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ABSTRACT One major concern in control engineering is the problem of introducing an unstable system.
Such systems are even more sensitive to ramp input changes, either set-point or disturbance. We have
proposed an extended fractional-order IMC (FOIMC) control for an unstable system exhibiting a time
delay. The complete design involves only three adjustable parameters, such as PID tuning. In the proposed
structure, the inner loop control stabilises the system, whereas the fractional IMC filter improves the overall
performance, together to tackle the ramp inputs. A systematic approach is developed to tune the required
design parameters to obtain the desired peak of the sensitivity function and stability margins. The proposed
control is simple and can easily calculate the FOIMC parameters from the explicit formulae. The method
works under practical considerations, such as process parameter perturbations and load disturbances. The
developed scheme is also tested on the nonlinear continuous stirred tank reactor system. The proposed
control method results in a percentage enhancement of 61.9% under the perfectly ideal condition (when
the process model is equal to the actual plant) whereas 81.3% enhancement is obtained when the process
parameter variations are considered for the CSTR system.

INDEX TERMS Fractional order, IMC, ramp input, chemical process, robust system, maximum sensitivity.

I. INTRODUCTION

ENGINEERING applications such as chemical reactors,
boilers, and liquid-level control tanks have shown the

dynamics of integrating and unstable types. These processes
are quite challenging to control. Several control techniques
including PID [1] and its variants [2]–[7], Internal Model
Control (IMC) [8], [9], Smith predictors [10], [11], and multi-
loop architectures [6], [12]–[14] have been published in the
literature for integrating and unstable processes. In [1], the
analytical PID design is presented for unstable plants and
achieved acceptable robustness while this method resulted
in excessive overshoot in the setpoint tracking response,
and therefore a second-order low-pass filter was used for
its suppression. Irshad and Ali [15] suggested an optimal
PI-PD control by defining a new formula of the objective
function for non-self-regulating plants. However, it results
in aggressive control efforts and inferior robustness while
improving the desired performance index. Among the some,

IMC is emphasised as an effective control tool in which
overall performance is governed by a single design pa-
rameter [16]. Kumar et al. [17] designed IMC-PID for an
unstable second-order system that exhibits inverse response
behaviour. The setpoint weighting parameter was suggested
to handle undesired overshoots in [17] and [18]. The IMC-
PID stated above gives a fast set-point tracking response,
however, the disturbance rejection performance is slow and
inferior. These drawbacks of IMC-PID are overcome with
fractional order PID (FOPID) as it contains two additional
tuning factors in addition to the proportional, derivative, and
integral gains [19]–[21]. Trivedi and Padhy [22] proposed an
indirect design method of a fractional IMC system for var-
ious fractional-order models. Equilibrium optimiser-based
frequency-shifted IMC-PD decoupled two-loop control is re-
cently reported in [23] design for industrial plants to achieve
improved performance and robustness. However, their tuning
strategy seems a little lengthy and iterative. The fractional
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control is reported using the concept of Bode’s ideals in [24]
and [25]. In the recent past, tilted integral derivative (TID)
and FOIMC have been effectively used to regulate the output
of unstable processes in [26]–[28]. In [27], a fractional order
TID controller was developed using the IMC approach for
unstable systems with time delays. In that method, the output
performed well for set-point tracking; however, it did not
reject the step load disturbance that appeared at the plant
input.

A recent study with a fractional-order ramp controller [29]
presented for a stable noninteger plant. So far, it has been
noticed that the modified IMC and FOIMC strategies referred
to above have not suggested any systematic approach to
select a filter or required parameters. Rather, these parameters
are chosen randomly in the reported work, which may cause
undesirable behaviour when applied to the real industrial
system. In the lack of a specific method of selecting design
parameters, the user will have to make some initial guesses
followed by fine-tuning which is an iterative approach and
time-consuming.

This paper presents a novel FOIMC architecture with a
fractional order filter. The selection of unknown parameters is
simple using a single designed constraint. The limitations of
the previous methods are overcome with guaranteed stability
during high-order input signals and perturbations. The key
contributions are as follows.

• A double-loop FOIMC tuning method is proposed to
handle ramp inputs for both set-point and disturbances.

• The tuning parameters are selected using simplified re-
lation and based on the maximum sensitivity selection.

