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Abstract 

The need to increase bio-oil yield from biomass and enhance its fuel properties has driven research into optimizing the pyrolysis 
process. This study investigated the influence of three key process parameters—temperature, heating rate, and nitrogen flow rate—on 
the pyrolysis of elephant grass (Pennisetum purpureum) in a fixed-bed reactor. Response surface methodology was used to study the im-
pact of the aforementioned variables on bio-oil yield to improve its production efficiency. Proximate analysis of the biomass revealed 
79.24 wt% volatile matter, 14.22 wt% fixed carbon, and 5.86% ash, with ultimate analysis showing 45.44% carbon, 5.59% hydrogen, and 
40.95% oxygen. The high volatile matter content and favourable carbon and hydrogen percentages indicate that elephant grass is a vi-
able energy source due to its potential for high bio-oil yield and energy content. The resulting bio-oil exhibited a higher heating value 
of 20.9 MJ/kg, indicating its suitability for various heating applications. A second-order regression model was developed for bio-oil 
yield, with optimal conditions identified as a temperature of 550°C, a heating rate of 17°C/min, and a nitrogen flow rate of 6 ml/min. 
The study achieved an optimal bio-oil yield of 59.03 wt%, and the model’s high R² value of 0.8683 from analysis of variance analysis 
confirmed its predictive accuracy. This research highlights elephant grass as a sustainable feedstock for bio-oil production, offering 
valuable insights into optimizing pyrolysis conditions to enhance bio-oil yield, thus advancing biofuel technology.
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1. Introduction
Biomass has been identified as a suitable supplement for the 
fast‑depleting conventional fuel resources and an eco‑friendly 
alternative capable of playing important roles in future energy 
systems [1]. To reduce environmental pollution caused by the re‑
lease of greenhouse gas emissions (GHGs) from fossil fuel usage 
[2], different conversion schemes have been developed over the 
years to convert biomass into biofuel for use in many combus‑
tion systems. The transformation of biomass into biofuel can be 
achieved via physical, biological, biochemical, or thermochemical 
processes. Pyrolysis, the thermochemical transformation of bio‑
mass in to energy, has gained wide interest due to its benefits and 
flexibility, and many studies have revealed it as one of the most 
efficient biomass‑to‑biofuel conversion technologies [3–6].

The pyrolysis of biomass produces bio‑oil, bio‑char, and 
syngas; the most valuable of the products is bio‑oil [7]. Although 
pyrolysis‑derived bio‑oil has various potential applications, such 
as energy production, fuels, chemicals, and carbon materials [8], 
the direct use of bio‑oil is limited in many systems due to some 
undesirable characteristics like its corrosive nature, high acidity, 
instability at room temperature, and low heating value [9, 10]. In 
order to enhance the quality of the bio‑oil, it is usually subjected 
to different upgrading techniques. The yield and quality of the 
bio‑oil have been linked to reactor type, the intrinsic transport 
process, and the right combination of process parameters during 
pyrolysis [11]. Therefore, it is imperative that the right combin‑
ation of pyrolysis processing parameters for optimum bio‑oil 
yield be obtained using suitable optimization techniques. This 
study applied response surface methodology (RSM) to determine 
the optimal bio‑oil yield from the fast pyrolysis of elephant grass.

RSM aids in identifying optimal conditions by efficiently opti‑
mizing multiple variables, understanding complex relationships, 
reducing experiments, providing statistical analysis, visualizing 
response surfaces, and ensuring robustness and reliability in 
experimental setups [12–14]. RSM has been effectively utilized 
across various studies to optimize bio‑oil production from bio‑
mass pyrolysis. Balamurugan et al. [15] used RSM to optimize 
transesterification parameters for biodiesel production from 
mixed non‑edible oils, achieving high yields of up to 95.91%. 
Oyebanji et al. [16] studied the catalytic pyrolysis of wood saw‑
dust using RSM, employing a green zeolite‑Y catalyst synthesized 
from Ficus exasperata (L.) leaf particles. They identified an optimal 
biomass‑to‑catalyst ratio of 80/20% and a reaction temperature 
of 550°C, leading to a significant increase in pyrolytic liquid yield. 
Onokwai et al. [17] optimized the pyrolysis of sugarcane bagasse 
using RSM, determining key parameters such as a temperature 
of 493.7°C, a reaction time of 15.5 min, a heating rate of 24.5°C/
min, a nitrogen flow rate of 225 cm3/min, and a particle size of 
0.1 mm. This study resulted in bio‑oil enriched with alkenes, 
alcohols, esters, and other valuable compounds suitable for 
various industrial applications. Jeeru et al. [18] investigated the 
pyrolysis of algal biomass in a batch fixed‑bed reactor, applying 
RSM to optimize temperature, retention time, and nitrogen flow 
rate. They achieved a maximum bio‑oil yield at 575°C, a 45‑min 
retention time, and a nitrogen flow rate of 0.5 l/min, with the 
bio‑oil containing compounds like 4‑methylpentanamide and 
n‑heptadecane. Fombu et al. [19] conducted pyrolysis of cashew 
nut shells using RSM to maximize bio‑oil yield in a fixed‑bed re‑
actor, achieving a notable liquid yield of 61.3 wt%. Their approach 

