their resource limitations and environmental impacts. 
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The International Energy Agency (IEA) predicted a 7% growth in renewable energy for 
electricity by 2020 and that by 2050, 90% of the world’s electricity would come from 
renewable sources (IRENA 2017).

In many countries, solar, hydro, and wind energy are commonly considered 
alternative energy sources (IPCC 2014). However, there is a need to explore all forms 
of renewable energy for a sustainable future (IRENA 2017). The Pacific Island Countries 
(PICs) have heavily relied on fossil fuels over the years, causing environmental and 
economic concerns due to global instability (Posterari and Waseda 2022). While wind, 
solar Photovoltaic (PV), and hydro sources have proven efficient and reliable for Fiji 
and other PICs, wave energy presents a significant untapped potential. Many researchers 
suggest that wave energy can dominate other energy sources since waves are constantly 
present. Reikard et al. (2015) highlighted significant wave energy potential along the 
coasts of Washington and Oregon, and Ram et al. (2014), cited considerable wave 
power potential in the USA, China, and India. Ali et al. (2020) claim that Australia 
has a high potential for ocean energy generation, which could reduce greenhouse emis
sions by 26–28% by 2030. The European Commission is also targeting substantial ocean 
energy installations by 2025, 2030, and 2050 (OES 2022). Given the strong commitment 
from IEA countries, wave energy can diversify energy supplies in PICs and potentially 
compete with other energy sources.

Fiji, with a sea-to-land area ratio of 70 and a coastline of 1129 km, has a wave power 
potential of 29 GW, of which only 0.5% is enough to meet the energy requirements of the 
country (Kumar et al. 2020). Wave energy research is not new to Fiji; the South Pacific 
Geosciences Commission (SOPAC) initiated a wave energy resource assessment pro
gramme in 1987, followed by the Norwegian Government through the Norwegian 
Agency for International Development (NORAD) from 1987 to 1995 (Ram et al. 
2014). An assessment in 2015 revealed that Fiji has a mean wave energy flux of 24 
kW/m per metre (kW/m) with a theoretical annual energy output of 1,017 MWh 
(Cyprien et al. 2015). Fiji lies in a tropical zone where cyclones and weather patterns 
pose risks to wave energy devices. Therefore, more research was conducted near 
shore, considering that nearshore wave energy devices are less expensive, easier to 
maintain, and have a longer life than offshore devices (Ram et al. 2014).

Good modelling of wave energy helps in model-based control design that can be used 
for performance improvement of wave energy harvesters (Coe et al. 2021). Successful 
applications of Artificial Neural Networks (ANN) in forecasting wave energy in 
various regions (Mandal and Prabaharan 2010; Hadadpour et al. 2014; Kashikar and 
Mane 2014; Li et al. 2023) provide assurance that wave power could be viable for 
countries heavily reliant on fossil fuels. Wave power generation also helps to prevent 
coastal erosion and to address climate change impacts on near-shore communities.

Given the environmental, economic, and social challenges associated with harvesting 
wave energy, a feasibility study is crucial before wave energy can be accepted as a viable 
substitute for other forms of energy (Felix et al. 2019). Therefore, this study aims to 
develop and compare forecasting models, including time series, regression, and ANN 
models, to identify the optimum model for wave energy at a site in Fiji.

The novel aspect of this research is the contribution to the advancement in the field of 
wave energy forecasting by introducing new methodologies and suggesting future 
research avenues. The research introduces an Artificial Neural Network (ANN) model 
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specifically for forecasting wave energy at a site in Fiji, which can outperform traditional 
regression and time-series models. It specifically targets wave energy forecasting in Fiji, a 
region where wave energy potential is underexplored and highlights the possibility of 
extending the developed forecasting models to other Pacific Island Countries (PICs). 
Moreover, the research integrated multiple variables using wave height and wave 
period as independent variables to forecast wave power, providing a methodological con
tribution to wave energy forecasting, which can improve the accuracy of forecasting 
models.

Section ‘Background’ of the paper discusses the related work, while Section ‘Method
ology’ describes the methodology used in developing the forecasting models. The results 
and discussions are presented in Sections ‘Results’ and ‘Discussion’, and the conclusions 
are drawn in Section ‘Conclusion’.

Background

The main objective of any forecasting model is to minimise uncertainties and maximise 
its reliability and sustainability as results are predicted from past to present and into the 
future. In this section, different forecasting models such as time series, regression, naïve, 
and ANN models are discussed.

Time series model

Time series models focus on analysing data that exhibit trends, cycles, and seasonal pat
terns with asymmetrical components (Barak and Sadegh 2016; Kumar et al. 2020). These 
models require data recorded at fixed and constant intervals (Kimata 2016). According to 
Kalekar (2004), time series data consist of a combination of patterns and random errors, 
with the goal being to separate these components by understanding trends, seasonal 
factors, and long-term variations. Four common time series models are the exponential 
smoothing method, Holt-Winters additive method, Holt-Winters multiplicative method, 
and the Autoregressive Integrated Moving Average (ARIMA) model.

Exponential smoothing method
The exponential smoothing technique, introduced by Holt in 1957, has evolved to incor
porate trends and seasonal components in the data (Dumicic et al. 2008). This method 
‘smooths out’ a discrete-time data series using a moving average technique (Hatalis 
et al. 2014), with recent observations weighted more heavily than older ones (Kalekar 
2004). The basic exponential smoothing formula (Winston 2003; Kimata 2016; Kumar 
et al. 2020) is

At = At− 1 − aet (1) 

where At is the forecast value at time t, At− 1 is the forecast value at time t−1, α is the 
smoothing constant (0–1), and et is the forecast error at time t, used to update the 
next period’s forecast. A higher α value makes the model more sensitive to recent 
data, while a lower α value biases it towards historical data. This method is used for 
short-term forecasting of data without trends or seasonality, such as inventory levels 
or daily sales figures (Ensafi et al. 2022).
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The single exponential model was later modified to account for trends, resulting in the 
double exponential smoothing model (Kalekar 2004; Dumicic et al. 2008; Kimata 2016). 
This model updates both the level and the trend:

At = axt + (1 − a)At− 1 (2) 

where At is the forecast value at time t, α is the smoothing constant, xt is the observed value 
at time t, and At-1 is the previous forecast value. This model is applied to data with trends 
but no seasonality, and is useful for forecasting data such as retail sales (Ensafi et al. 2022).

Holt-Winter (HW) additive method
The HW additive method, proposed in the 1960s, extends exponential smoothing to 
capture linear trends and additive seasonality (Tirkes et al. 2017). It is suitable for data 
with a constant seasonal variation (Pongdatu and Putra 2018; Razali et al. 2018). The 
HW additive model has the form:

xt = a+ bt + 1t (3) 

where xt is the observation at time t, a is the base level at the beginning of time t, b is the 
per-period trend, and 1t is the error term for period t. This method is applied to data with 
linear trends and constant seasonal patterns (Koehler et al. 2001) and is useful in retail 
sales forecasting with predictable seasonal effects (Tratar 2014), and even forecasting 
fibre production (Pleños 2022).

Holt-Winters (HW) multiplicative method
The HW multiplicative method further extends the HW additive method, suitable for 
data with seasonal variation proportional to the series level (Kumar et al. 2020) such 
as electricity demand influenced by seasonal temperature changes (Rajbhandari et al. 
2021). The model is expressed as:

xt = abt1t (4) 

where xt is the observed value at time t, a is the level component representing the baseline 
values of the series, bt is the trend component capturing the percentage growth at time t, 
and 1t is the random error factor with a mean of 1, which ensures that the errors do not 
systematically skew the multiplicative structure of the model.