• The presented structure can provide guaranteed stability
with any chosen fractional order of an IMC filter within
the obtained stability region. Thus, it is capable of
handling high model mismatch.

• The capability of the suggested scheme is justified on
a non-linear CSTR system in the presence of step- and
ramp-type disturbances.

The remainder of the paper is organized as follows. The con-
tent of Section II explains the proposed fractional-order IMC
control. The results and investigation are given in Section III.
Lastly, the conclusion is presented in Section IV.

II. PROPOSED FRACTIONAL-ORDER IMC STRUCTURE
The structure under consideration is shown in Fig. 1 where
r1 is the input to the setpoint and r2 is the input to the plant
P . The input load disturbance and measurement noise are
considered by variables d and N , respectively. The proposed
design of the complete architecture is a two-fold approach.
First, the controller Ci is tuned to obtain the desired robust-
ness (maximum sensitivity) of the inner loop (IL). Then,
the fractional-order IMC (FOIMC) controller, namely Cf

is designed to achieve the desired shape of the output loop
(OL).

Cf (s) P(s)
r1(t) e(t) u(t)

d(t)

y(t)

Ci(s) N

Pm(s)
+

r2(t)

FIGURE 1: Proposed FOIMC structure.

A. INNER LOOP DESIGN
From Fig. 1, the following relation is obtained:

Y (s)

R2(s)
=

P (s)

1 + P (s)Ci(s)
(1)

where the controller Ci is considered as [Kp(1 + Tds/(1 +
Tds/N)]. Here Kp and Td are the proportional and derivative
gains, respectively. The integer number N represents the
filter constant introduced to represent the controller’s transfer
function as a proper one. Now, let the dynamics of many
industrial plants represented by the simple first-order transfer
function be defined below.

P (s) =
Ke−θs

Ts− 1
(2)

where, K process gain, T time constant and θ time delay are
known in our case. After substituting (2) into (1) and using
the following approximation

e−θs =
1− 0.5θs

1 + 0.5θs
(3)

we get,
Y (s)

R2(s)
=

K(1 + 0.5θs)(Tds/N + 1)e−θs

(Tds/N + 1)(Ts− 1)(1 + 0.5θ) +KKp(1− 0.5θ)[(Tds/N + 1) + Tds]

(4)

To obtain the analytical tuning formula of Ci, the term
(Tds/N + 1) may be approximated as 1 as the derivative
filter has considerably higher bandwidth than the process
[30]. Thus, (4) becomes

Y (s)

R2(s)
=

K(1 + 0.5θs)e−θs

[0.5Tθ − 0.5θKKpTd]s2 + [(T − 0.5θs) +KKp(Td − 0.5θs)]s+ [KKp − 1]

(5)
Let us take the intended transfer function as [5], [31],(

Y (s)

R2(s)

)
d

=
K(1 + 0.5θs)e−θs

(1 + βs)2
(6)

Comparing the denominator of (5) and (6), one obtains as

β2 = (0.5Tθ − 0.5θKKpTd)/(KKp − 1) (7)

2β = ((T − 0.5θ) +KKp(Td − 0.5θ))/(KKp − 1) (8)
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By solving (7) and (8), one can easily obtain the controller
parameters for Ci as below.

Kp = 0.5θ(T−0.5θ+2β)+(0.5θT+β2)
Kβ2+0.5θ(2βK+0.5θK) ,

Td =
0.5θT+β2−β2KKp

0.5Kθ

(9)

B. OUTER LOOP DESIGN
Let us consider now designing Cf . To include the effect of
IL, Pm is taken as the model equivalent and is defined below.

Pm =
Y (s)

R2(s)
(10)

Using (5),

Pm(s) =
K(1 + 0.5θ)e−θs

(Ts− 1)(1 + 0.5θ) +KKp(1 + Tds)(1− 0.5θ)
(11)

In the first step, decompose the model Pm into two parts as,

Pm(s) = Pm+(s)Pm−(s) (12)

where Pm+(s) contains all time delays and unstable zeros
(non-invertible) and Pm−(s) contains minimum phase ele-
ments (invertible). It can be written as,

Pm−(s) =
K(1 + 0.5θ)

(Ts− 1)(1 + 0.5θ) +KKp(1 + Tds)(1− 0.5θ)
(13)