demonstrated the efficacy of RSM compared to traditional one‑
factor‑at‑a‑time experiments, which yielded 57.8%. Irfan et al. [20] 
utilized RSM to optimize bio‑oil production from rice husk ash, 
achieving a maximum yield of 20.33% at 480°C with a heating 
rate of 80°C/min and a particle size of 200 μm. The upgraded bio‑
oil exhibited desirable properties such as a density of 0.98 g/cm2 
and an acid value of 58 mg KOH/g, enhancing its potential for 
various applications.

One of the most abundant but under‑explored biomasses is 
elephant grass (Pennisetum purpureum). Elephant grass is an excel‑
lent biomass source for bioenergy due to its non‑food crop nature 
and broad availability. Elephant grass can thrive in various cli‑
mates and, exhibiting rapid growth, can produce high dry matter 
yields of 40–41 t/ha over 260 days, surpassing the biomass yield of 
other energy grasses [21]. Its robust growth and ability to flourish 
on infertile lands make it ideal for both livestock feeding and en‑
ergy production without competing with food crops for arable 
land. While elephant grass serves as an important forage crop for 
livestock, its robust stalks are often overlooked for animal feeding 
due to their lower nutritional value and digestibility compared to 
the younger leaves [22]. However, these stalks possess significant 
potential as a bioenergy feedstock, owing to their high cellulosic 
fibre content, which makes them an ideal resource for sustain‑
able energy practices [23]. The pyrolysis process of elephant grass 
generates high‑quality bio‑oil and valuable by‑products such 
as bio‑char, which is useful for soil enhancement and carbon 
sequestration, as well as syngas, which can be used for heat 
generation, underscoring its significant potential in bioenergy ap‑
plications [23–26].

In the fast pyrolysis of elephant grass, according to the avail‑
able literature, the tailored optimization of the three key process 
variables—temperature, heating rate, and nitrogen flow rate—to 
maximize bio‑oil yield with enhanced fuel properties remains a 
notable research gap in biomass pyrolysis. This research specif‑
ically aims to optimize the pyrolysis process to maximize bio‑oil 
yield from this novel feedstock. Central composite design (CCD) 
of RSM was chosen for its efficiency, ability to capture variable 
interactions, and effectiveness in optimizing multi‑parameter 
processes. The indicator used, bio‑oil yield, was chosen to dir‑
ectly measure the efficiency of the pyrolysis process in converting 
biomass into valuable liquid fuel. These choices align with the 
study’s goals and offer significant advantages over other potential 
models and materials.

2. Materials and methods
2.1 Sample preparation
Fresh elephant grass samples obtained from a farm in Oghara, 
Delta State, Nigeria, were cleaned to remove impurities and 
chopped for size reduction. The samples were sun‑dried for 5 
days [23]. Subsequently, the dried samples were pulverized in a 
ball mill, sieved to an average particle size of 0.2 mm, and stored 
in Ziploc bags at room temperature.