Autoregressive integrated moving average model (ARIMA)
The ARIMA model, also known as the Box–Jenkins model, is widely used for short-range 
forecasting by capturing autocorrelations and controlling noise and seasonal effects (Barak 
and Sadegh 2016; Ozturk and Ozturk 2018). An ARIMA (p, d, q) model comprises three 
parameters; p is the number of autoregressive terms, d is the number of non-seasonal 
differencing and q is the number of lagged forecast errors in the equation (Kavasseri 
and Seetharam 2009; Barak and Sadegh 2016; Arzu 2017). An ARIMA model has a form:

yt = c+ a1yt− 1 + . . . .+ apyt− p + ut +m1ut− 1 + . . . .+mqut− q (5) 

where c is a constant that represents the mean of the series and it shows that the data values 
have been replaced with difference values of order d to obtain stationary data, a1 . . . .. ap 

4 A. KUMAR ET AL.



are the coefficients of the autoregressive (AR) terms capturing the relationship between the 
current value and its past values up to lag p, while m1 . . . .. mq are the coefficients of the 
moving average (MA) terms capturing the relationship between the current value and past 
error terms up to lag q. Both coefficients a1 . . . .. ap and m1 . . . .. mq are found through 
statistical estimation methods such as the Maximum Likelihood Estimation (MLE) or Least 
Squares Estimation (LSE). yt is the actual data value of the dth difference at time t, yt− 1 is the 
data value at time t-1, ut is the random error at time t representing random fluctuations, 
ut− 1 is the random error at time t-1, p is the autoregressive order and q is the moving 
average order of the model. This model is used for forecasting by capturing both the 
persistence of past values and the influence of past errors, common in economic and 
financial time series forecasting, and more recently in forecasting international migration 
(Tolesh and Biloshchytska 2024).

Regression models

Regression models are good at predicting the dependent variable given that one or more 
independent variables are known. It can be either through a linear or a nonlinear 
relationship between the dependent variable and independent variables.

Multiple linear regression models
Multiple Linear Regression (MLR) is a statistical technique that can formulate a linear 
relationship between variables by studying the correlation between independent and 
dependent variables (Uyanık and Güler 2013). An MLR model as defined by Kumar 
et al. (2020), Al Khatip (2011), Uyanık and Güler (2013) is

Y = b0 + b1x1 + b2x2 + . . . ..+ bkxk + 1 (6) 

where Y is the dependent variable which is the power being generated, x1 , x2, . . . .. , xk, 
the independent variables, b0 , b1, . . . .. bk, the regression coefficients, and 1, the error 
term. The performance and robustness of the resulting multiple linear regression model 
are based on its linearity test, normality test, independence test, and homoscedasticity 
test which will be discussed in the methodology.

Nonlinear regression models
Data collected in an open environment where there is a lack of control over some factors 
usually exhibits nonlinear relationships between variables. To cater for such cases, data 
transformation is important. Some commonly used transformations are adding con
stants, square roots, logarithmic scales, reflections, trigonometric transformations, and 
so on, and can be easily obtained using the Box–Cox transformation (Osborne 2010). 
Box–Cox transformation normalises data which is required for determining the 
correlation between variables and eventually improves the performance of the model 
compared to using data that is not normalised. It transforms the dependent variable 
y according to:

yl − 1
l

if l = 0
log (y) if l = 0

⎧
⎨

⎩
(7) 
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where l is a parameter estimated with some statistical software during model fitting. 
Applying this transformation can help address issues of heteroscedasticity and nonlinear
ity, leading to more reliable and interpretable model results.

Naïve method of forecasting

The naïve forecasting model is a simple benchmark model that is used to compare the 
performance of all other forecasting models. The naïve forecasting model assumes that 
the reading of the next period will be the same as its preceding period.

At+1 = At (8) 

where At+1 is the forecast for the next period, At is the actual value at the current period, t 
is the period, and t + 1 is the next period.

A naïve model can be categorised into a random walk model or a seasonal random 
walk model. A random walk model just uses the last observation as the future forecast 
while a seasonal random walk model takes the forecast values from the previous year’s 
actual value. In real-world applications, this method is not predominantly used since 
data fluctuates over time, making it less reliable for accurate predictions.

Artificial neural network models

ANN is a common, accurate, and widely used forecasting technique for many diverse 
applications. It is a mathematical model for predicting systems output inspired by the 
structure and function of a human biological neural network (Qiokata and Khan 
2015). ANN is capable of explaining and solving complex, highly nonlinear functions 
synthesis, which is hard to express mathematically (Kumar et al. 2020). It can also 
perform with high speed of evaluation, and robustness and most importantly, is adaptive 
to changes in the data sets (Vimala et al. 2014).

Many researchers have used ANN models to predict wave parameters, which are wave 
height, wave period, and wave power (Makarynskyy et al. 2002; Rao and Mandal 2005; 
Mandal and Prabaharan 2010; Asma et al. 2012; Hadadpour et al. 2014; Kumar et al. 
2020). Reikard (2013) when predicting wave parameters in the Atlantic Ocean, the 
Pacific Ocean, and the Gulf of Mexico suggested that statistical models performed 
better when forecasting power in the first few hours, while the large-scale physics 
models were better in forecasting over longer-term horizons. Reikard et al. (2015) 
initially researched four locations in the Pacific Ocean and made similar conclusions 
when predicting the wave parameters. Moreover, Hadadpour et al. (2014) forecasted 
wave energy at the Caspian Sea using ANN and for comparison purposes, wave par
ameters were separately forecasted. They concluded that forecasting parameters separ
ately and then using a formula to find wave power provided more accurate results 
than forecasting wave power directly for a short period. According to Contreras et al. 
(2003), a three-layer ANN with a backpropagation model was successfully used for the 
Victorian electricity market recording a daily average error of around 15%. Vimala 
et al. (2014) used the ANN technique to forecast the significant wave height with a 
leading time of 3, 6, 12, and 24 h in the Bay of Bengal and stated very accurate results 
based on different error measurements used. Bandyopadhyay and Chattopadhyay 
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(2007) compared the performance of the ANN model with the MLR model while fore
casting total Ozone concentration over Arosa, Switzerland, and claimed that ANN out
classed the MLR model based on different evaluators used.

Multi-layer perceptron model is an ANN model that is commonly used which can 
handle nonlinear systems without making many prior assumptions about the problem 
(Shen 2024). This model effectively captures complex relationships within the data 
through multiple layers of interconnected neurones, which allows it to approximate any 
continuous function given sufficient hidden units and data. An ANN model consists of 
three important components: the structure, the training algorithm, and the transfer func
tion (Kimata 2016). Its structure consists of the input layer, the hidden layer, and the 
output layer. From the input layer, the input neurones are passed through some hidden 
layers where reasonable weights are attached after which the output is obtained by use 
of a transfer function (Palchak 2012). The structure is such that it allows multiple 
mapping between neurones so that the required goal is met (Kumar et al. 2020). Literature 
suggests that there is no fixed algorithm to achieve the optimum structure of a model. One 
can only achieve this through the trial-and-error method. The optimum number of layers, 
nodes, and transfer functions will certainly allow the network to capture a distinguished 
and complicated mapping (linear or nonlinear) between variables (Hsu and Chen 2003; 
Palchak 2012). Once the targeted output is achieved, a training/learning algorithm is 
deployed to further allow the model to converge to the desired accuracy by readjusting 
the attached weights. Figure 1 displays the general structure of an ANN model.

