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A B S T R A C T   

The manufacture of cement contributes significantly to carbon dioxide emissions; hence, the building and 
construction industry has focused on environmentally friendly cement substitutes. Supplementary cementitious 
materials (SCMs) such as calcite powder (CP) and Vitellaria paradoxa ash (VPA) offers sustainable substitutes. 
Thus, this study calcined shea nutshell at 700 ◦C for 3 h, obtaining VPA. Portland limestone cement was partially 
replaced by calcite powder and VPA at 5–15 wt% to produce 25 and 30 MPa concrete grades. Split tensile 
strength (STS), flexural strength (FS), and compressive strength (CS) of TBC samples were tested after 3–120 days 
of curing. Deep neural network (DNN) models, having 3 hidden layers with 5–30 nodes, were engaged to predict 
the strengths with respect to the concrete mix design proportions. For each strength, 108 datasets were obtained 
from the experimental data. Out of these values, 100 datasets were utilized to train the models, and the 
remaining 8 values were used to confirm the model’s accuracy. The results revealed an improvement in con-
crete’s CS, FS, and STS at 10 % VPA and 10 % CP replacements. The 7–25–25–25-1 network topologies 
demonstrated robust correlation for training, validating, and testing the input and output variables of CS and FS 
with correlation coefficients (R) of 99.92 and 99.01 % compared to other architectures. However, 7-20–20–20-1 
network structure exhibited the best performance metric for predicting the STS of TBC with 99.51 % R. Strong 
relationships were found between the created model’s validity and the raw experimental datasets, with R2 values 
for CS, FS, and STS yielding 98.45, 99.75, and 99.35 %. By using this technique, TBC incorporating SCMs would 
be of higher quality.   

1. Introduction 

Concrete is ideal for construction and building, particularly in our 
ever-changing infrastructural systems. Concrete’s significance will 
continue to grow as new applications and ecologically friendly tech-
nology are found [1]. By 2050, it is projected that more than 18 billion 
tons of concrete will be required yearly [2]. Still, the manufacture of 
Portland cement (PC), which is required to make concrete, is usually 
attributed to the main source of CO2 emissions in the atmosphere. PC 
production accounts for 2–3 % of global energy consumption, whereas 
the use of concrete contributes significantly to greenhouse gas emis-
sions, accounting for 5–8 % of global emissions. [3]. Therefore, 

environmentally friendly substitute materials are recycled for use as 
building and construction materials. For instance, using rice straw ash 
and nano eggshell powder as cement substitutes improves the me-
chanical properties, durability, and dry shrinkage of concrete [4]. The 
replacement of cement with 1.2 % of nano titanium and 20 % of fly ash 
reduced the workability and improved the mechanical properties of 
ultra-high performance concrete [5]. Concrete made with 15 wt% 
Vitellaria paradoxa ash (VPA) or shea nutshell ash exhibited lower 
economic cost, a higher sustainability score, and less embodied energy 
and carbon dioxide than conventional concrete [6]. A 2 wt% VPA and 
4 wt% PC are suitable for use as stabilizers in earth blocks [7]. The in-
clusion of 15 wt% kaolin clay and 30 wt% shea nutshell particles in lieu 
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of PC and fine aggregates improved the concrete’s physical character-
istics, strength, and durability [8]. Numerous characterization tests 
depicted shea nutshells as appropriate materials that can be recycled to 
enhance the economics of clay brick production [9]. Due to filler and 
nucleation mechanisms, replacing cement with 0–8 wt% [10] and 
0–20 wt% [11] of calcite powder (CP) boosts the concrete’s compressive 
strength (CS) and decreases its chloride permeability. However, because 
of the diluting effect, the CS of concrete decreased as the CP concen-
tration increased from 0 to 35 wt% [12]. Adding CP to concrete at a 

weight proportion of 10–15 % is ideal for strengthening it [13,14]. 
Replacing cement with wheat straw ash significantly reduces concrete’s 
drying shrinkage whereas substituting fine aggregates with glass parti-
cles enhances the concrete’s compressive strength at elevated temper-
atures (up to 200 ◦C) [15]. The replacement of cement with 20 % 
sugarcane leaf ash or granite showed the best mechanical characteristics 
of the ultra-high performance concrete by 12.16 and 8.44 % increment 
[16]. 