The FOIMC for OL is then expressed as the inverse of the
invertible portion of the process model,

Cf (s) = P−1
m−f(s) (14)

In this approach, unlike the traditional IMC, the system
performance is governed by the double-tuning parameters.
There are various filter transfer functions proposed in the
literature [9]. To make a flexible and tunable filter, the order
is chosen as a real positive value. This way the modified new
FO filter becomes,

f(s) =
1

(1 + λsα)2
. (15)

Here, the FO derivative α is an additional tuning parameter.
By selecting the suitable values of the parameters α and λ,
smooth and fast set-point tracking, rapid disturbance rejec-
tion response and adequate robustness are achieved simulta-
neously in our work. In terms of realization, the suggested
FOIMC also has the same number of tunable parameters
(three) as that of the widely used PID. With recent advances
in fractional-order controllers, several approaches have been
reported in the literature to implement the same. Some of
these approaches are FOMCON toolbox [22], FPGA plat-
form [32], and PIC16F876 (Microchip Technology) [33].

Now by substituting (13) and (15) into (14), the expression
of Cf is obtained as below.

Cf (s) =
(Ts− 1)(1 + 0.5θ) +KKp(1 + Tds)(1− 0.5θ)

K(1 + 0.5θ)(1 + λsα)2
(16)

Using IMC, the overall transfer function becomes

y(s)

r1(s)
= Cf (s)Pm(s) (17)

In the following section, the values of the parameters β, α
and λ are obtained based on IL and OL maximum sensitivity
requirements.

III. SELECTING TUNING PARAMETERS
The proposed FOIMC tuning has only three tuning parame-
ters. The behaviour of the suggested control solely depends
on values of β (IL), and α, λ (OL). They are required to
be calculated appropriately for satisfactory performance and
robustness. The literature shows that the general range for un-
stable systems Ms is between 1.5 to 3.5. This range ensures
satisfactory robustness of the proposed control system in the
face of undesired circumstances such as load fluctuations,
noise, and mismatching of the plant model with the actual
system. To ease in design and uniform condition, we have
assumed the same Ms for both loops.

First, the explicit formulae for IL Ci in (9) is solved for β
using the desired robutness Ms as,

Ms = ∥1/(1 + Ci(s)P (s))∥∞ (18)

Above expression involves unknown β which is calculated to
meet the desired Ms.

Now, using (16) and (17), the complementary sensitivity
function, TC(s) = y(s)/r1(s) of the OL is obtained as,

TC(s) =
e−θs

(1 + λsα)2
=

1− θs

(1 + λsα)2
(19)

Remark 1: If T
′
(s) is the corresponding open-loop trans-

fer function of the equivalent unity feedback system, then
T

′
(s) = TC(s)/(1 − TC(s)). Thus, the expression of maxi-

mum sensitivity for OL is Ms =
∥∥∥1/(1 + T

′
(s))

∥∥∥
∞

.

A. OL TUNING USING PHASE MARGIN
As per Remark 1 and using (19), one can obtain the expres-
sion,

T
′
(jω) =

1− jωθ

(1 + λωαjα)2 − (1− jωθ)
(20)

If ωg is the gain cross over frequency, (20) reduces to

|1− jωgθ| = |(1 + λωα
g j

α)2 − (1− jωgθ)| (21)

Taking the magnitude of both sides of the above expression
and simplifying it, we get

λ4ω4α
g cos2(απ) + 4λ2ω2α

g cos2(απ/2)

+4λ3ω3α
g cos(απ) cos(απ/2) + 4

+(ωgθ)
2 + λ4ω4α

g sin2(απ) + 4λ2ω2α
g sin(απ)

+4ωgθ + 2λ2ω2α+1
g sin(απ) + 3 = 0 (22)

VOLUME x, 2024 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3553242

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Also, the phase margin (PM) of the system given in (20) is

PM = π − tan−1 ωgθ

− tan−1
2 + λ2ω2α

g sin(απ) + ωgθ

λ2ω2α
g cos(απ) + 2λωα

c cos(απ/2)
(23)

By solving (22) and (23), suitable λ can be determined for a
given value of α and desired PM.

To understand the design steps and observe the effect of λ
and α on Ms, taking the plant

P (s) = 2e−s/(4s− 1) (24)

The selection procedure for λ and α is explained below from
a stabile region that is obtained by taking PM ∈ [30o, 60o].