2.2 Characterization of biomass and bio-oil
Various characterization techniques were used to analyse the 
biomass and its bio‑oil. The proximate analysis of the elephant 
grass, following the American Society of Testing and Materials 
(ASTM) methods outlined in Isahak et al. [27], measured volatile 
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matter, moisture content, fixed carbon, and ash content. The ul‑
timate analysis, using a LECO CHN 2000 elemental analyser, de‑
termined the nitrogen, carbon, hydrogen, and sulphur contents, 
with the oxygen content calculated by difference. The structural 
composition of the biomass, including cellulose, hemicelluloses, 
and lignin, was assessed according to the ASTM standard out‑
lined by Onarheim et al. [28]. The physico‑chemical and fuel prop‑
erties of the resulting bio‑oil were analysed, and its functional 
groups were identified using Fourier transform infrared (FTIR) 
spectroscopy (Perkin‑Elmer 100). A small drop of the bio‑oil was 
placed between two potassium bromide (KBr) discs and pressed 
into a pellet for the FTIR analysis. The sample was then placed in 
the FTIR spectrometer, and the infrared spectrum was recorded 
in the range of 4000–600 cm⁻¹, revealing the absorption bands cor‑
responding to various functional groups present in the bio‑oil.

To examine the chemical composition of the bio‑oil, gas 
chromatography‑mass spectrometry (GC‑MS) (Agilent 7890 
GC/5975 MS) was used. The bio‑oil sample was diluted with 
dichloromethane and filtered. A small drop of the diluted sample 
was injected into the gas chromatograph (GC), where the com‑
pounds were separated based on their boiling points and 
interactions with the stationary phase in the GC column. The sep‑
arated compounds were then ionized and detected by the mass 
spectrometer (MS), providing information about their molecular 
weights and fragmentation patterns. The GC‑MS data were pro‑

cessed using software to identify the individual compounds by 
comparing their mass spectra with reference libraries or data‑
bases.

2.3 Pyrolysis experiments
Bio‑oil was produced from elephant grass using a pyrolysis 
system with a fixed‑bed reactor. The reactor has a bed depth of 
50 mm and a mass flow rate of 1 kg/h. Each pyrolysis experiment 
was performed for 5 s. The reactor has a bed depth of 50 mm, 
mass flowrate of 1 kg/h and the pyrolysis was performed for 5 s. 
Following the experimental procedures outlined in Table 2, 20 g 
of biomass was weighed and fed into the reactor. The reactor 
was purged with nitrogen supplied at a predetermined flow rate 
and operated for 25 min. During the process, the bio‑oil was re‑
covered as condensed vapours from the condenser, while the 
uncondensed gaseous products were flared off. At the end of 
each reaction, the char was removed from the reactor. The re‑
covered bio‑oil was then weighed using a mass balance, and the 
percentage yield was calculated using Equation (1). The yields of 
bio‑char and syngas were also calculated using Equations (2) and 
(3), respectively [23],

Bio-oil yield (%) =
Mass of bio-oil (g)

Mass of elephant grass biomass (g)
× 100

 (1)

Bio-char yield (%) =
Mass of bio-char (g)

Mass of elephant grass biomass (g)
× 100

 (2)

Syngas yield (%) = 100− (Bio-oil yield+ Bio-char yeild) (3)

2.4 Experimental design
Using CCD of RSM, the bio‑oil yield was optimized. The inde‑
pendent variables—pyrolysis temperature, nitrogen flow rate, and 
heating rate—were investigated at four levels. The number of ex‑
periments, n, was determined from Equation (4):

Table 2. Experimental data showing variables and bio‑oi yield.

Run Temp. (I) (°C) Heating rate (J) (°C/min) N2 flowrate (K) (ml/min) Yield of bio-oil (%)

1 650 15 2 47.93

2 550 15 4 57.03

3 350 10 2 42.70

4 650 5 4 45.69

5 550 15 6 59.03

6 450 5 8 50.67

7 350 15 4 43.77

8 550 5 2 50.69

9 350 15 2 43.75

10 650 10 2 46.43

11 350 5 4 40.53

12 650 15 4 48.93

13 450 10 4 52.83

14 550 20 2 55.03

15 650 5 4 45.93

16 550 20 4 55.93

17 450 10 6 52.90

18 650 10 2 46.00

19 350 15 4 43.04

20 550 15 8 56.93

Table 1. Ranges of variables used.

Factor/unit Symbol Range

High Low

Temp. (°C) I 750 350

Heating rate (°C/min) J 20 5

N2 flowrate (ml/min) K 8 2
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n = 2r + 2r+ 6 (4)
Considering the three independent variables (r = 3), a total of 
eight factorial points, six axial points, and six replications were 
obtained, resulting in a total of 20 experiments. The variables 
used and their levels are presented in Table 1, while the gener‑
ated matrix of the CCD for the yield of the bio‑oil is presented in 
Table 2. Linear, quadratic, and cubic model equations were tested 
using the experimental data to observe the effects of the indi‑
vidual variables and their interactions on the bio‑oil yield.

