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OPEN ACCESS 

ABSTRACT 

Context. The extinction risk of sharks and rays exceeds that of most other vertebrates. Genetic 
analyses can help identify conservation risks. Aims. Identification of Fiji’s maskray and testing the 
null hypothesis of no genetic differentiation within the species over time. Methods. Mitochondrial 
DNA cytochrome oxidase subunit 1 (COI) barcoding was used for species identification, and DArT-
seq technology to monitor the genetic diversity. Cohort samples were collected in 2015 and 2022. A 
subset from each cohort was barcoded. The genetic survey was complemented by a size comparison 
between the two cohorts. Key results. Barcoding of the COI gene showed a maximum similarity of 
97.84% to Kuhl’s maskray (Neotrygon kuhlii) and 96.83% to the Coral Sea maskray (Neotrygon 
trigonoides), but no higher-level distinct species match to reference sequences in the Barcode 
of Life Datasystem. Genotyping of 56 individuals in two cohorts yielded 21,293 single nucleotide 
polymorphisms (SNPs), and 3871 SNPs per individual were retained. The neutral genetic diversity 
remained stable over time. The 2015 cohort showed positive inbreeding, with one full-sibling pair 
identified in each cohort. Body size comparisons indicated a significant reduction in disc length and 
width in the 2022 cohort. Conclusions. The smaller body size of the 2022 cohort may hint at increased 
fishing pressure, but genetic diversity has not been affected. Thus, the null hypothesis is accepted. 
Implications. These findings provide insights into the genetic diversity of Fiji’s maskray and enable 
a genetic comparison with current Neotrygon species known in the region. Taxonomy confirmation 
is needed, but the presence of a cryptic or potentially new maskray in Fiji seems plausible. 

Keywords: batoids, COI barcoding, Dasyatidae, elasmobranchs, morphology, Oceania, single 
nucleotide polymorphisms, taxonomy. 

Introduction 

Globally, shark and ray populations are declining due to overfishing and climate pressures 
(Dulvy et al. 2021; Osgood et al. 2021). Despite considerable interspecific and intra-specific 
life-history variation (Last et al. 2016a; Bradley et al. 2017), many sharks and rays exhibit 
late maturity, low fecundity, long gestation, and slow growth, making them particularly 
vulnerable to fishing pressure (Cortés 2000). Additionally, their reliance on nurseries 
(Heupel et al. 2007) and philopatric behaviour (Chapman et al. 2015) increase the risk of 
local extirpation. Small populations are prone to inbreeding and genetic drift, resulting in a 
loss of genetic diversity (Rus Hoelzel et al. 2006; Allendorf et al. 2012). This, in turn, 
reduces the species’ ability to adapt to environmental changes and evolve (Frankham 2003; 
DiBattista 2008; Hernández et al. 2015). Therefore, it is crucial to preserve genetic diversity 
to avoid these adverse consequences. 

Genetic data support conservation research and management, by facilitating the 
detection of genetically distinct populations, the measurement of genetic connectivity, and 
the identification of the risks associated with demographic change and inbreeding (Allendorf 
et al. 2012). Advances in the use of molecular markers have significantly improved the 
delineation of population structures in sharks and rays (Feldheim et al. 2001; Luikart et al. 
2018; Ovenden et al. 2018). For example, extensive population structure in the white-spotted 
eagle ray (Aetobatus narinari) in the Indo-Pacific is evident (Schluessel et al. 2010). Also, 
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there is a strong regional differentiation in the thornback ray 
(Raja clavata) between the Mediterranean basin, the Azores 
and the European continental shelf (Chevolot et al. 2006). High 
divergence across oceanic basins and lower differentiation 
along continuous coastal habitats was linked to the short-
tailed stingray (Dasyatis brevicaudata) (Le Port and Lavery 
2012). Strong ocean currents and bathymetry can limit 
connectivity in species with active dispersal; for example, the 
Indonesian through-flow current influenced genetic differences 
in species from the maskray complex (Neotrygon sp.) (Borsa 
et al. 2012; Puckridge et al. 2013), while the steep bathymetry 
of the Southern California Bight drove genetic differences in 
round stingrays (Urobatis halleri) (Plank et al. 2010), at small 
geographical scales. Generally, biogeographic barriers, ocean 
distances, behaviour – particularly reproductive philopatry – 
movement ecologies, and habitat preferences affect gene flow 
and genetic differentiation in elasmobranchs (Dudgeon et al. 
2012; Hirschfeld et al. 2021; Devloo-Delva et al. 2023; 
Postaire et al. 2024). 