Fig. 2 illustrates that the desired PM range can be obtained
with α ∈ (1, 1.5) and λ ∈ (0.1, 5.0). These ranges are
obtained by conducting various simulations with varying α
and λ and observing their effect on PM. Any set of values for
λ and α may be selected from the shaded region for controller
tuning. In addition, the effect of varying λ and α on OL Ms

is investigated as seen in Fig. 3. It helps reduce the burden
of parameter tuning. From this figure, λ can be chosen for a
possible range of α ∈ (1, 1.5) to satisfy the user-defined Ms.

1 1.1 1.2 1.3 1.4 1.5

0.5

1

1.5

2

2.5

3

3.5

4

30
o o

FIGURE 2: Stable range for α and λ with PM
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2.5
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 = 1.01
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 = 1.2

 = 1.3
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 = 1.5

Region for  as per M
s

FIGURE 3: Possible values of λ and α as per Ms

TABLE 1: Design parameters of the proposed control

Example Ms Kp Td α λ β
1 2.3 1.735 0.474 1.2 0.6 0.69
2 2.0 0.782 0.482 1.15 0.77 0.64
3 3.2 2.295 0.521 1.3 0.39 0.68

CSTR 2.0 1.195 9.234 1.1 3.5 14.5

B. SUMMARY OF TUNING APPROACH
• For a plant model (2), tune Ci using explicit formulae in

(9) for β according to the desired Ms.
• Solve (22) and (23) to determine the appropriate λ

according to Ms, PM and α.
• Tune Cf using (16).

IV. NUMERICAL STUDY
To verify the proposed control scheme, we have provided a
comparative analysis with recently reported methods. The
numerical comparisons are measured with indices such as
integrals of absolute error (IAE), integrals of squared error
(ISE), and integrals of time absolute error (ITAE). In ad-
dition, the ISU (integral of the squared control variable, u)
is determined to estimate the input energy usage. The lower
value of ISU signifies better controller tuning and therefore
less wear and tear of movable parts in a plant. It is important
to mention that the high-frequency noise can be mitigated
with Ci by cascading with a low-pass filter as 1/(1+0.001s).

A. EXAMPLE: 1
The following process is considered to compare with other
methods [2], [3], [5].

P (s) =
2e−s

4s− 1
(25)

is considered. For fair comparisons, we have tuned the sug-
gested controllers from the literature with the same Ms of
2.3.

Following the proposed approach, the controller parame-
ters obtained are listed in Table 1 in the first row. Now, the
unit step change in the setpoint input at time t = 0 and a
step disturbance of -0.1 at t = 20, are assumed. The output
and control signals from the proposed method and others are
plotted in Figs. 4 and 5. It showed that the FOIMC control
provided comparatively faster and smoother responses.

Let us assume a mismatch of +10% in both K and θ and
-10% in T simultaneously to verify the robustness and keep
the same controller. The corresponding responses are shown
in Fig. 6. The numerical values of various indices are also
tabulated in Table 2, and the smaller values demonstrated the
excellent performance of our method.

Further, the capability of tracking the step-up or down type
of command signal of various methods are compared. The
resulting outputs are displayed in Fig. 7. It shows that the
performance of all the methods are compared to each other
except [3]. Large overshoots and undershoots appear in the
output of the above cited work.
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TABLE 2: Numerical comparisons

Ex. Method Normal Perturbed
ISE IAE ITAE ISU %∆ ISE IAE ITAE ISU %∆

1

Proposed 2.5 4.0 32.9 26.4 13.9 2.6 4.5 42.0 25.0 5.7
Kumar and Ajmeri, 2023 3.0 5.0 42.4 26.0 3.1 5.6 56.0 24.2
Kishore and Sree, 2018 3.0 5.0 39.8 37.7 4.2 5.9 47.0 39.8
Vanavil et al., 2015 2.5 4.6 45.0 26.4 2.5 4.8 47.3 24.0

2

Proposed 3.0 4.8 49.0 5.6 19.2 3.5 5.1 54.5 6.0 8.5
Peker and Kaya, 2023 5.5 8.1 106.0 5.9 6.8 10.3 167.0 6.4
Chakraborty et al., 2017 3.7 6.0 62.0 5.5 4.0 5.8 60.0 5.7
Zhang et al., 2020 2.6 5.5 69.0 6.5 3.4 6.0 70.0 7.6