The modelling and optimization of operating parameters in‑
volved a two‑step process. First, a mathematical relationship be‑
tween the bio‑oil yield (response variable) and the independent 
variables (heating rate, temperature, and nitrogen flow rate) was 
established using Equation (5) [27, 29]:

y = fx1, x2, x3, . . . , xn (5)
where f is an unknown function of the response, x1, x2, x3, …, xn 
represent the independent factors, and n is the number of inde‑
pendent variables. Secondly, the coefficients of the mathematical 
model were estimated using a second‑order equation, aiming to 
predict, optimize, and determine the main interaction factors 
(temperature, heating rates, and nitrogen flow rate) and their im‑
pact on the bio‑oil yield. This is illustrated in Equation (6) [26, 30]:

y = β0 +
r∑

i=1

βixi +
r∑

i=1

βiix
2
i +

r∑
i=1

r∑
j=1

βijxixj + εi

 (6)
where y represents the pyrolysis yield (dependent factor), xi and 
xj are the coded independent factors, β0, βi, βii, and βij are the coef‑
ficients of the linear, quadratic, and interaction effects, respect‑
ively, r is the number of independent factors, and ϵi is the random 
error. The model’s performance was evaluated using analysis of 
variance (ANOVA).

3. Results and discussion
3.1 Results of characterization
3.1.1 Proximate and ultimate analysis results
The proximate analysis of elephant grass indicates a mois‑
ture content (MC) of 0.86 ± 0.3%, a fixed carbon (FC) level of 
14.22 ± 0.4%, a volatile matter (VM) percentage of 79.24 ± 0.4%, 
and an ash content of 5.86 ± 0.1%. The high volatile matter con‑
tent of the biomass can significantly influence its combustion 
characteristics and energy value since volatile matter content in 
biomass correlates with the luminous region and intensity during 
combustion, affecting flammability and calorific value [31]. The 
biomass also has a low ash content (5.86%). Biomass with low 
ash content exhibits better fuel properties, such as higher energy 
values and reduced emissions of volatile components, sulphur, 
and fly ash, thus contributing to a cleaner environment [32]. The 

Table 3. Physical and fuel properties of bio‑oil produced at 
590°C, 17°C/min heating rate, 6 ml/min N2 flowrate, and 25 min.

Parameter Value obtained

Fire point 97.0°C

pH 5.82

Flash point 72.8°C

API gravity 18.74

Density 0.961 g/ml

Kinematic viscosity @ 40°C 8.8 cSt

Table 4. Elemental content and heating values of the bio‑oil 
produced at 590°C, 17°C/min heating rate, 6 ml/min N2 flowrate, 
and 25 min.

Property Value/unit

MC 19.5 wt%

Ash content 0.21 wt%

C 47.7 wt%

H 6.89 wt%

N 0.43 wt%

O 34.7 wt%

S 0.06 wt%

HHV 20.91 MJ/kg

LHV 19.41 MJ/kg

Table 5. Functional groups analysis of the bio‑oil produced at 590°C, 17°C/min heating rate, 6 ml/min N2 flowrate, and 25 min.

Adsorption band (cm−1) Group Compounds

3011.7 C–H stretching Aromatic (phenyl ring)

2922.2 C–H stretching Aliphatic (alkanes and alkenes)

2855.1 C–H stretching Aliphatic (alkanes)

2668.8 C–H stretching Aldehydes

1744.4 C=O stretching Esters or ketones

1710.8 C=O stretching Carbonyl compounds (aldehydes or ketones)

1461.1 C–H bending Methyl groups

1379.1 C–H bending Aromatic (phenyl group)

1282.2 C–H bending Aliphatic (methylene groups)

1244.9 C–O stretching Esters

1166.7 C–N stretching Amines

935.6 C–H bending Aromatic

834.9 C–H bending Aromatic

805.1 C–H bending Aliphatic

767.8 C–H bending Aromatic

723.1 C–H bending Aliphatic
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Table 6. Chemical composition of elephant grass bio‑oil produced at 590°C, 17°C/min heating rate, 6 ml/min N2 flowrate, and 25 min.