However, the current elasmobranch literature on intraspe-
cific genetic differentiation is skewed towards sharks 
(Hirschfeld et al. 2021), with stingrays (Myliobatoidei) 
(Aschliman et al. 2012) remaining one of the least understood 
groups of vertebrates in terms of molecular genetics 
(Beheregaray 2008). Furthermore, population genetic struc-
tures can vary spatially and temporally, affecting the accuracy 
of inferences based on changing spatial patterns over time 
(Kornfield et al. 1982; Lacson and Morizot 1991). Temporal 
genetic studies on shorter time scales, typically conducted 
over the course of a few years or within a single generation 
have primarily relied on seasonally recurring aggregations 
(Lieber et al. 2020) as well as the comparison of spatio-
temporal genetic patterns within juvenile populations and 
between juvenile and adult cohorts (Glaus 2019; Kuguru 
et al. 2019; Liu et al. 2023). Collecting time-separated samples 
enables temporal genetic monitoring and assessing changes in 
genetic variation (Domingues et al. 2018). This can reveal 
significant temporal genetic differentiation, suggesting 
stochastic effects from a small effective population size or 
previously undetected genetic subpopulations or stocks 
(Hedgecock 1994). Furthermore, collecting samples at multiple 
time points reduces the likelihood of including closely related 
individuals within the sample. Thus, preventing genetic 
structure from being an artefact of related individuals sampled 
at the same location (Devloo-Delva et al. 2019). Altogether, 
documenting genetic diversity (and where analyses permit, 
the calculation of effective population sizes over time) is 
fundamental in marine conservation genetics and particularly 
critical for long-lived species such as rays (Waples et al. 2008; 
Goldman et al. 2012; Domingues et al. 2018). 

Species of the genus Neotrygon, commonly known as 
‘maskrays,’ are native to the Indo-West Pacific region (Last 

et al. 2016a). Neotrygon (Castelnau 1873) was previously 
treated as a subgenus of Dasyatis. Based on more recent 
morphological and molecular analyses, the subgenus was 
elevated to the generic level (Last et al. 2016b, 2016c), and 
now belongs to the family Dasyatidae. Molecular analyses 
have also revealed discrete genetic diversity within this 
group and indicated the occurrence of several cryptic species 
(Arlyza et al. 2013; Puckridge et al. 2013). Due to morpho-
logical ambiguity, it is often difficult to distinguish between 
closely-related maskrays (Arlyza et al. 2013; Puckridge 
et al. 2013). Thus far, at least 11 species have been described 
from the species complex’ under the genus Neotrygon (Last 
et al. 2016a, 2016c; Hata and Motomura 2024). Maskrays 
are demersal, inhabiting intertidal sand flats, coral reefs, 
lagoons and slopes and as many other stingrays, they are 
likely susceptible to habitat degradation (Jabado et al. 2018). 
According to the Red List criteria of the International Union 
for the Conservation of Nature, maskrays are assessed as: Data 
Deficient (Neotrygon ningalooensis (Ferretti and White 2015), 
Neotrygon kuhlii (Kyne and Finucci 2018); Least Concern 
(Neotrygon caeruleopunctata (Sherman et al. 2021a), Neotrygon 
leylandi (Pierce and Kyne 2015), Neotrygon orientalis 
(Sherman et al. 2022a), Neotrygon picta (Pierce et al. 2015), 
Neotrygon trigonoides (Sherman et al. 2021b), Neotrygon 
varidens (Sherman et al. 2022b); and Near Threatenend 
(Neotrygon annotata (Jacobsen et al. 2015), Neotrygon 
australiae (Sherman et al. 2021c). 

Fiji’s maskray (Fig. 1a, b) has traditionally been recognised 
as Kuhl’s maskray (N. kuhlii) (Fig. 1c), while its colour 
patterns rather resemble the Coral Sea maskray (N. trigonoides) 
(Fig. 1d). In-country species identification for the maskray in 
Fiji is lacking and so are data on its ecology, life-histories, 
and genetic-population structure. Hence, mitochondrial DNA 
(mtDNA) ytochrome oxidase subunit 1 (COI) barcoding  (Ward 
et al. 2005) is required to verify Fiji’s maskray species. As the 
maskray is the most frequently caught and traded ray in the 
country’s small-scale fishery activities (Glaus et al. 2024a) 
combined with the low reproductive output of congeneric 
species (Pierce et al. 2009), it might be susceptible to even 
light fishing pressure. 

This study used COI barcoding to identify Fiji’s maskray. 
Moreover, temporal monitoring of genetic diversity (utilising 
genome-wide single nucleotide polymorphism (SNP) markers), 
spanning 7 years through the analysis of time-separated 
samples was undertaken. The null hypothesis of no genetic 
differentiation within the species over time was tested. This 
documentation of the species’ temporal genetic diversity was 
complemented by comparing disc length (DL) and disc width 
(DW) between two temporal groups. Together, these results 
contribute valuable insights into the genetic diversity of 
Fiji’s maskray and enable a genetic comparison with current 
Neotrygon species known in the region. 
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Fig. 1. Congeneric maskray species: (a, b) Fiji’s maskray, (c) Kuhl’s maskray, (d) Coral Sea maskray. Photo 
credit: (a) Alison Smith, (b) Tom Vierus, (c, d) both derive from iNaturalist. 