3
Proposed 22.6 28.5 740.0 992.0 62.7 29.7 29.5 769.0 984.0 62.8
Alyoussef and Kaya, 2023 37.7 30.7 801.0 4070.0 47.0 32.8 866.0 4142.0
Ozyetkin et al., 2020 88.0 48.4 1274.0 3369.0 110.0 49.7 1318.0 3396.0

CSTR
Proposed 1167.0 400.0 57040.0 52270.0 61.9 1223.0 401.0 56.5 52560.0 81.3
Ajmeri and Ali, 2015 1416.0 739.0 238500.0 50470.0 1469.0 740.0 237200.0 50660.0
Begum et al., 2020 769.0 350.0 79620.0 320800.0 826.5 350.0 78760.0 321200.0

FIGURE 4: Outputs for Example 1 (Normal)

FIGURE 5: Control signals for Example 1 (Normal)

B. EXAMPLE: 2
Let us take an integrating process which is studied in the
number of works [4], [7], [30] as given below:

P (s) = e−s/s (26)

The performance of the suggested control is contrasted with
recent methods [4], [7]. Again, the input of the setpoint is
taken as a unit step at t = 0 and the load disturbance of
the step type with magnitude 1.5 at t = 10. Figs. 7 and 8 is

FIGURE 6: Outputs for Example 1 (Perturbed)

FIGURE 7: Outputs for Example 1 for a step up and down
command

displayed the closed-loop responses and the control signals,
respectively, when the plant model exactly matches the pro-
cess to be controlled. Fig. 9 shows the resulting signals under
the perturbation of +25% in the time delay. The measured
values from Table 2 and the output plotted depicted that the
new control method would perform incredibly well compared
to the others. It provided smaller IAE, ITAE and ISU under
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nominal and perturbed conditions. Note that Chakraborty et
al. [30] gave a smaller ISU; however, the output is very
sluggish. Their method took a longer time to attenuate the
load disturbance.

FIGURE 8: Outputs for Example 2 (Normal)

FIGURE 9: Control signals for Example 2 (Normal)

FIGURE 10: Outputs for Example 2 (Perturbed, +25%
change in θ)

C. EXAMPLE: 3
Let us take a second-order process

P (s) =
e−0.5s

(0.5s+ 1)(2s− 1)
(27)

The same process was considered in [34], [35] with four
parameters PI-PD controller. A PI-PD [34] with controller
settings was Kp = 0.492, Ki = 0.340, Kf = 1.878 and
Kd = 0.760. The controller in [35] had parameters Kp =
0.1955, Ki = 0.1906, Kf = 1.7222 and Kd = 0.4325.

Note that the presented structure has only three tuning
parameters. First, the process was approximated as

P (s) =
e−1.067s

2.347s− 1
(28)

and chosing Ms = 3.26 for a fair comparison as in [34]. The
parameters of our method are tabulated in Table 1. Now, at
t = 0 a ramp input of 0.2 unit slope is applied at the set-point.
Following a step disturbance of 5 at t = 25 is assumed at
the input of the plant. The proposed method performed very
well for the set-point and in the rejection of disturbances,
as seen in Figs. 10 and 11. It is noted that the method
[35] produces a steady-state error with ramp signal input.
To test the mismatch of the model, a perturbation of +25%
in θ was considered. Again, our method performed better
compared to the others, as shown in Fig. 12. The values of
various indices are tabulated in Table 2. That also proved the
proposed control outperformed with fewer tuning parameters
for ramp-type references.

In our work, the percentage enhancement (%∆) achieved
by the suggested control scheme is determined using the
following relation:

%∆ =

∑
R −

∑
P∑

R

× 100 (29)

where
∑

R is the performance of the reported method corre-
sponding to the smaller value of the sum-total of ISE, ITAE,
IAE and ISU indices. The quantity

∑
P is the sum of all these

indices from the proposed FOIMC approach. Observing Ta-
ble 2, one can see that percentage enhancement of 13.9, 19.2
and 62.7 are obtained with the proposed FOIMC, respec-
tively, in the three studied examples for normal conditions.
The proposed FOIMC gives percentage enhancement of 5.7,
8.5 and 62.8 in the above-said examples under the assumed
perturbed conditions.