A basic working multi-layer perceptron model can also be illustrated with fundamen
tal mathematical notations. Assuming a total Q sets of training data are available, inputs 
{o1, o2, . . . . . . . . . , oa} are passed through the hidden layer; the model is trained to get 
closer to the targeted vectors {t1, t2, t3, . . . . . . . . . , tQ}. Then, output ok from neurone 
k, which relates to the input neurone j through interconnection weight wij and the 
bias b, is obtained by

ok = f
􏽘Q

i
wikoi + b

􏼠 􏼡

(9) 

where f (x) is a transfer or sigmoid function used. The two most used transfer functions 
in a neural network are the logistic function and hyperbolic function respectively given 
by (Deo et al. 2001).

Figure 1. Multi-layer perceptron model.
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Logistic Function

f (x) =
1

1+ exp ( − x)
(10) 

Hyperbolic HTangent Function

f (x) =
1 − exp ( − x)
1+ exp ( − x)

(11) 

Letting the target state of the output neurone be t , then an error (e) at the output 
neurone k is defined as

e =
1
2

(tk − ok)2 (12) 

In training a network, the difference between the output and the targeted values are com
pared and adjustments are made to the weights and bias to reduce the error function 
given in Equation (12). This process can also be labelled as the learning process of a 
network. Weights and biases are readjusted so that the error function becomes 
minimal making a network converge more closely to a targeted value.

Training a network is known to be the final stage of developing a model. There are no 
fixed techniques for determining the exact number of nodes and layers in a network 
formed. Model parameters are varied and the one that yields the desired error is pre
ferred. The main objective of any training algorithm is to minimise the error function. 
The error function is defined as

E =
1
P

􏽘P

P=1
EP (13) 

where P is the total number of training patterns and Ep is the error for the training 
pattern defined by

Ep =
1
2

􏽘N

k=0
(tk − ok)2 (14) 

where N is the number of training values, ok is the output, and tk is the target output. 
Error function (E) is minimised by making small adjustments to the weights and the 
bias functions till a strong map between the predicted and actual value is achieved in 
the training process (Li et al. 2009). One of the most common training algorithms 
widely used in forecasting is the error backpropagation algorithm. This technique is 
often referred to as an error-correction rule because it systematically reduces the error 
by adjusting the network’s weights. The error backpropagation algorithm comprises 
two phases. In the forward phase, the input vectors are passed through a series of 
hidden layers where small weights together with a bias are attached and are finally 
passed through a sigmoid function to reach a target. In this process, weights and 
biases remain fixed. In the backward phase, weights and bias values are readjusted to 
acquire a minimal error function. Once the error value is obtained, it is re-directed 
through the network for more adjustment to the weights and biases to converge more 
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closely to the required output. This is usually achieved by the steepest descent or gradient 
descent approach. The weights and bias terms are modified by moving a small step in the 
direction of the negative gradient of the error function during each iteration. The number 
of iterations is repeated until a specified convergence is reached which gives a very small 
coefficient correlation (Deo et al. 2001). The gradient descent is given by (Deo et al. 
2001).

X−k+1 = X−k − ng − (15) 

Where X− is the vector of weights at k+ 1 iterations, X−k is the vector of weights at kth 
iteration n is the step size and g − is the gradient vector = ∇f (X− ), where ∇f (X− ) is the 
error function for a weight vector X− . After this process, model parameters are kept fixed 
and used on the testing data for validation before the model is considered optimum for 
forecasting.

Methodology

This section elaborates on the variables used while developing different forecasting 
models, namely, time series models, regression models, and ANN models, to forecast 
the wave energy generated at near-shore areas in the Fiji Islands.

Data and variables

The variables used in this research are the wave height, wave period, and the wave power 
(precisely, the wave power transmitted per unit width of crest). Wave height and wave 
period are the independent variables while power is the dependent variable. In model 
development, ‘lags’ refer to the use of past values of a variable as predictors for its 
future values. If there are irregular intervals in the data, then defining and using these 
past values consistently becomes challenging, hence the number of such historical 
points (lags) that can be effectively incorporated into the model will be limited. The 
data collated in this study did not have a fixed frequency resulting in irregular intervals, 
hence the lags for each independent variable will be limited while developing the models.

The data for this research was collected by the University of the South Pacific’s 
researchers. Data was collected near Tagaqe, Sigatoka in Fiji from 10th October 2009 
to 13th December 2010. A Valeport Midas Directional Wave Recorder (DWR) was 
employed for the measurements. The DWR is provided with a high-accuracy piezo-elec
tric pressure sensor for water height measurements. Moreover, the DWR contains a flux 
gate compass and a Valeport two-axis Electromagnetic current sensor. A PRT-type temp
erature sensor was also active and recorded temperature readings at the location. A 
sampling frequency of 1 Hz was chosen to sample data for 1024 s. This frequency 
ensures that waves of up to 0.3 Hz (3.33 s) are accurately recorded. Since waves 
caused by meteorological events lie in the period range of 7–15 s, this sampling frequency 
ensured optimal use of memory and batteries for long-term deployment. From the raw 
data, the significant wave height, period and mean direction were extracted. The DWR 
requires 32 D-sized batteries that are replaced every month (Ram et al. 2014). Approxi
mately 3039 data values were gathered (244 days @ 2-hour data = 2928 data values, 111 
days @ daily data = 111 data values). Further details on the data collection and selection 
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can be found in the paper by Ram et a. (2014). From this, only 2860 data values are used 
while developing different forecasting models. The 2860 data values were in the form of 
wave height, wave period, and wave direction. This data was recorded at every two-hour 
interval throughout the duration. The first 80% of the data was used to train the models 
while the remaining 20% of data was used for the testing and validation process.

Pre-processing of data is done before the training process of model development. 
Mathematical models require processed or normalised data so that they can generalise 
and learn the relevant patterns to minimise the error function (Kimata 2016). In 
addition, if data is not normalised to an appropriate range, then the network will not con
verge during the training process providing less meaningful output.

Data can be normalised to a range of [0,1] as discussed by Kumar et al. (2020) by 
Equations (16) and (17):

xn =
xo − xmin

xmax − xmin
(16) 

where xn is the pre-processed data, x0 is the actual data value, whilexmin and xmax are the 
maximum and minimum values of the data.

The normalised data to be in the range of [− 1, 1 ] could be obtained by

xn = SRmin + SF(x − xmin) (17) 

where SF = (SRmax − SRmin)/(xmax − xmin) is the scale factor, x is the actual value, SRmin 
and SRmaxare upper and lower scaling range limits, and xn is the pre-processed value.

Generally, a single hidden layer network has a form ANN(a,b,c) indicating the model has 
a number of input nodes, b number of nodes in the hidden layer, and c number of nodes in 
the output layer. Similarly, a two-hidden-layer ANN model has a form ANN(d,e,f,g) where 
it has d number of input nodes, e number of nodes in the first hidden layer, the f-number of 
nodes in the second hidden layer with g number of nodes in the output layer. The most 
extensively used ANN model for many forecasting problems is the backpropagation 
neural network. It is a multi-layer feedforward neural network with error backpropagation 
for a model to converge to the output value by introducing and adjusting the weights.