Materials and methods 

Sample collection 
To obtain samples for molecular species identification, temporal 
genetic diversity analysis, and DL and DW measurements for 
size comparison, surveys at the Suva fish market on Fiji’s 
main island Viti Levu (Fig. 2) were conducted in 2015 and in 
2022 (Glaus et al. 2024a). Additionally, the Sigatoka fish 
market (Fig. 2) was visited occasionally in 2022. The Suva fish 
market is Fiji’s prime market. A variety of reef fishes are sold 
alongside invertebrates such as octopus, freshwater mussels, 
crabs, and lobsters (Mangubhai et al. 2017; Tukana et al. 
2023). The majority of rays sold there are caught within the 
Rewa Estuary, and Tailevu, including Bau (Fig. 2), but they 
also originate from nearby locations and as far as Kadavu, 
although precise catch locations and GPS data are unknown 
(Glaus et al. 2024a). In total, 49 samples were collected in 2015 
and 40 in 2022.  DW  and  DL  size measurements  were recorded  
whenever possible, while a subset of samples per cohort was 
used for DNA COI barcoding (see section below). Prior to 
sampling, market vendors were informed about the purpose 
of the surveys. DL and DW measurements and tissue sample 
collection were only conducted with the verbal permission of 
each respective vendor. In many rays, the disc includes the 
combined  head, trunk, and  pectoral  fins (Last et al. 2016a). 
DL was measured from the tip of the head to the end of the 

pelvic fins, while DW was measured from the tip of the left 
pectoral fin to the tip of the right pectoral fin. Vendors were also 
asked to specify where the respective maskrays were captured. 
Tissue samples (fin clips,  1 cm2) were stored in 95% ethanol 
until DNA extraction. Samples then underwent polymerase 
chain reaction (PCR) amplification, library preparation and 
sequencing (Sanger sequencing for barcoding and Illumina 
sequencing for SNP genotyping). No maskrays were bought 
for this study to avoid any inadvertent incentives or demand. 

mtDNA COI barcoding 
The mtDNA COI gene is one of the most widely used gene 
markers for species identification (Ward et al. 2008). Tissue 
samples from both cohorts underwent COI barcoding. 
Specifically, seven samples from the 2015 cohort were 
barcoded at Diversity Arrays Technology, Australia, using 
DArT-MP proprietary processes, while 12 tissue samples 
were processed at ETH Zurich and sequenced at Microsynth, 
Switzerland. The same primers were used by Diversity Arrays 
Technology and by the ETH Zurich. For the latter, DNA was 
extracted with the Qiagen Blood and Tissue kit, following 
standard protocols (Qiagen Inc., Valencia, CA, USA). A 652-bp 
fragment from the 5 0 region of the COI was PCR amplified 
using FishF2 (5 0 -35 0TCGACTAATCATAAAGATATCGGCAC3 0), 
FishF2N (5 0ATCTTTGGTGCATGAGCAGGAATAGT3 0), and 
FishR2 (5 0ACTTCAGGGTGACCGAAGAAGAATCAGAA3 0) primers 
(Ward et al. 2005). Resulting sequences were identified by 
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Fig. 2. Map of the Fiji Islands. Tissue samples of 89 maskrays were collected; 49 samples in 2015 and 40 samples in 2022. In total, 56 maskrays 
were genotyped successfully. Maskrays used for SNP genotyping were captured in the Rewa Estuary (blue, n = 45), Bau (red, n = 7) and 
Sigatoka (green, n = 2). Orange refers to the Suva fish market, where most tissue samples were acquired. Catch sites were unknown for two 
specimens sold at the Suva fish market. 

using the Identification Engine at the Barcode of Life Data 
System (BOLD) (Ratnasingham and Hebert 2007) and by Basic 
Local Alignment Search Tool (BLAST) (Madden 2003). See 
Table 1 for Accession numbers. 

The COI sequences from the 19 specimens (across the two 
cohorts) were combined with a selection of publicly available 
COI data from 24 Neotrygon specimens available in BOLD and 
NCBI GenBank (BOLD Process IDs and GenBank Accession 
numbers are included here for each Neotrygon specimen). The 
final alignment comprised of 43 specimens of Neotrygon 
across 695 nucleotide positions. COI pairwise genetic 
distances were calculated in MEGA-X (Kumar et al. 2018) with 
the phenetic relationship among the specimens inferred by a 
maximum likelihood fitting tree with 10,000 bootstrap 
replications used following determination of the best fit 
nucleotide model of Hasegawa-Kishino_Yano (H-K-Y + G 
(Hasegawa et al. 1985). Additionally, newly sequenced Fijian 
Neotrygon individuals from this study were submitted to 
GenBank; Accession numbers are in Table 1. 