Peak Retention time (min) Area (%) Compound Quality

1 5.5363 0.3524 o‑Xylene 97

2 5.6632 0.5282 Benzene, 1,3‑dimethyl‑ 95

3 6.2916 0.6307 o‑Xylene 90

4 6.6217 1.2747 Nonane 91

5 7.1421 0.4761 cis‑Z‑11,12‑Epoxytetradecan‑1‑ol 43

6 7.3867 0.5857 Cyclohexanone, 2,3‑dimethyl‑ 74

7 7.6859 0.6869 Nonane, 3‑methyl‑ 70

8 7.8332 0.3839 Octane, 2,3‑dimethyl‑ 47

9 7.9553 0.2869 Benzene, propyl‑ 55

10 8.1905 1.4564 Benzene, 1‑ethyl‑3‑methyl‑ 95

11 8.4324 1.3056 Benzene, 1,2,4‑trimethyl‑ 94

12 8.5336 0.572 Octane, 3,5‑dimethyl‑ 76

13 8.6754 0.9309 Benzene, 1,2,3‑trimethyl‑ 60

14 9.142 2.3282 Benzene, 1,2,3‑trimethyl‑ 95

15 9.6797 2.6727 Decane 97

16 9.9275 0.6715 Benzene, 1,2,3‑trimethyl‑ 95

17 10.4377 1.0392 Decane, 4‑methyl‑ 90

18 10.5526 0.2635 Cyclohexane, (2‑methylpropyl)‑ 74

19 10.8764 0.3112 Benzene, 1‑methyl‑3‑propyl‑ 93

20 11.1036 0.5203 o‑Cymene 94

21 11.7046 0.5899 Benzene, 2‑ethyl‑1,3‑dimethyl‑ 86

22 11.8907 0.5224 Benzene, 4‑ethyl‑1,2‑dimethyl‑ 95

23 12.4554 0.3783 Benzene, 1,4‑diethyl‑ 41

24 12.8061 1.619 Undecane 96

25 12.9826 0.1764 Benzene, 1,2,4,5‑tetramethyl‑ 97

26 13.3942 0.3731 1‑Methyldecahydronaphthalene 97

27 13.727 0.2883 Cyclohexane, pentyl 80

28 14.6161 0.2132 Naphthalene 95

29 15.8424 0.3758 Dodecane 97

30 17.9191 0.1177 Naphthalene, 2‑methyl 97

31 29.0147 0.1237 Methyl tetradecanoate 98

32 29.1553 0.0727 Heneicosane 91

33 30.174 0.0817 1‑Octadecene 99

34 30.2918 0.0667 Octadecane 97

35 31.2117 0.0744 9‑Hexadecenoic acid, methyl ester, (Z)‑ 99

36 31.345 0.0601 Nonadecane 98

37 31.4595 4.8357 Hexadecanoic acid, methyl ester 98

38 31.6606 0.1735 Octadecane 91

39 31.9392 6.8574 n‑Hexadecanoic acid 99

40 32.0169 0.2724 Undecanoic acid, ethyl ester 90

41 32.1201 0.1341 1‑Octadecene 97

42 32.1883 0.1202 Eicosane 96

43 32.2722 0.171 Heptadecanoic acid, methyl ester 95

44 32.5759 0.867 n‑Hexadecanoic acid 93

45 32.7587 5.5054 9,12‑Octadecadienoic acid, methyl ester 99

46 32.8212 5.4012 11‑Octadecenoic acid, methyl ester 99

47 33.0034 2.2364 Methyl stearate 99

48 33.3459 48.9961 9,12‑Octadecadienoic acid (Z,Z)‑ 98

49 33.6152 1.9226 9,12‑Octadecadienoic acid (Z,Z)‑ 95

50 34.4749 0.0965 Methyl 18‑methylnonadecanoate 96
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obtained ash content of the biomass is comparable to the range 
of ash content for woody (Afara and Iroko) and agricultural bio‑
mass species reported as 0.61%–5.03% and 3.25%–7.5%, respect‑
ively [33]. The volatile matter of the biomass (79.24%) is within 
the range reported in the literature [34–36].