The R software is used to develop the backpropagation neural network using the train
ing data for forecasting wave power. The network consists of two arcs with the first arc 
connecting the input nodes to the hidden nodes and the second arc connecting the 
hidden nodes to the output nodes. The input layer has two nodes, which are the wave 
height and the wave period. In this research, several ANN models were developed 
while trying to identify the model parameters and achieve the optimum ANN model.

ANN and regression models were developed using R software version 3.6.2 which 
requires the developer to write the codes while developing, training and testing the 
models formed despite having different inbuilt libraries. The optimum ANN model 
was obtained by minimising the Sum of Squared Error (SSE) while an optimum 
regression model was obtained by using the least square error method. Once the 
optimum model was identified, the coefficients were kept fixed during the testing 
phase of the models.

EView 8.0, a statistical software, was used to develop time series models such as single 
exponential smoothing, trend-adjusted double exponential smoothing, HW additive, 
HW multiplicative, and ARIMA models. EView software was further used to generate 
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and display model parameters and the graphs of actual, fitted, and residuals. The bench
mark model (naïve model) was developed using Microsoft Excel 2016 version. The per
formance of all the models developed is then compared to this benchmark model and the 
results are presented in Section ‘Results’ of the paper.

Model performance indicators like the Mean Squared Error (MSE), Root Mean 
Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage 
Error (MAPE), and correlation coefficient or goodness-of-fit (R2), as presented in 
Table 1, were estimated using the R software together with graphs of actual, fitted, and 
residuals for each of these models. The best forecasting model was identified based on 
their performance against these model evaluators. The optimum model is the one with 
the lowest values of MAE, MAPE, MSE, RMSE, and SSE and with the highest R2 value.

The wave power (P), which is actually the mean power transmitted per unit width of 
crest, can be found using Equation (18)

P =
1
8
rgH2cg (18) 

where r = water density, g = gravity, H = wave height, and cg, the group velocity, is 
defined for any finite depth of water (depth = h) as:

cg =
1
2

1+
2kh

sinh 2kh

􏼔 􏼕
gT
2p

tanh (kh) (19) 

where k = wave number, h is the mean water depth and T = wave period. These equations 
are obtained from the linear wave theory which is developed with certain assumptions. 
The present measurements were performed at a location 668 m from the shoreline. 
The waves are mostly uni-directional coming from the South-west direction (the 
waves normally lose their multi-directional nature as they approach the shoreline). 
The wavelength, estimated for the depth at the location, reduced by about 40% compared 
to the deepwater wavelength and the measured mean significant wave height was 
1.23 m. A spectral analysis was performed by applying a fast Fourier transform (FFT). 
With the frequency analysis and the mean pressure, the waw data were passed 
through the reverse Fourier transform to back calculate the surface elevation for every 

Table 1. Model evaluators used in this study.
Sum of Squared Error or Residual (SSE) =

􏽐
e2

t =
􏽐

(Yt − At )2

Mean squared Error (MSE) =
1
n

􏽘
e2

t =
1
n

􏽘
(Yt − At )2

Mean Absolute Error (MAE) =

􏽐
|(Yt − At )|

n

Mean Absolute Percentage Error (MAPE) =
100

n

􏽘 |At − Yt|

At

􏼒 􏼓􏼒 􏼓

Root Mean Squared Error (RMSE) =

����������������􏽐
(Yt − At )2

n

􏽲

Goodness-of-fit: R2 = 1 −

􏽐
(Yt − At)2

􏽐
Yt − A

−􏼐 􏼑2  

where Yt is the forecasted value, At is the observed value, n is the number of observations, and A̅ is the mean of the 
observed values.
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sample in the burst. The frequency spectra from the DWR data were obtained which 
defines the sea state in each burst. From the spectrum, the wave height and period 
were estimated (Ram et al. 2014). Based on these characteristics, the above equations 
can be used to estimate the wave power with reasonable accuracy as the linear wave 
theory is grossly violated (Holthuijsen 2010).

Results

In this section, the results for the time series model, the regression model, and the ANN 
model are presented. EView statistical software was used to develop the time series 
models. The results obtained using EView for each model using training and testing 
samples are displayed in the table below. The smoothing coefficient a was fixed while 
using the test data.

Exponential smoothing method

Forecasting wave energy is carried out using exponential smoothing methods. The results 
for the single exponential smoothing method are presented in Table 2 for training and 
testing data, respectively.

The value of α ( =  0.696) is close to 1 which indicates that the estimate favours more 
recent data than the distant observations.

Table 3 presents the results of the double exponential smoothing method. It is 
observed that the value of α < 0.5, this means that the estimation favours past distance 
observation in contrast to single smoothing.

The results from Table 2 show that the single exponential smoothing model had a sum 
of squared residual value of 16787.02 and root mean squared error value of 5.3161, while 
the double exponential smoothing model had a sum of squared residual value of 19537.00 
and root mean squared error value of 5.7350, both of which are much higher than those 
of the single exponential smoothing model. These results from both the training and 
testing data show that the single exponential smoothing model performed well compared 
to the double exponential smoothing model.

Holt-Winter (HW) additive & multiplicative method

HW method of forecasting is an extension of the exponential smoothing method (Tirkes 
et al. 2017). This technique best works when the data series exhibits a linear trend with 
seasonality which most of the models fail to capture while forecasting. Tables 4 and 5
display the results from EView using the training and testing data, respectively, for addi
tive and multiplicative models. While testing, the parameter values were kept fixed.

Table 2. Results of single exponential smoothing model using training and testing data.
Training Data (n = 2267) Testing Data (n = 594)

Parameter, α 0.6960 0.6960
Error Values
Sum of Squared Residual 64611.91 16787.02
Root Mean Squared Error 5.3386 5.3161
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For the HW additive and multiplicative models, the coefficients b = g = 0 indicate 
that the model favours past data for the input variables compared to the present data. 
However, a . 0.5 indicates that the model is more persistent to present data for the 
mean component of the model. The coefficient of trend using training data is positive 
which implies that there is a general improvement in the model as more present data 
are used. The seasonal effect which has a very small range indicates that the seasonal 
component has a limited influence on the forecasted values.

Forecasting using the arima technique

An ARIMA model has a form of ARIMA(p,d,q) where p is the autoregressive term, d is 
the differencing used while attaining stationarity of data while q is the moving average 
term in a model. The ARIMA model is defined by:

yt =
􏽘P

i=1
wiyt− i +

􏽘q

j=1
ujet− j + 1t, 

where wi is the ith autoregressive parameter, uj is the jth moving average parameter and 
1t is the error term at time t.

Before an ARIMA model can be developed for forecasting wave energy, the stationar
ity of the data is investigated by interpreting a time series plot shown in Figure 2, which 
clearly shows that the training data fluctuates around the mean of 11 kW/m. The wave 
power presented in Figure 2 was calculated using Equation (18) from the measured 

Table 3. Results of double exponential smoothing model using training and testing data.
Training Data (n = 2267) Testing Data (n = 594)

Parameter, alpha (α) 0.3420 0.3420
Error Values
Sum of Squared Residual 74043.66 19537.00
Root Mean Squared Error 5.7150 5.7350

Table 4. Results of HW additive method using training and testing data.
Training Data (n = 2267) Testing Data (n = 594)

Parameters, alpha (α) 0.7000 0.7000
beta (b) 0.0000 0.0000
gamma (g) 0.0000 0.0000
Error Values
Sum of Squared Residual 64296.52 16499.95
Root Mean Squared Error 5.3256 5.2705

Table 5. Results of HW multiplicative method using training and testing data.
Training Data (n = 2267) Testing Data (n = 594)

Parameters, alpha (α) 0.7000 0.7000
beta (b) 0.0000 0.0000
gamma (g) 0.0300 0.0000
Error Values
Sum of Squared Residual 64434.28 16426.75
Root Mean Squared Error 5.3313 5.2588
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wave parameters (actual wave power). The index identifies the values of the datasets. One 
thousand means 1000 values and 1 means the first value of the dataset.