DArT-Seq: extraction and SNP sequencing 
SNP genotyping was also performed at Diversity Arrays 
Technology using DArT-Seq, where genomic DNA was 
extracted using standard robotic methods. DNA was then 

processed for reduced representation library construction, 
sequenced and genotyped by DArT-Seq following previously 
developed and tested complexity reduction protocols for 
scalloped hammerhead sharks (Sphyrna lewini) (Marie et al. 
2019). Briefly, genome complexity reduction was achieved 
with a double restriction digest using a PstI and SphI 
methylation-sensitive restriction enzyme combination. Libraries 
were  sequenced on an Illumina  HiSeq 2500 platform,  and raw  
reads obtained following sequencing were processed using 
Illumina CASAVA ver. 1.8.2 software for initial assessment 
of read quality and sequence representation. Enzymes and 
libraries were the same as used for S. lewini, albeit a 
different adapter sequence (NeotrygonP_ad_sp4) with shorter 
fragments was used. The DArT-PL proprietary software 
pipeline, DArTtoolbox was implemented for further filtering 
and variant calling to generate the final genotypes set. 

SNP quality control filtering 
Quality control filtering steps were performed on the dataset; 
these included (excluding duplicate SNPs possessing identical 
Clone IDs); removing loci with a call rate (proportion of 
individuals scored for a locus) < 90%; and maintaining SNPs 
with a read depth > seven and minor allele frequencies <2%. 
Detection of loci under selection was tested using BayeScan 
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Table 1. Comparing the percentage similarity in COI sequences between both cohorts and reference sequences using BLAST in GenBank and BOLD 
(pairwise identity). 

2015 cohort ID BLAST similarity % BLAST reference BOLD similarity % BOLD reference Accession# 

SV_2015_37 97.15%, N. kuhlii KU498038.1 97.10%, N. kuhlii GBGC10627-13 OR976143 

SV_2015_4 97.10%, N. kuhlii KU498038.1 97.10%, N. kuhlii GBGC10627-13 OR976144 

SV_2015_38 96.99%, N. kuhlii KU498038.1 96.94% N. kuhlii GBGC10627-13 OR976145 

SV_2015_47 97.15%, N. kuhlii KU498038.1 97.26%, N. kuhlii GBGC10627-13 OR976146 

SV_2015_40 97.15%, N. kuhlii KU498038.1 97.10%, N. kuhlii GBGC10627-13 OR976147 

SV_2015_48 96.84%, N. kuhlii KU498038.1 97.25%, N. kuhlii GBGC10627-13 OR976148 

SV_2015_33 97.25%, N. kuhlii KU498038.1 97.04%, N. kuhlii GBGC10627-13 OR976149 

2022 cohort ID BLAST similarity % BLAST reference BOLD similarity % BOLD reference Accession# 

SV_110622_4 96.71% N. kuhlii KU498038.1 96.71% N. kuhlii; LIFS993-08 OR839855 
N. trigonoides; ANGBF13149-18 
N. westpapuensis SOPNG125-18 

SV_230422_7 96.18% N. kuhlii; KU497960.1 96.08% N. kuhlii; ANGBF13157-18 OR839856 
N. trigonoides KU498033.1 N. trigonoides GBGC12837-13 

SV_090422_1 96.91% N. kuhlii KU498038.1 96.89% N. kuhlii ANGBF13226-18 OR840698 

SV_260322_5 96.25% N. kuhlii KU497960.1 96.25% N. kuhli ANGBF13157-18 OR839857 

SV_130522_1 96.02% N. kuhlii; KU497960.1 95.93% N. kuhlii; ANGBF13157-18 OR839858 
N. trigonoides KU498033.1 N. trigonoides GBGC12837-13 

SV_090422_3 96.77% N. kuhlii AB485685.1 96.77% N. kuhlii GBGC10609-13 OR839859 

SV_260322_1 95.87% N. kuhlii; KU498017.1 96.83% N. kuhlii; ANGBF48132-19 OR839860 
N. trigonoides KU498033.1 N. trigonoides ANGBF48182-19 

SV_110622_1 96.68% N. kuhlii KU498038.1 96.62% N. kuhlii; ANGBF13226-18 OR839861 
N. trigonoides LIFS993-08 

SV_210522_1 96.26% N. kuhlii KC250643.1 96% N. kuhlii; ANGBF13226-18 OR839862 
N. trigonoides LIFS993-08 

SV_140422_1 95.59% KU498033.1 94.44% N. kuhlii; ANGBF13157-18 OR839863 
N. trigonoides N. trigonoides GBGC12837-13 

SV_140422_4 96.72% N. kuhlii: KU497960.1 97.84% N. kuhlii GBGC10609-13 OR839864 
N. trigonoides KU498033.1 

SV_110622_2 95.57% N. kuhlii; KU498017.1 95.54% N. kuhlii; ANGBF48132-19 OR839865 
N. trigonoides KU498033.1 N. trigonoides ANGBF48182-19 

GenBank accession numbers given for samples from the 2015 and 2022 cohorts. 

ver. 2.1 (Foll and Gaggiotti 2008). The most conservative 
neutral model in BayeScan was used to minimise falsely 
detected loci under selection (Lotterhos and Whitlock 2014). 
Runs consisted of 100,000 iterations with a burn-in length of 
50,000 iterations (Foll and Gaggiotti 2008; Foll 2012). Once 
probabilities had been calculated for each locus, the BayeScan 
function plot_R was used in the R ver. 3.2.0 statistical package 
(Venables et al. 2009) to identify putative outlier loci. A range 
of false discovery rate (FDR) values from 0.01 to 0.20 were 
evaluated based on preliminary testing and recommenda-
tions by Gondro et al. (2013). 