Concrete is the primary building material used for structural com-
ponents in modern architecture and construction. A structure must have 
the proper mechanical properties, such as CS, FS, and STS, in order to be 
sturdy and stable. Constructability and durability are considered 
throughout the design phase, which determines the percentage of varied 
components in concrete and necessitates multiple trials to determine the 
perfect combinations in order to meet the structural performance re-
quirements [17]. This approach has economic and material losses due to 
rises in the required number of tests with the number of parameters and 
necessary performance [18–20]. 

Through the use of computational tools to reduce labour and time 

Fig. 1. Binding materials used (a) PLC, (b) Shea nutshells, (c) VPA, and (d) CP.  

Table 1 
Constituents’ physical properties.  

Material SG BD (kg/ 
m3) 

Water absorption 
(%) 

Moisture content 
(%) 

PLC  3.15  1440 - - 
CP  2.78  1125 - - 
VPA  2.45  998 - - 
FA  2.60  1620 0.30 0.70 
CA  2.66  1650 0.20 0.80  

Table 2 
Oxide compositions.  

Oxide content (%) PLC VPA CP 

CaO 64.90  6.62 97.15 
SiO2 21.60  54.85 0.18 
Al2O3 5.85  18.78 0.02 
Fe2O3 2.78  8.10 0.01 
MgO 1.42  1.26 0.20 
Na2O 0.14  0.75 - 
K2O 0.19  1.85 - 
SO3 2.03  1.15 - 
P2O5 -  0.25 - 
Ti2O -  1.38 - 
LOI @ 800◦C 1.38  3.75 0.26  
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Table 3 
Design proportions of the concrete samples (kg/m3).  

Grade Constituents VC0 VC5 VC10 VC15 

C 25 PLC  326  293  261  228 
VPA  0  16.50  32.50  49 
CP  0  16.50  32.50  49 
FA  862  858  853  848 
CA  919  919  919  919 
Water  199  199  190  199 
W/B ratio  0.61  0.61  0.61  0.61 

C 30 PLC  369  332  295  258 
VPA  0  18.50  37  55.50 
CP  0  18.50  37  55.50 
FA  828  822  815  808 
CA  919  919  919  919 
Water  199  199  199  199 
W/B ratio  0.54  0.54  0.54  0.54  
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requirements, research has focused on supporting formulation design by 
studying the relationship between necessary performance, such as 
concrete’s CS, and the quantities of ingredients employed [21–23]. The 
compositional percentage of constituents and concrete’s necessary per-
formance have been studied using mathematical formulas and empirical 
regression techniques [24,25]. The limitations of the input range or the 
constant need to predict the correlation between the parameters of the 
input and output make these techniques require manual calibration 
[26–28]. 

For both linear and nonlinear regression models, the coupling of the 
regression coefficients is essential. Linear regression is used when a 
linear relationship exists between the input and the expected outcomes 
[29]. Compared to a nonlinear regression model, a linear model can 
more precisely illustrate the relationship between the required perfor-
mance of the concrete and formulation components; however, it can be 
difficult to correlate data with complex relationships [30]. Regression 
models have been investigated as viable substitutes for repeated trials in 
a number of engineering disciplines during the last few decades. Using 

Fig. 4. Concrete samples for (a) cubes (100 mm × 100 mm × 100 mm), (b) cylinders (200 mm high ×100 mm diameter), and (c) beams (A 500 mm × 100 mm 
× 100 mm). 

Fig. 5. Random division of datasets.  
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machine learning (ML) approaches such as support vector machines 
(SVMs) and artificial neural networks (ANNs), nonlinear regression 
models have been built to estimate the concrete strength [31–34]. The 
relationship between the design mix proportions and the required con-
crete performance can be deciphered and examined through the appli-
cation of nonlinear regression models in machine learning. However, 

it requires a lot of time and effort to analyze large amounts of high- 
dimensional data, and the engineer (user) must specifically choose the 
analysis approach for pattern detection [35,36]. Moreover, high cost 
and time consumption restrict the suitability of statistical models for 
forecasting intricate systems [37]. 