The stationarity of input data is further checked by conducting a unit root test using 
the Augmented Dickey-Fuller (ADF) test (t = −8.8703, p-value < 0.0001), which indicates 
that the wave energy data is stationary (please see Table A1 in Appendix A). Apart from 
the time series plot and unit root test, the stationarity of input data is further verified by 
the Autocorrelation Factor (ACF) using the correlogram as shown in Table A7 in Appen
dix A. It shows that ACF drops to 0 quickly in an exponential decay during a short 
period, which again clearly supports the above results. This means that no differencing 
is required thus the d term in the ARIMA model will be 0.

Further, after closely studying the values of ACF and Partial Autocorrelation Factor 
(PACF) from Table A7, it is evident that the model will have both an autoregressive 
and moving average term. Since the spikes are observed at lags 1, 2, and 3 in the 
PACF graph, the p and q values can be considered as 1, 2, and 3 only.

Results of ARIMA model selection using the training data
Model parameters p and q are varied, and the performance of each combination is 
measured against the model selection measures which are Akaike’s Information Cri
terion (AIC), the Schwarz’s Bayesian Information (BIC), the Sum of Squared Error 
(SSE), and the adjusted R2 values. The lowest values of the measures AIC, BIC, SSE 
and the highest value of adjusted R2 identify the better model. Table 6 presents some 
results of ARIMA models used to fit the training data with different model 
parameters (with the best values of the measures in bold).

The results show that ARIMA (1,0,1) model performed the best as it recorded the 
lowest values of AIC, BIC, and SSE with the highest value of adjusted R2. The results 
of ARIMA (1,0,1) obtained from the EViews are presented in Table 7.

Finally, the performance of different time series models developed is compared using 
the model evaluators discussed in the methodology. Table 8 compares the performance 
parameters of each time series model to identify the optimum time series model for 
forecasting.

Figure 2. Time series plot for actual power using training data.
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The table shows that ARIMA (1,0,1) model performed the best, recording the highest 
R2 value and the lowest value of SSE, MSE, and RMSE (bold numbers). The other time 
series models performed relatively close to the optimum time series model. The results of 
ARIMA(1,0,1) using testing data will be discussed in the discussion section.

Figure 3 displays the graph of actual vs. predicated wave power using the testing data 
using ARIMA(1,0,1) model. The wave power presented in Figure 3 was also calculated 
using Equation (18). It can be seen that the predicted wave power was generally 
higher than the actual wave power for most of the index values; between index values 
of 250 and 340, it consistently overpredicted the wave power. Similarly, after the index 
values of 520, there was consistent overprediction using the ARIMA (1,0,1) model.

Forecasting power generation using regression models

The relationship between the wave power, wave height and wave period are investigated 
through the correlation coefficient and through the contour plot analysis as shown in 
Table 9 and Figure 4 respectively.

Table 6. Model selection criteria of ARIMA training model.
Model AIC BIC SSE Adjusted R2

ARIMA (1,0,0) 6.203337 6.208391 65477.79 0.765874
ARIMA (3,0,0) 6.793679 6.798736 118057.1 0.577818
ARIMA (0,0,1) 6.974139 6.979191 141592.8 0.49386
ARIMA (0,0,2) 7.082566 7.087618 157808.5 0.435895
ARIMA (1,0,1) 6.157499 6.16508 62488.99 0.776462
ARIMA (1,0,3) 6.203821 6.211401 654451.7 0.765864
ARIMA (2,0,1) 6.190849 6.198433 64579.57 0.768918
ARIMA (2,0,3) 6.570971 6.578554 94445.21 0.662051
ARIMA (3,0,1) 6.570126 6.577712 94323.69 0.662393
ARIMA (3,0,3) 6.782727 6.790313 116668.1 0.582417

Table 7. Results of ARIMA (1,0,1) using training data.
Variable Coefficient Std. Error t-Statistic Probability

C 11.38192 1.205429 9.442214 0.0000
AR(1) 0.931765 0.008592 108.4422 0.0000
MA(1) −0.255051 0.022918 −11.12891 0.0000
R-squared 0.776660 Mean dependent variable 11.2822
Adjusted R-squared 0.776462 S.D. dependent variable 11.1144
S.E. of regression 5.254840 Akaike info criterion 6.1575
Sum squared resid 62488.99 Schwarz criterion 6.1651
Log likelihood −6973.446 Hannan-Quinn criterion 6.1603
F-statistic 3934.761 Durbin-Watson statistic 1.9867
Prob(F-statistic) 0.000000

Table 8. Comparison of time series models based on training data set.
Model SSE MSE RMSE MAPE MAE R2

Single Exponential 64611.91 28.5011 5.3386 56.80 2.884 0.7691
Double Exponential 74043.66 32.6615 5.7150 56.67 3.042 0.7354
HW Additive 64296.52 28.3619 5.3256 57.48 2.896 0.7707
HW Multiplicative 64434.28 28.4227 5.3313 55.52 2.886 0.7698
ARIMA (1,0,1) 62647.7 27.622 5.2580 59.167 2.9078 0.7767
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Figure 3. Actual vs. predicted wave power with ARIMA (1,0,1) model using testing data.

Table 9. Correlation between input and output variables.
Wave Height Wave Period Wave Power

Wave Height 1.0000 0.0947 0.9253
Wave Period 0.0947 1.0000 0.3456
Wave Power 0.9253 0.3456 1.0000

Figure 4. Contour plot of fitted and continuous variables.
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Wave height and power show a strong correlation with a coefficient of 0.9253. The 
wave period and wave power have a small correlation coefficient of 0.3456. The two 
input variables of wave height and wave period show an extremely low correlation 
with each other with a correlation coefficient of 0.0947, which clearly shows less 
multi-collinearity effect in the regression model. Thus, both the input variables were 
selected to develop the regression models.

Contour plot analysis
The relationship between the variables is further investigated by studying the contour 
plot. The independent variables are placed on the X and Y axis while the response vari
able is represented by coloured contours which are given by the Z value.

Using the plot_ly function in ‘plotly’ package in the R software, the contour 
plot, shown in Figure 4, was generated to visualise the wave power at different wave 
heights and wave periods.

The contour plot suggests that the wave height has a stronger influence on the amount 
of wave power compared to the wave period. Wave period alone does not have much 
significant impact on the wave power as increasing only the wave period by 2 s accounts 
for the power increase of roughly about 2 kW/m. However, increasing the wave height by 
0.5 m results in a wave power of roughly 23 kW/m. It can also be noted that the 
maximum wave power can be generated by having a wave height of more than 2.5 m 
with a wave period set at more than 15 s. The plot also suggests that the wave power 
shows a non-linear relationship with smaller values of wave height and wave period. 
The contour plot further highlights that when the values of independent variables 
increase, the relationship shows a predictable pattern.

Equations (18) and (19) suggest that wave power has a nonlinear relationship with its 
independent variables, wave height and wave number. It can be seen that with increasing 
wave height, the wave power increases considerably. At lower wave heights, the power 
did not increase much even at high wave periods; however, increasing the wave height 
at higher wave periods shows a dramatic increase in the power.