Allelic diversity, population structuring and 
relatedness 
Allelic diversity indices including average observed (Ho), 
expected (He), and unbiased expected heterozygosity corrected 

for population sample size (Hn.b.) were computed in Genetix 
v.4.05.2 (Belkhir 1999), together with the inbreeding 
coefficient (FIS). Pairwise FST estimates (Reynolds et al. 1983) 
were calculated in Arlequin ver. 3.5.1.3 followed by correction 
of significance levels for pairwise testing (Excoffier and Lischer 
2010). Also, an analysis of molecular variance (AMOVA) was 
performed in Arlequin ver. 3.5.2.2 (Excoffier 2015) using  
10,000 permutations to estimate F-statistics to detect popula-
tion genetic partitioning between cohorts. ML-Relate (Kalinowski 
et al. 2006) and  COLONY  (Jones and Wang 2010) were used for  
relatedness analysis within cohorts. For COLONY, a weak 
sibship prior was chosen as input parameter. The maskrays 
were analysed both as a single population comprising all 
specimens, as well as two separate populations representing 
the 2015 and 2022 cohorts. 

The number of genetic groups in the Fiji maskray SNP 
dataset for the genotyped individuals was estimated using 
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the Bayesian model-based clustering algorithm implemented 
in Structure (ver. 2.3.4) (Pritchard et al. 2000; Falush et al. 
2003; Hubisz et al. 2009) run using an admixture model 
(without a priori  knowledge of location) with correlated allele 
frequencies. Following preliminary model testing, Structure 
was run with K (number of clusters) set between 2, 8 and 10 
independent runs per K. The Structure algorithm inferred the 
proportion of ancestry for each individual from each cluster; 
each independent run had a burn-in of 50,000 followed by 
100,000 Markov chain Monte Carlo (MCMC) iterations. 

The seven K Structure runs were then processed using the 
Greedy algorithm on the CLUMPAK (Clustering Markov 
Packager Across K) server (Kopelman et al. 2015) to  find the 
preferred value of K (based on ΔK) (as per (Evanno et al. 
2005) which demonstrated the uppermost level of structure 
in the SNP dataset. Clustering analysis on CLUMPAK was 
visualised with distruct (Rosenberg 2004). 

K-means clustering and Discriminant Analysis of Principal 
Components (DAPC), a non-model based method in the R 
package adegenet ver. 1.4.2 (Jombart 2008; Jombart and 
Ahmed 2011) additionally provided description of genetic 
clusters in the SNP data (based on discriminant functions), 
whereby genetic proximity of individuals to clusters was 
determined based on all included neutral loci. An optimised 
a-score for DAPC was used to determine the number of 
principal components (n = 14 PCs) that were retained for 
the assignment analyses. The K-means clustering algorithm 
in adegenet (run for K = 1–K = 6) also compared clustering 
solutions based on Bayesian Information Criteria (BIC) after 
transformation of the data using a Principal Component 
Analysis (data not shown). 

Morphology analysis 
Histograms in R were used to visualise the DL and DW 
distribution in both cohorts (Wickham et al. 2019). Mean 
sizes-at-maturity in a congeneric maskray were 314 mm DW 
in females and 294 mm DW in males (Pierce et al. 2009). Here, 
only deviations from means were detected in two females and 
one male. The respective male belonged to the 2022 cohort 
and had calcified claspers, which suggest that it reached 
sexual maturity (Awruch 2015). Due to the uncertainties 
surrounding the application of size-at-maturity estimates from 
a congeneric maskray in Australia to the maskray species in Fiji, 
and acknowledging that size alone cannot reliably determine 
sexual maturity (as larger individuals may still be immature, 
while smaller ones could already have reached maturity 
(Pierce et al. 2009), all specimens in both cohorts were retained. 
Overall, the size-related dataset included 49 maskrays from the 
2015 cohort and 40 maskrays from the 2022 cohort. To 
determine whether there was a significant difference in DL and 
DW between the two cohorts, Welch’s t-tests were performed in 
R (Wickham et al. 2019), due to unequal variances (West 2021). 

Compliance with ethical standards 
This research was approved by The University of the South 
Pacific (USP), by the Provincial Councils, and by Pacific-
European Union Marine Partnership PEUMP Project Management. 
All sampling procedures were approved by the USP Research 
Committee and performed in accordance with relevant guide-
lines and regulations. Also, in accordance with protocols of 
the USP, Provincial Councils were consulted, to explain the 
research, objectives, methodologies and expected outcomes 
prior to the data collection. 