The ultimate analysis of elephant grass reveals that the carbon 
(C) content is 45.44 ± 0.1%, hydrogen (H) is 5.59 ± 0.3%, nitrogen 
(N) is 0.67 ± 0.2%, oxygen (O) is 40.95 ± 0.1%, and sulphur (S) is 
0.35 ± 0.1%. The results show that elephant grass has a high 
carbon content (45.44%), which is favourable for bio‑oil produc‑
tion. The hydrogen content (5.59%) and low nitrogen (0.67%) and 
sulphur (0.35%) contents are beneficial for producing high‑quality 
bio‑oil with minimal NOx and SOx emissions [37]. These results 
are consistent with findings from other biomasses [34, 38, 39]. 
This indicates that elephant grass is a reliable feedstock for bio‑
oil production.

3.1.2 Structural composition and heating value of biomass
The structural composition of the sample biomass consists of 
46.28% cellulose, 29.90% hemicellulose, and 24.60% lignin. The 
cellulose and hemicellulose contents are slightly higher than the 
values reported by Wu et al. [40] for the same type of elephant 
grass. The relatively high value of the biomass’s higher heating 
value (HHV) of 18.520 MJ/kg can be attributed to the low ash con‑
tent and high carbon content of the biomass [41]. This compos‑
ition, with a higher proportion of cellulose and hemicellulose, 
makes elephant grass a promising feedstock for bio‑oil produc‑
tion due to its favourable energy content and structural proper‑
ties.

3.2 Bio-oil characterization
3.2.1 Physico-chemical properties of bio-oil
The physical and fuel properties of the bio‑oil derived from ele‑
phant grass are presented in Table 3, while the elemental ana‑
lysis, higher heating value (HHV) and lower heating value (LHV) 
are shown in Table 4.

As shown in Table 4, the density of the bio‑oil (0.961 g/ml) ex‑
ceeds that of conventional fuel oil (0.920 g/ml) [42], classifying it 
as heavy oil. The kinematic viscosity of the bio‑oil (8.8 cSt) dif‑
fers significantly from values reported by Okoroigwe et al. [43] and 
Suchithra et al. [44], but aligns with findings by Sensoz and Angin 
[42]. This higher viscosity suggests the bio‑oil is suitable for appli‑
cations requiring heavy oil, such as fuel for furnaces, ships, and 
transformers [42]. The pH value (5.82) is higher than that reported 
by Chukwuneke et al. [37] but falls within the range reported by 
other studies [45].

Table 4 presents the elemental content and heating values 
of the bio‑oil derived from the study. The moisture content (MC) 
of 19.5 wt% indicates the presence of water in the composition, 
which is crucial for understanding its handling and storage re‑
quirements. The low ash content of 0.21 wt% suggests minimal 
inorganic residues, enhancing the bio‑oil’s purity for potential ap‑
plications. The elemental composition includes 47.7 wt% carbon 
(C), 6.89 wt% hydrogen (H), 0.43 wt% nitrogen (N), 34.7 wt% 
oxygen (O), and 0.06 wt% sulphur (S). These elements play sig‑
nificant roles in determining the bio‑oil’s chemical properties and 
combustion characteristics. The HHV of 20.91 MJ/kg represents 
the maximum heat released during complete combustion, while 
the LHV of 19.41 MJ/kg accounts for the heat lost in vaporizing 
water in the combustion process. These properties underscore 
the bio‑oil’s potential as a renewable energy source with diverse 
industrial applications.

3.2.2 FTIR analysis of bio-oil
Table 5 presents the infrared spectrum of the bio‑oil obtained 
from elephant grass pyrolysis, highlighting distinct absorbance 
peaks indicative of various functional groups.

The presence of specific chemicals identified through infrared 
spectroscopy in bio‑oil obtained from elephant grass pyrolysis 
holds significant implications for its potential applications and 
industrial utility. Aliphatic hydrocarbons, such as alkenes and 

Table 7. ANOVA for quadratic model.

Source Sum of square df Mean square F-value P-value

Model 395.67 9 43.96 7.32 .0023 Significant

I—Temperature 60.89 1 60.89 10.14 .0097 Significant

J—Heating rate 40.13 1 40.13 6.68 .0272 Significant

K—N2 flowrate 13.74 1 13.74 2.29 .1612 Not significant

IJ 44.79 1 44.79 7.46 .0211 Significant

IK 2.52 1 2.52 0.4198 .5316 Not significant

JK 176.44 1 176.44 29.39 .0003 Significant

I2 45.32 1 45.32 7.55 .0206 Significant

J2 0.2847 1 0.2847 0.0474 .8320 Not significant

K2 17.53 1 17.53 2.92 .1183 Not significant

Residual 60.03 10 6.00

Lack of fit 8.86 4 2.21 0.2597 .8936 Not significant

Pure error 51.17 6 8.53

Cor Total 455.70 19

Table 8. Model summary statistics.