Linear regression models
This section presents the different Linear Regression Models (LRM) developed as dis
cussed below for forecasting power energy for training data using R software:

LRM 1: Linear regression model with wave height as the input variable, that is:

Power = b0 + b1 · wave height+ 1 

LRM 2: Linear regression model with wave period as the input variable, that is:

Power = b0 + b1 · wave period+ 1 

LRM 3: Linear regression model with two input variables wave period and wave 
height, that is:

Power = b0 + b1 · wave period+ b2.wave height+ 1 

LRM 4: Linear transformation of a polynomial regression model which is the quadra
tic form of wave height that influences the wave power as given below:

Power = b0 + b1 · wave height+ b2 · (wave height)2 + 1 
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LRM 5: A Box–Cox transformation model. From the results presented in Appendix A 
and Tables A2–A5 for the LRM models 1–4, it can be seen that the model LRM 3 was 
found to be the best linear regression model based on the model selection criteria with 
the highest R2 value and the smallest AIC, BIC, Bias, SSE, and the root mean square 
error of the residuals (Sp). Thus, using the LRM 3 the optimum value of parameter 
lambda (l) to construct the Box–Cox transformation model is obtained as l = 0.5, 
which gives the corresponding nonlinear regression model as a square root of wave 
power, that is:

�������
Power
√

= wave period+ wave height+ 1 

or

Power = (wave period+ wave height)2 + 1 

which gives the Box–Cox linear transformation model as of the form:

Power = b0 + b1 (wave period)2 + b2(wave height)2

+ b3 (wave period) · (wave height)+ 1 

The results of the regression coefficients for all five models developed using the train
ing data are presented in Tables A2–A6 in Appendix A and the performance of models is 
measured against different selection criteria (AIC, BIC, SSE, bias, Sp and R2 with the best 
values in bold) and presented in Table 10.

The model LRM5, which was developed using the Box–Cox transformation, per
formed the best when compared to other regression models as it recorded the lowest 
value of AIC, BIC, SSE, Sp, and the highest adjusted R2 value. Figure 5 displays the 
actual and predicted values of the power for LRM5 using the training data set.

Further, Figure 6 displays the graph of actual vs. predicted power using the model 
LRM5 with the testing data. The model parameters obtained for training data were 
kept fixed while running them through the testing data.

However, before LRM5 is considered as the optimum regression model, it is impera
tive to study its residual analysis. Conducting the residual analysis and the diagnostic 
tests for the models, the results presented in Appendix B, namely Figures B1–B3, 
suggest that these regression models failed to meet the criteria for linearity, indepen
dence, and normality tests, which means the linear regression models’ goodness of fit 
test may not be a powerful measure to consider, thus, limiting to detect the best linear 
fit model.

Table 10. Performance of regression models developed using the training data.
Model AIC BIC SSE Bias (×10− 14) Sp Adjusted R2

LRM1 11467.32 11484.36 25391.52 1.538 3.429 0.8570
LRM2 15385.32 15402.36 155497.00 7.690 8.485 0.1245
LRM3 10160.80 10183.51 13862.37 5.489 2.534 0.9219
LRM4 10537.62 10560.33 16501.81 −0.109 2.765 0.9071
LRM5 8679.30 8707.69 6979.72 0.221 1.798 0.9607
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Forecasting wave power using artificial neural network

Tables C1 and C2 in Appendix C display the results of some of the ANN models devel
oped using the training data set with logistic and tangent hyperbolic activation functions 
while varying the model parameters. Based on the results presented in Table C1, ANN 
(2,4,2,1) performs best when compared with other models developed using the logistic 
transfer function given in Equation (10). The performances of the models beyond 
ANN (2,5,1) and ANN (2,4,3,1) are not documented since they did not show significant 
improvement. A 3-hidden layer network is also investigated and its performance is com
pared against single and two hidden layer networks. The 3-hidden layer networks did not 
perform well against the two hidden layer networks hence it was not investigated beyond 
ANN (2,3,3,3,1).

Similarly, based on the results presented in Table C2, ANN (2,7,2,1) is the best model 
when using the tangent hyperbolic transfer function (Tanh) given in Equation (11). ANN 
(2,7,2,1) is a 2-hidden layer network with two nodes in the input layer, seven nodes in the 
first hidden layer, two nodes in the second hidden layer, and a single node in the output 
layer. The performances of models beyond ANN (2,8,1) and ANN (2,7,3,1) were not 
documented as they did not show significant improvement in terms of the error values.

After a close comparison between the performances of two transfer functions, model 
ANN (2,7,2,1) developed using tangent hyperbolic function performed best, recording 
the lowest MSE, MAE, MAPE, and RMSE values and the highest R2 value as shown in 

Figure 5. Actual vs. predicted power for LRM5 using the training data.

Figure 6. Actual vs. Predicted power for the best regression model- LRM5.
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Table 11. Therefore, it is found that ANN (2,7,2,1) is the best ANN model, with the better 
performance measures in bold, used to forecast the wave power.

The R software was further used to generate the structure of the optimum ANN 
model, ANN(2,7,2,1). Figure 7 displays the architecture of model ANN(2,7,2,1).

ANN (2,7,2,1) was further used on the testing data and its performance parameters 
(with the best values in bold) based on different model evaluators is presented in 
Table 12. Weights and bias terms for ANN (2,7,2,1) model were fixed while running 
through the testing data. The graphs of actual vs. the predicted power are discussed in 
Section ‘Discussion’ together with the residual plot for the proposed ANN (2,7,2,1) 
model.

Discussion

The results in the previous section reveal that the best time series model was ARIMA 
(1,0,1), the best regression model was LRM5 which was a Box–Cox transformation 
model and the best ANN model was ANN (2,7,2,1) with a tangent hyperbolic transfer 
function. The performance of these models is analysed by comparing the R2 and 
different error measures as presented in Table 12.

From the results presented in Table 12, the ANN (2,7,2,1) model which was the pro
posed model, produced the highest R2 value which is the optimal out of the three models. 

Table 11. Comparison of optimum ANN model formed using the two-transfer function.
Transfer Function ANN Model MSE MAE RMSE MAPE R2

Logistic ANN(2,4,2,1) 0.0897 0.1476 0.2995 2.6741 0.9989
Tangent ANN(2,7,2,1) 0.0076 0.0655 0.0874 1.2663 0.9999

Figure 7. Architecture for proposed ANN (2,7,2,1) model with tangent hyperbolic transfer function.
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When the other measures are compared, it is again seen that the ANN (2,7,2,1) model 
produced the lowest values for the MSE, RMSE, MAPE and MAE which is a confirmation 
of its best results. Thus, we see that the proposed ANN (2,7,2,1) model outclassed all 
other models when tested using the training data.

Moreover, the model parameters were kept fixed and were used on the testing data and 
the performance based on the model evaluators is displayed in Table 13 with the best eva
luators highlighted in bold.