Results 

COI barcoding 
Only seven samples from the 2015 cohort (due to 
compromised samples and lower quality extracted DNA 
post sample processing), and a subset of 12 samples from 
the 2022 cohort underwent COI barcoding. For both cohort 
subsets, the molecular barcoding results did not yield a 
definitive species match. The closest match for both cohorts 
was with N. kuhlii at 97.25% for the 2015 cohort and at 
97.84% for the 2022 cohort, respectively (Table 1). As these 
percentage matches demonstrate (Fig. 3), these 19 Fijian 
maskray specimens clustered together and separately to all 
other sequenced Neotrygon individuals. 

SNP filtering 
In total, 16 samples (also due to compromised samples and 
lower quality extracted DNA post sample processing) from the 
2015 cohort and all 40 samples from the 2022 cohort were 
genotyped. Genotyping by sequencing resulted in 21,293 
SNPs prior to quality control filtering (Carson et al. 2014), 
and 3871 filtered SNP loci. Among the SNPs that passed all 
quality control filters, no SNPs were identified as outlier loci 
putatively under positive selection (FDR 1%). 

Genomic diversity, relatedness and DAPC 
Except for Ho, which is higher in the 2022 cohort, population-
level indices of genetic diversity, including Hn.b., He, were  
similar or identical across the two temporal cohorts (Table 2). 
Based on the 3871 SNP loci in the filtered data set screened 
across both cohorts, 1225 and 3807 loci were polymorphic 
in the 2015 and 2022 cohort, respectively. Additionally, a 
large number (n = 2498) of SNP loci in the 2015 cohort 
were not successfully genotyped (possibly due to poorer 
quality sample DNA, see above). Inbreeding estimates were 
higher in the 2015 cohorts, with a FIS value of 0.25, compared 
to a FIS value of 0.00 in the 2022 cohort. FST-estimates 
(FST = 0.003, P = 0.150) and AMOVA results 
(FST = −0.00296, P = 0.988) indicated there was no genetic 
differentiation between the two temporal cohorts (Table 2). 
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Fig. 3. Maximum-likelihood tree of eight species of Neotrygon, 
including Fiji maskrays sequenced at the COI mtDNA gene in 43 
specimens and based on the H-K_Y model. Tree shown here has the 
highest log likelihood following 10,000 bootstrap replications. Each 
specimen is identified by either its BOLD Process ID or GenBank 
Accession Number. In this tree, each species forms a group. Numbers 
on nodes indicate bootstrap values. 

Both cohorts yielded a single full-sibling pair, which were 
identified in COLONY and ML-Relate. COLONY results indicated 
a probability of 1.00, and hence a high confidence level in the 
inferred sibship dyads. No relatedness was detected between 
the two cohorts. 

Based on Structure with the admixture model and 
correlated allele frequencies among the two cohorts, the ΔK 
Evanno criterion (Evanno et al. 2005) was identified as 
multi-modal peaks at K = 3 and 7 (Fig. 4), and the Probability 
K method by Pritchard et al. (2000) was identified as a single 

Table 2. Comparison of genetic diversity and differentiation measures 
between the 2015 and 2022 cohort samples, and the combined cohort 
of the Fiji maskray, based on 3871 SNPs. 

Cohort N Ho He Hn.b. FIS Pairwise AMOVA 
estimate 

2015 16 0.22 0.30 0.30 0.27 

2022 40 0.30 0.29 0.30 0.00 

All samples 56 0.28 0.30 0.30 0.07 FST = 0.003, FST = −0.00296, 
P = 0.150 P = 0.988 

Genotyping metrics: N (samples genotyped); Ho (observed heterozygosity); He 
(expected heterozygosity); Hn.b. (unbiased expected heterozygosity); FIS 
(inbreeding coefficient) per cohort; FST based on pairwise estimate and AMOVA. 

Fig. 4. Evanno output from seven sets of Structure runs, analyses 
based on SNPs in the Fijian maskray cohorts. A bi-model Delta K is 
shown. 

peak at K = 7 (see Supplementary material Fig. S1, Prob(K). = 
1.000). Based on these two Bayesian Structure models, the 
optimal number of clusters in the data was somewhat unclear. 
The output from the summary Clumpak pipeline is given in 
Fig. S2. Based on DAPC, one linear discriminant function 
was identified. The DAPC density plot likely represents the 
difference in the numbers of polymorphic and of usable loci 
across the individuals (Fig. S3) with the composition plot 
highlighting that the two groups are not entirely separate, 
with several individuals from the 2015 cohort displaying 
membership probabilities more closely with that of the 2022 
cohort (Fig. 5). Based on BIC, the number of clusters detected 
by DAPC was K = 2 (Fig. S4). 