Parameter Value

Std. dev. 2.45

Mean 45.99

CV % 5.33

R² 0.8683

Adjusted R² 0.7497

Predicted R² 0.7915

Adeq precision 12.0386
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alkanes, identified by the absorption peak at 2922.2 cm−1, are 
crucial as they contribute to the bio‑oil’s energy content and 
combustion properties [6, 37]. These compounds are desirable 
for fuel applications due to their high energy density and ability 
to burn efficiently. The presence of C=O stretching vibrations at 
1703.4 cm−1, indicating carboxylic acids and their derivatives like 
esters and aldehydes [46], suggests potential uses in the chem‑
ical industry. Carboxylic acids and esters contribute to the bio‑
oil’s stability and viscosity characteristics. Aromatic compounds, 
identified by the absorption band at 1379.1 cm−1 corresponding to 
C=C stretching in aromatic rings [47], enhance the bio‑oil’s poten‑
tial as a feedstock for specialty chemicals, including antioxidants, 

dyes, and pharmaceuticals. Aromatic compounds can also im‑
prove the bio‑oil’s thermal stability and resistance to oxidation, 
extending its shelf life and application range.

3.2.3 Chemical analysis of bio-oil
Table 6 shows the result of the GC‑MS analysis of the bio‑oil.

The chemical composition analysis of the elephant grass bio‑
oil presented in Table 6 reveals a diverse array of chemical com‑
pounds. The bio‑oil consists of various chemical groups including 
phenols, aldehydes, esters, hydrocarbons, and acids, as indicated 
by the identified compounds such as o‑xylene, nonane, benzene 
derivatives, and fatty acid methyl esters [6, 37, 45, 48]. These  
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findings reveal the complex nature of the bio‑oil composition, 
which is typical in pyrolysis products of biomass [7]. The presence 
of these compounds suggests potential applications in biofuel 

production and various industries [6], including chemicals and 
pharmaceuticals, to produce specialty chemicals such as resins, 
formaldehyde, and acetaldehyde.
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Figure 3. Plot of heating rate and temperature on 3D.
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Table 9. Model validation at optimum conditions.

Variables Optimum values Bio-oil yield (%)

Experimental Predicted

Temperature A (°C) 590 59.03 55.60

Heating rate B (°C/min) 17

Nitrogen flowrate (ml/min) 6
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3.3 Modelling the bio-oil yield
Table 7 presents the results of the ANOVA conducted to evaluate 
the adequacy of the multiple regression model used in this study.

Based on Table 5, the ANOVA results for the quadratic model 
applied in this study are presented. The model itself shows a sig‑
nificant fit (F‑value = 7.32, P = .0023), indicating that the selected 
quadratic terms adequately explain the variation in the response 
variable. Among the individual factors, temperature (I), and 
heating rate (J) exhibit significant effects (P < .05), influencing the 
response positively. Conversely, the N2 flow rate (K) does not sig‑
nificantly impact the response (P = .1612). The interactions IJ and 
JK are also significant (P < .05), highlighting their combined influ‑
ence on the response variable. Non‑significant terms include IK, 
J2, and K2 (P > .05), suggesting their negligible contribution. The 
lack of fit test confirms that the model fits well (P = .8936), sup‑
porting its adequacy for predicting the response variable under 
the experimental conditions studied. The final mathematical 
equation is shown in Equation (7).

Bio-oil yield = 42.13 1.14I 0.9459J+ 1.46IJ+ 2.26JK+ 0.621I2 (7)
Table 8 shows the model summary statistic for the bio‑oil yield.
Table 8 provides summary statistics for the model. The low 
standard deviation (2.45) indicates consistent predictions with 
minimal variability around the mean (45.99). A coefficient of vari‑
ation (CV %) of 5.33% suggests stable predictions closely clus‑
tered around the average. The R² value of 0.8683 indicates that 
the model explains 86.83% of the variability in the dependent 
variable, demonstrating strong explanatory power. The high pre‑
dicted R² (0.7915) suggests the model’s ability to generalize well 
to new data. Figure 1 illustrates the predicted versus actual ex‑
perimental results, further validating the model’s performance.