ANN (2,7,2,1) model performed the best when compared to other models using the 
testing data as well. It recorded the highest R2 value, lowest MSE, RMSE, MAPE, and 
second lowest MAE values. Figures 8 and 9 display the graphs of actual vs. predicted 
power and the residual for the optimum model developed using testing data for the 
ANN (2,7,2,1) model. It can be seen that the predicted power very closely matches the 
actual power (obtained from the measured wave height and wave period). The residual 
plot indicates a small variation on both sides with three outliers, indicating the acceptable 
accuracy of the ANN model. Comparing this to the predicted power using ARIMA (1,0,1) 
model, it can be seen that the ARIMA (1,0,1) model overpredicted the higher power values 
and underpredicted the lower power values (shown in Figure 3). On the other hand, the 
LRM5 model underpredicted most of the power values (Figure 6) although for both the 
models, the error estimates showed good accuracy. The overprediction and underpredic
tion of the time series and regression models will not help in good control system design 
and hence the performance of the wave energy converter.

Table 12. Performances of optimum model formed using the training dataset.
Model MSE RMSE MAPE MAE R2

ARIMA (1,0,1) 27.6220 5.2580 59.1670 2.9078 0.7765
LRM5 3.2284 1.7968 23.4369 2.6100 0.9607
ANN (2,7,2,1) 0.0076 0.0874 1.2663 0.0655 0.9999

Table 13. Results of identified optimum models using the testing dataset.
Model MSE MAE RMSE MAPE R2

ARIMA (1,0,1) 27.9340 5.6429 7.8083 80.7457 0.5657
LRM5 2.7001 0.1707 1.6434 20.1357 0.9591
ANN (2,7,2,1) 0.1650 0.3106 0.4061 4.9059 0.9975

Figure 8. Actual vs. predicted wave power for ANN (2,7,2,1) model.
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The proposed ANN (2,7,2,1) model was further compared with the benchmark model; 
the naïve forecasting model and the results are presented in Tables 14 and 15. The naïve 
forecasting model is created using Microsoft Excel as stated in Section ‘Naïve method of 
forecasting’. The naïve model is considered the benchmark in the area of modelling and 
the results are presented in Tables 14 and 15 with the better performance parameters 
highlighted in bold.

The proposed ANN (2,7.2,1) model performed best when compared to the naïve 
model using both training and testing data. It recorded the highest R2 and the lowest 
values for MSE, MAE, RMSE, and MAPE using both training and testing datasets. The 
empirical results reveal that the proposed ANN (2,7,2,1) model is more efficient and 
accurate in forecasting wave energy in comparison to the regression and time series 
models.

The contour plot presented in Figure 4 clearly shows that the wave power depends 
strongly on the wave height. A significant increase in wave power can be seen when the 
wave height is increased from 1 m to 2.5 m. The wave period started showing strong 
influence only at greater wave heights; at the periods of 14 s and higher, the power 
increased dramatically. The results reported by Ram et al. (2014) and Reddy and 
Ahmed (2014) both had similar wave periods. The wave periods in this range are predo
minantly wind/gravity waves. Waves of such characteristics are predictable and it will be 
much easier to design simple and robust controllers for wave energy converters. By incor
porating impedance matching, maximum power absorption and transfer can be achieved.

Figure 9. Residual plot for ANN (2,7,2,1) model.

Table 14. Comparison of the naïve model against the proposed model using the training dataset.
Model MSE RMSE MAPE MAE R2

ANN (2,7,2,1) 0.0076 0.0873 1.2664 0.0654 0.9999
Naïve model 24.14478 4.9008 35.8370 2.8402 0.7664

Table 15. Comparison of the naïve model against the proposed model using the test dataset.
Model MSE MAE RMSE MAPE R2

ANN (2,7,2,1) 0.1650 0.3106 0.4061 4.9059 0.9975
Naïve model 13.961 2.6296 3.7333 29.166 0.5705
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Conclusion

Forecasting energy using suitable techniques is extremely important for developing 
countries like Fiji and other Pacific Island countries. Energy and its sources need to be 
as reliable as possible to ensure sustainable energy production. While wave energy has 
shown significant prospects in bringing diversification to the current sources of 
energy, detailed work on its reliability needs to be investigated using a forecasting 
model. In this work, time series models, regressions models, and ANN models are devel
oped to forecast the wave power generated at a site in the Fiji Islands. The results indicate 
that these models may be promising for forecasting wave energy; however, their robust
ness vastly depends on their unique properties and characteristics. The proposed ANN 
(2,7,2,1) model clearly outperformed the time series and regression models. The ANN 
model is further benchmarked against the Naïve forecasting model.

For future work, it would be interesting to capture the influence of different lags in the 
data so that ANN can be generally accepted as the best forecasting model for wave power. 
This research used the measured wave height and wave period. Different models were 
developed to predict the wave power and it was compared with the actual wave 
power. It would be interesting to investigate the performance of this model if wave 
height and wave period are measured in deeper waters much before the wave train 
reaches the shore where the power can be extracted. The success of this process can 
provide alternatives while discussing energy sources for the future. The present work 
can also be expanded to other PICs as a prospective form of energy source considering 
its smaller impact on the environment.
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Appendix

Appendix A: statistical analysis for time series models. 

Table A1.  Augmented Dickey-Fuller test results for unit root.
Null Hypothesis: POWER has a unit root  
Exogenous: Constant  
Lag Length: 2 (Automatic-based on SIC, maxlag = 26)

t-Statistic Prob.*
Augmented Dickey-Fuller test statistic −8.870340 0.0000
Test critical values: 1% level −3.433042

5% level −2.862615
10% level −2.567388

*MacKinnon (1996) one-sided p-values.

Table A2.  Coefficients of linear regression model 1 (LRM1).
Estimate Std. Error T value p-value

Intercept −11.9972 0.2107 −56.94 <0.0001
Wave height 18.7681 0.1649 113.79 <0.0001

Table A3.  Coefficients of linear regression model 2 (LRM2).
Estimate Std. Error T value p-value

Intercept −3.6480 0.8256 −4.419 <0.0001
Wave period 1.1225 0.06405 17.526 <0.0001

Table A4.  Coefficients for linear regression model 3 (LRM3).
Estimate Std. Error T value p-value

Intercept −21.5779 0.2745 −78.60 <0.0001
Wave height 18.2094 0.1226 148.52 <0.0001
Wave Period 0.8152 0.0192 42.38 <0.0001
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Table A5.  Coefficient of linear regression model 4 (LRM4).
Estimate Std. Error T value p-value

Intercept 0.5749 0.4059 1.416 0.1568
Wave height −1.7767 0.6169 −2.880 0.0040
(Wave height)2 7.3617 0.2159 34.104 <0.0001

Table A6.  Coefficients for linear regression model 5 (LRM5).
Estimate Std. Error T value p-value

Intercept 1.7082 0.5411 3.157 0.0016
Wave height −1.5451 0.4370 −3.536 0.0004
Wave period −0.9920 0.0415 −23.910 2× 10− 16

Wave height · wave period 1.520 0.0330 46.130 2× 10− 16

Table A7.  Correlogram for autocorrelation and partial autocorrelation of 
power.
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Appendix B: residual analysis and diagnostic test for regression models.

The residuals analysis studied are linearity, normality, independence, and homoscedasticity of the 
error terms.

Linearity test
The residual plot from the regression models developed could be used to investigate if variables 

have any linear relationship. If the plot is equally spread, crowding towards the central line of 
the plot with no overall pattern, then it is known that independent and dependent variables 
have a linear relationship.

Figure B1 shows the residual plots against the predicted variables from all the models, except 
Model 2 which gives the worst performance. The residual plots do not exhibit the properties of 
linearity since the residual plots are not symmetrical along the zero residual; data are not clustered 
along the residual zero lines, do not have a general pattern and hence they do not indicate random
ness. Therefore, it can be interpreted that the independent and dependent variables do not have a 
linear relationship.