Morphology analysis 
Welch’s t-test results showed that individuals from the 2022 
cohort exhibited significantly smaller DL and DW compared 
to their conspecifics in the 2015 cohort (Table 3, Fig. 6). 
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Fig. 5. Fijian maskray composition plot based on membership 
probabilities from DAPC analysis based on 3871 neutral loci where each 
individual is represented as a vertical bar and the colours correspond to 
probabilities of membership in the two cohorts. 

Table 3. Summary of disc length (DL) and disc width (DW) in two 
cohorts using Welch’s t-test. 

Specimens measured DL (cm) DW (cm) 

N 2015: 49 
N 2022: 40 

T 4.05 3.75 

Mean 2015 32.88 36.70 

Mean 2022 29.42 33.95 

P <0.001 <0.001 

Mean values for 2015 and 2022 are shown, indicating significant differences 
(P < 0.001) in disc length and width between the two cohort samples. T, t-test 
statistic. 

Discussion 

To our knowledge, this is the first study monitoring the 
genetic diversity in a stingray using time-separated samples. 
The mtDNA barcoding analysis did not yield conclusive 
species identification results, as it revealed a minimum genetic 
divergence of over 2% from the Kuhl’s and of over 3% from the 
Coral Sea maskray. In Australasian samples, it was demon-
strated that 99% of the 210 species identified based on 
morphological characteristics could be distinguished using 
COI barcoding (Ward et al. 2008). However, the COI gene 
also has limitations for elasmobranchs due to its small size 
(655 bp) and relatively slow evolution rate (White et al. 2022). 
This limitation was addressed by suggesting the larger and 
faster-evolving ND2 gene (1044 bp) as a species-discriminating 

marker, which generally aligned with COI results but offered 
improved resolution in some cases where COI failed to 
distinguish between groups (Naylor et al. 2012). Although 
Ward et al. (2008)  reported that approximately 96% of 
within-species sequences exhibited less than 2% divergence, 
considering this as threshold value for separate species can 
be misleading (White et al. 2022), as COI sequences in 
sharks and rays exhibit highly variable divergence rates both 
between and within species (Ward et al. 2008; Finucci 
et al. 2018). 

Fiji’s maskray is widely distributed across the Fiji 
archipelago (Glaus et al. 2024b). The distribution of Kuhl’s 
maskray remains uncertain. Currently documented in the 
Solomon Islands within the Western Central Pacific (Last et al. 
2016a), its presence might extend further across Oceania. The 
Coral Sea maskray inhabits regions in Queensland, Australia, 
and New Caledonia. However, also in this species, the extent 
of species distribution and potential overlap remains unclear. 
While personal observations (KG), photographic records, and 
morphological differences in specimens documented for this 
study, along with genetic results, suggest distinctiveness of 
Fiji’s maskray, definitive conclusions regarding distribution 
overlaps cannot be drawn. Overall, additional taxonomic 
clarification is necessary to identify Fiji’s maskray, including 
morphological analyses and the use of NADH dehydrogenase 
2 (ND2) genetic markers. Indeed, ongoing investigations, 
including detailed morphological and morphometric analyses 
aim to clarify its taxonomic status and provide a more accurate 
species description (K. Glaus and S. Appleyard, pers. comm.). 

Genetic diversity and variation over time 
Genotyping of over 3800 nuclear SNPs provided the following 
insights into the genetic diversity present in the Fijian 
maskray. The maskray in Fiji exhibited low levels of genetic 
diversity (as detected by SNPs), as evidenced by the low 
values of observed and unbiased expected heterozygosity 
(Ho = 0.28, Hn.b. = 0.30). These SNP based diversity values 
are nevertheless higher than in other tropical sharks such as 
the Galapagos shark (Carcharhinus galapagensis) (0.188–0.193) 
(Pazmino˜ et al. 2017), and the bull shark (Carcharhinus leucas) 
(0.128–0.214) (Glaus et al. 2020), comparable to the grey reef 
shark (Carcharhinus amblyrhynchos) (0.139–0.312) (Momigliano 
et al. 2017), and very similar to the spotted eagle ray 
(A. ocellatus) from Fiji (0.310–0.320) (Glaus and Appleyard 
2024). Lower genetic diversity of shark and ray species is 
probably more associated with bottlenecks and the slow rate 
of molecular evolution. Regardless of whether the cause is 
historical or cotemporary, the current levels of genetic diversity 
should be considered for conservation policies (Martin et al. 
1992; Rus Hoelzel et al. 2006; Allendorf et al. 2008). 