V. APPLICATION TO CSTR PROCESS
The isothermal chemical reactor is commonly used in the
process industry. The process dynamics in terms of differ-
ential equation is described by [8]

dC

dt
=

Q

V
(CF − C)− k1C

(k2C + 1)2
(30)

where Q and CF represent inlet flow rate and concentration,
respectively and C indicates the reactor’s exit concentration.
The parameter values are Q = 0.0333L/s, k1 = 10L/s,
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FIGURE 11: Outputs for Example 3 (Normal) with a ramp
input

FIGURE 12: Control signals for Example 3 (Normal) with a
ramp input

FIGURE 13: Outputs for Example 3 (Perturbed, +20%
change in θ)

k2 = 10L/mol, and the reactor volume is V = 1L. The
desired steady state is taken as C = 1.316 with the nominal
value CF = 3.288mol/L.

For applying the proposed FOIMC as seen in Fig. 13,
the nonlinear process model is first linearized and the feed
concentration is taken as the controlled variable. The approx-
imated model by assuming a process time delay of 20sec is

obtained as

P (s) = 3.433e−20s/(103.1s− 1) (31)

It is to be noted that this model is used to obtain the con-
trol laws; however, the designed scheme is applied to the
actual nonlinear system defined by (30). Now, the unity step
changes along with step disturbance at t = 1000 sec is
assumed. The results are plotted in Figs. 15 and 16. From
these figures, it is observed that the method suggested in
[12] yields a slow output and takes a long time to settle.
Although Begum et al. [8] produces a sufficiently fast re-
sponse, their method shows a very large ISU as seen in Table
2. In comparison, the presented FOIMC strategy results in
acceptable performance and robustness with a small ISU
value. Furthermore, robustness is also verified by assuming
a model mismatch of +20% in θ. The corresponding plots are
shown in Fig. 16. Table 2 shows that the presented control
achieves %∆ of 61.9 and 81.3 for normal and perturbed
conditions, respectively.

To assess the robustness of the FOIMC scheme against
noisy output, we have added white noise with a variance of
0.001 to the output. The corresponding outputs are plotted
in Fig. 17. More interestingly, a slope disturbance ramp
of 0.05 at 1000 sec is introduced before the plant input.
The relevant outcomes are shown in Fig. 18. It shows that
the proposed approach produces reduced steady-state offset
during the ramp-type disturbances, thereby outperforming
other controllers.

Cf (s)
r1(t) e(t) u(t)

d(t)

Ci(s)

Pm(s)
+

r2(t)

Q

CF C

Noise

FIGURE 14: Scheme applied to CSTR process with a ramp
disturbance and noise.

VI. CONCLUSION
This paper presented the extended FOIMC design for unsta-
ble systems, considering ramp-type input signals. Like the
classical PID structure, the suggested FOIMC scheme has
only three parameters, the selection of which is based on
achieving the desired maximum sensitivity. In addition, the
stability of the proposed control is guaranteed by choosing
fractional IMC filter constants from the stability region cor-
responding to the PM ∈ [30o, 60o]. The proposed design
helps the user find the controller settings in one attempt.
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FIGURE 15: Exit concentration of CSTR under perfect mod-
eling

FIGURE 16: Inlet concentration of CSTR under perfect
modeling.

FIGURE 17: Exit concentration of CSTR in the presence of
the considered noise.

The structure demonstrated stability and robustness with a
high model mismatch and improved performance compared
to existing approaches. The technique was implemented on
a non-linear CSTR plant by considering the step and ramp
load disturbances. It is concluded that the proposed approach
resulted in 61.9% overall percentage enhancement under
nominal conditions and 81.3% enhancement is obtained in
the presence of the process parameter variations. Current

FIGURE 18: Exit concentration when perturbed θ +20% in
the acutal CSTR.

FIGURE 19: Exit concentration when a ramp disturbance
input.

research is focused on the control of unstable low-order
models. The suggested method can be extended for the
higher-order integrating and unstable plants. Second, in the
design approach, the fractional-order filter time constant was
selected using the value α and the desired phase margin.
After an extended numerical study, an attempt can be made
to make an explicit formula to design filter parameters.
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