Normality test
Normality test is done to check if the distribution of the residuals is normal or not. Shapiro Wilk’s 
method and the normal Q-Q plot are used to check if the distribution is normal. Shapiro Wilk’s 
test statistics (W ) is based on the correlation between the error and the corresponding normal 
score. The p and W statistics values are found using the R and are presented in Table B1 for all 
five models. The results reveal that the distribution of the residuals is not normal since the p- 
value for each model is less than 0.05.

Figure B1. Plots for the Residual vs. predicted values from regression models.
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Table B1. Shapiro-Wilk test for normality of residuals.
W-value p-value

Model 1 0.9303 <0.0001
Model 2 0.8510 <0.0001
Model 3 0.8341 <0.0001
Model 4 0.8701 <0.0001
Model 5 0.8123 <0.0001

The normality of residuals is further studied using a Q-Q plot as shown in Figure B2 given 
below.

The Q-Q plot indicates the distribution is not normal since the majority of the points deviate 
away from the diagonal line for the models shown in Figure B2. Therefore, based on the results of 
Shapiro-Wilk tests and Q-Q plots, it can be conclusively said that the distribution of residuals is 
not normal, hence, fails to meet the assumption of normality for regression models developed.

Independence test
Multi-collinearity happens when the independent variable is highly correlated to each other. For a 
data set, multi-collinearity can be checked in two ways. It can be achieved by understanding the 
correlation table and by using the Variance Inflation Factor (VIF). The magnitude of the corre
lation coefficient less than 0.80 and a VIF value less than 10 implies that there is a case of 
multi-collinearity.

The correlation between these two independent variables was 0.0947 as discussed in Table 10. 
Since the value is close to zero, it can be said that the variables are not having multi-collinearity. 
This is also verified by looking into the variance inflation factor of 1.011679, which was found 
using the R software. Since VIF is less than 10, it indicates that the two independent variables 
show no correlation with each other. Thus, with the given VIF value and correlation value 
from Table 6, it can be said that it is a case of non-multi-collinearity.

Figure B2. Normal Q-Q plot for residuals.
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Homoscedasticity
This assumption is verified using the plot of standardised residuals against the predicted values to 
see if points are symmetrical across the central line. If in case, the distribution displays a conic 
pattern, then it can be said that the data is heteroscedastic. Figure B3 displays the plots of standar
dised residuals against the fitted values of the models. After examining these graphs, the data is 
heteroscedastic and not homoscedasticity.

The analyses suggests that these regression models failed to meet the linearity, independence, 
and normality tests, which means the linear regression models’ goodness of fit test may not be a 
powerful measure to consider, thus, limiting to detect the best linear fit model.

Appendix C: results of ANN models with logistics and tangent hyperbolic 
transfer function 

Table C1.  ANN results using a logistic transfer function on training data.
Model MSE MAE RMSE MAPE R2

ANN(2,2,1) 0.438158 0.366239 0.661935 4.712908 0.994666
ANN(2,3,1) 0.154374 0.152576 0.392905 2.44903 0.998121
ANN(2,4,1) 0.194781 0.255918 0.44134 4.681368 0.997629
ANN(2,5,1) 0.120116 0.193089 0.346577 3.942909 0.998538
ANN(2,2,2,1) 0.205027 0.311811 0.452799 6.43163 0.997504
ANN(2,2,3,1) 0.232456 0.24658 0.482137 4.088264 0.99717
ANN(2,2,4,1) 0.389426 0.369118 0.62404 5.975992 0.99526
ANN(2,2,5,1) 0.144034 0.268675 0.379519 5.719171 0.998247
ANN(2,3,2,1) 0.1851 0.23252 0.430233 4.708729 0.997747
ANN(2,4,2,1) 0.089689 0.14755 0.299481 2.674123 0.998908
ANN(2,5,2,1) 0.107043 0.233296 0.327175 5.093479 0.998697

(Continued ) 

Figure B3. Examining homoscedasticity in the data.
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Table C1. Continued.
Model MSE MAE RMSE MAPE R2

ANN(2,3,3,1) 0.138564 0.208951 0.372242 4.150272 0.998313
ANN(2,3,4,1) 0.113813 0.145099 0.337363 2.352499 0.998615
ANN(2,4,3,1) 0.28876 0.346976 0.537364 5.400831 0.996449
ANN(2,2,2,2,1) 0.286011 0.346002 4.980712 4.980712 0.996519
ANN(2,3,2,2,1) 0.384294 0.410553 0.619915 6.916745 0.995322
ANN(2,3,3,2,1) 0.254080 0.326123 0.504064 4.940367 0.996907
ANN(2,3,3,3,1) 0.272604 0.33867 0.522182 5.194215 0.996682

Table C2.  ANN results using the tangent hyperbolic transfer function on training data.
Model MSE MAE RMSE MAPE R2

ANN(2,2,1) 0.346118 0.3845552 0.588318 5.786395 0.9957868
ANN(2,3,1) 0.3581068 0.3940793 0.59842 6.585868 0.9956409
ANN(2,4,1) 0.012736 0.07530997 0.112854 1.377457 0.999845
ANN(2,5,1) 0.01740737 0.08239512 0.131937 1.329459 0.9997881
ANN(2,6,1) 0.01700308 0.09917377 0.130396 2.113108 0.999793
ANN(2,7,1) 0.02586862 0.09396279 0.160837 1.778243 0.9996851
ANN(2,8,1) 0.03967738 0.1330904 0.199192 2.3356 0.999517
ANN(2,2,2,1) 0.5082552 0.4726422 0.71292 7.446726 0.9938131
ANN(2,3,2,1) 0.0121041 0.07462835 0.110019 1.342473 0.9998527
ANN(2,4,2,1) 0.02037198 0.080522 0.142731 1.534435 0.999752
ANN(2,5,2,1) 0.0153825 0.07265613 0.124026 1.325115 0.9998128
ANN(2,6,2,1) 0.01289422 0.05813862 0.113553 0.945534 0.999843
ANN(2,7,2,1) 0.007637874 0.06541977 0.087395 1.266429 0.999907
ANN(2,8,2,1) 0.01570243 0.08029146 0.125304 1.526515 0.9998089
ANN(2,9,2,1) 0.02687869 0.09342489 0.163943 1.926674 0.9996728
ANN(2,2,3,1) 0.02349837 0.1029379 0.153292 2.114319 0.999714
ANN(2,3,3,1) 0.02102271 0.09096861 0.144992 1.587052 0.9997441
ANN(2,4,3,1) 0.008928545 0.05607203 0.094491 0.829993 0.9998913
ANN(2,5,3,1) 0.02242317 0.09999282 0.149744 2.03041 0.999727
ANN(2,6,3,1) 0.0168558 0.09103077 0.12983 1.712516 0.9997948
ANN(2,7,3,1) 0.01433458 0.07726367 0.119727 1.384213 0.9998255
ANN(2,2,2,2,1) 0.34947750 0.3941856 0.591166 6.191933 0.9957459
ANN(2,3,2,2,1) 0.00837800 0.09193283 0.0998625 0.9903954 0.9998224
ANN(2,4,2,2,1) 0.2892799 0.347779 0.5378475 5.387941 0.9964787
ANN(2,3,3,2,1) 0.0125108 0.0652756 0.1118519 1.094733 0.9998477
ANN(2,3,3,3,1) 0.02048658 0.09516317 0.143131 1.494789 0.9997506
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