The lack of genetic differentiation between the two cohorts 
suggested that both stochastic effects due to a small effective 
population size, and genetic subpopulations were absent. 
Positive FIS values in the 2015 cohort indicated a significant 
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Fig. 6. Boxplot indicating decreases in disc length and disc width when comparing maskrays collected in 2015 with 
specimens obtained in 2022. 

deficit of heterozygotes in the 16 sampled individuals. This 
suggested the presence of some level of relatedness and 
family structure within the 2015 samples. Although the 
sample size for the 2015 cohort was almost 2.5-times smaller 
compared to the 2022 cohort, one full-sib pair was identified 
per cohort. In congeneric maskrays, age at maturity ranges 
3–6 years (Jacobsen and Bennett 2010), with maximum age 
estimates of 13 years for females and 10 years for males 
(Pierce et al. 2009). Therefore, identifying at least half-
sibling pairs across the two cohorts would have been 
possible. Non-random mating is one possibility for the 
positive FIS values in the 2015 cohort, which can result in a 
decrease in genetic diversity and an increase in the 
frequency of homozygous genotypes. However, genetic 
diversity remained consistent. Genetic diversity may have 
been preserved through the potential of gene flow between 
unsampled populations near our sample capture sites and 
the 2022 cohort. However, this cannot be confirmed as it is 
not known how many populations were sampled. 

Furthermore, the results of the AMOVA analyses suggested 
despite a considerable number of SNPs in the 2015 cohort not 
being called (which could be attributed to the quality of the 
2015 samples) there was no significant genetic differentia-
tion between the two cohorts. The DAPC analysis indicated 
that differences in the number of polymorphic and usable loci 
between the two cohorts likely accounted for the observed 
variation. Additionally, while Structure was not helpful in 
suggesting the number of population groups based on Bayesian 
clustering inferred from the delta K statistic (likely due to the 
uneven sample size across the 2015 and 2022 and the 
difference in number of SNP loci successfully genotyped) 
(Puechmaille 2016), we prefer to consider individuals in the 
dataset demonstrated genetic proximity to two genetic clusters 

(Fig. 5), albeit with non-significant genetic differentiation 
among the 2015 and 2022 cohort. Overall, the limited quality 
and sample size of the 2015 cohort with only 16 individuals 
and the 7-year sampling regime may have impacted the 
significance of the results with regard to the lack of genetic 
variation. Therefore, longer-term sampling regimes and larger 
sample sizes are necessary to further investigate the genetic 
diversity in maskrays from Fiji and its potential implications 
for conservation. 

Morphological comparison 
The decreases in DL and DW could be reflective of population 
alterations, such as changes in birth rates, survival rates, or 
migration patterns. Sampling bias provides an additional 
explanation. While the sampling method remained consistent, 
the specimens in 2022 were measured throughout the year. In 
contrast, measurements in 2015 were conducted only in 
October and November, which may coincide with the species’ 
reproductive season (Pierce et al. 2009). However, when 
comparing specimens collected only during October and 
November in both cohorts, the size decrease in DL and DW 
for the 2022 cohort remained evident. The same applied 
when only randomly selected subsets of each cohort were 
used for DL and DW size comparisons. Thus, a sampling 
bias is unlikely. The variation in size could, however, be 
attributed to unequal sex ratios (Goldman et al. 2012), but the 
absence of recorded sex data for the 2015 cohort hindered the 
possibility of conducting DL and DW size comparisons and 
partitioning the dataset by sex. 

The 2022 cohort was sampled 2 to 13 months after 
international travel restrictions were lifted in December 
2021. The rapid collapse of Fiji’s tourism due to the COVID-19 
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pandemic severely undermined employment occupations, 
which led to urban-rural return migrations (Davila et al. 
2021). This resulted in additional pressure on fishing resources 
and disputes over access and tenure (Connell 2021). Thus, 
probably more fishers were active in the Rewa Estuary and 
surrounding areas before and during the 2022 sampling period, 
than in 2015. Fishing efforts target larger individuals, which 
tend to be more fecund (Pauly et al. 1998). Particularly, 
females grow faster and reach larger sizes than males, as 
evident in many elasmobranchs (Klimley 1987; Francis 1996; 
Cortés 2000; Pierce and Bennett 2009; Pierce et al. 2009). The 
smaller size of the 2022 maskray cohort compared to 2015 may 
be a sign of increased fishing pressure, however the genetic 
diversity of the species has not decreased as found in this 
study. As catch monitoring time-series data for the maskray, 
as for other elasmobranchs, in Fiji are absent, it can neither 
be confirmed nor ruled out, whether the documented size 
decrease is indicative for increased fishing pressure. 

Conclusion 

Our study on Fiji’s maskray (Neotrygon sp.) suggests a 
potential new maskray species in the study area, which clearly 
requires further taxonomic resolution. Overall, the study 
resulted in two main findings: (1) detection of consistent 
genetic diversity over time; and (2) a significant reduction in 
body size after 7 years. The identification of the same level of 
genetic diversity over time indicated that the overall genetic 
makeup of the maskray population remained relatively 
constant. Consequently, the null hypothesis is accepted. As 
this was the first genetic study on maskrays in Fiji, our 
results enhance the understanding of the maskray’s genetic 
composition and emphasise the importance of ongoing 
monitoring efforts to gain deeper insights into the popula-
tion dynamics of this species. 

Supplementary material 

Supplementary material is available online. 
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