Comparing the results predicted by the mathematical model 
with the experimental results, as depicted in Fig. 1, reveals a uni‑
form distribution of errors. This consistency across the range 
of predictions indicates that the model effectively captures the 
underlying relationships in the data [12]. The plot demonstrates 
that the discrepancies between predicted and actual values are 
evenly spread across the dataset, without any systematic biases 
or trends. This validation highlights the robustness of the model 
in accurately forecasting experimental outcomes, reinforcing its 
reliability and applicability in practical scenarios.

3.4 Parameter optimization
The 3D response surface plots of the elephant grass‑derived bio‑
oil yield are shown in Figs 2–4.

Figure 2 illustrates the relationship between nitrogen flow rate 
(NFR) and heating rate (HR) on bio‑oil yield. The highest yield of 
bio‑oil (49%) was achieved at 8 ml/min NFR and 20°C/min HR. 
Increasing both NFR and HR led to an observable increase in bio‑
oil yield. This trend can be explained by the reduction in residence 
time, which prevents tar formation, enhances volatile matter re‑
lease from biomass, and minimizes secondary reactions, thereby 
promoting optimal bio‑oil formation.

Figure 3 shows the combined effect of heating rate and tem‑
perature on bio‑oil yield. It demonstrates that higher heating 
rates and temperatures synergistically enhance bio‑oil yield 
within the investigated ranges. Faster heating rates reduce resi‑
dence time, which is beneficial for minimizing secondary re‑
actions and improving the conversion of biomass into bio‑oil. 
Elevated temperatures facilitate the thermal decomposition of 
complex organic compounds, leading to increased production of 
volatile components essential for bio‑oil formation.

Figure 4 explores the impact of nitrogen flow rate and tem‑
perature on bio‑oil yield and residence time. It indicates that 
increasing nitrogen flow rate and temperature enhances bio‑oil 
yield. Higher temperatures promote bio‑oil yield by facilitating 
the breakdown of complex organic compounds, while increased 
nitrogen flow rates reduce residence time, thereby minimizing 
exposure to high temperatures and reducing non‑bio‑oil product 
formation due to secondary reactions.

3.5 Validation of model
The validity of the model was further confirmed by performing 
three sets of parallel tests using the optimum values, and the 
mean values were recorded. The variables tested include a tem‑
perature of 590°C, a heating rate of 17°C/min, and a nitrogen flow 
rate of 6 ml/min. The results are presented in Table 9.

As shown in Table 9, the experimental bio‑oil yield at the op‑
timum conditions was 59.03%, closely aligning with the model’s 
predicted yield of 55.60%. This close agreement between experi‑
mental and predicted values indicates that the model is reliable 
and can accurately predict bio‑oil yields under the specified con‑
ditions.

4. Conclusion
The investigation into elephant grass lignocellulose biomass dem‑
onstrates its potential for biofuel production. Its physicochemical 
characteristics are comparable to those of other lignocellulosic 
biomasses, supporting its viability for bio‑oil production through 
pyrolysis. A factorial model using nitrogen flow rate, heating rate, 
and temperature was developed, with ANOVA analysis confirming 
its reliability. Optimal conditions yielded a bio‑oil yield of 59.03 
wt%, closely matching predicted values, highlighting the model’s 
robustness. The derived bio‑oil is suitable for various heating sys‑
tems, showcasing its practical applications. This research con‑
sidered elephant grass samples from a specific geographic region; 
however, geographic and environmental factors may likely affect 
the properties of the elephant grass, which in turn can influence 
both bio‑oil yield and quality. Future research should assess the 
impact of geographic and environmental factors on elephant 
grass and refine the model to include co‑products for a more 
comprehensive understanding of the pyrolysis process. Moreover, 
the laboratory‑based findings may not accurately reflect real‑
world conditions, emphasizing the need for larger‑scale experi‑
ments and region‑specific studies to validate and enhance the 
applicability of the results across diverse contexts. While ANOVA 
has confirmed the model’s reliability, increasing the sample size 
and incorporating additional variables could further strengthen 
the statistical analysis.
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