Many attempts have been made to incorporate neural networks that 
correctly extract high-level features from complex data by using pre- 
existing ML models that account for associated factors like concrete 
mix design parameters [38,39]. ANN, decision trees (DT), ensemble of 
trees (ET), Gaussian process regression (GPR), gene expression pro-
gramming (GEP), random trees (RT), SVM, and other ML techniques are 
the most widely used techniques for predicting concrete strength with 
promising results [40–43]. For example, SVM was used to forecast the 
compressive strength of high-performance concrete (HPC) with respect 
to the input variables (cement, fly ash, ground blast furnace slag (GBFS), 
aggregates, water, and superplasticizer) with total dataset of 1030 [30, 

44]. DT was engaged to predict the CS and ultrasonic pulse velocity of 
concrete in respect to the input variables (cement, GGBS, fly ash, silica 
fume (SF), water, aggregates, and curing day) with a dataset of 40 and 
30-fold cross validation [45]. RF was employed to forecast the CS of HPC 
with respect to the input variables (water-binder ratio (WB), GBFS/W 
ratio, fly ash/W ratio, coarse aggregate (CA)/B ratio, and CA/fine 
aggregate (FA) ratio) [46]. Nevertheless, ML/DL models with improved 
updating capabilities and the capacity to evaluate big datasets outper-
form experimental models [37]. According to ML techniques, various 
factors should be considered while choosing the right model to forecast 
the target strength of concrete. The correlation between the mechanical 
strength of the concrete and its constituents influences the forecasting 
model selection [37]. Thus, in the event that the relationship is 
nonlinear, models with nonlinear space response capabilities ought to be 
employed. Thus, SVM and ANN models can be applied in these situations 
because of their appropriate performance and lower error rates in 
non-linear environments [37]. However, relatively little research has 
been done on the use of deep neural network to predict the mechanical 
characteristics of ternary blended concrete. 

Deep neural network (DNN) techniques have gained popularity as 
efficient and cost-effective methods to predict how a material’s property 
influences the quality, cost, and time of concrete mixes. Deep neural 

Dataset
Input/training dataset: 
PLC, VPA, CP, FA, 
CA, BA, WB, & CD

Output/target data: CS, 
FS, & STS

Input and output correlation
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Fig. 6. DNN’s flowchart.  
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network methods are useful for large-scale, multidimensional data 
analysis [47]. Deep Learning (DL) is a special type of machine learning 
approach that can extract the optimum input directly from raw data 
without any human intervention [48,49]. Deep learning algorithms can 
thus help with the process of extracting features as well as the correla-
tions between features and the desired output. In the end, without 

feature extraction, the DL approach can, with appropriate training, 
establish direct mapping from main or raw inputs to the desired outputs 
[49–51]. It can also locate the high-level attributes as a hierarchy that 
elucidates the low-level learned attributes. This characteristic allows DL 
algorithms to break down challenging jobs into easier ones and solve 
them [48,49,52]. A related work that demonstrated the efficacy of DNN 

Fig. 7. Graphical representation of the best DNN architectures for (a) CS and FS (8− 25− 25− 25-1) and (b) STS (8− 20− 20− 20-1).  
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techniques in predicting the mechanical strengths of geopolymer con-
crete based on mix proportions supports this [53]. However, existing DL 
approaches often use simple structures. Furthermore, some research 
exclusively employed values that have been hyper-tuned [47], and some 
studies examined the effects of hyper-parameter tuning [54–57]. Some 
research have made use of fixed datasets that have been referenced in 
literature [58,59]. The datasets utilized in related research, however, 
were from experimental works, and they are sizable and suitable for 
forecasting the mechanical characteristics of concrete [47]. Presently, to 
the best knowledge of authors, there is no research on the binary blend 
of VPA and CP in concrete production, despite the possibilities of using 
VPA and CP in concrete as cement alternatives for environmentally 
friendly concrete. This differentiates between the existing literature and 
the present study. 

The study applies DNN techniques to develop nonlinear regression 
models that forecast the CS, FS, and STS of the on-site concrete in 
relation to input variables [cement content, VPA content, CP content, FA 
content, CA content, binder-aggregate ratio (BR), WB, and curing days 
(CD)]. By using a random stream function and an ideal network topol-
ogy, the associated DNN models were optimized, improving perfor-
mance. Experimental findings were used to obtain data for 108 ternary 

blended concrete (TBC) samples, with target CS values of 25–30 MPa. 
The DNN model structures with 3 hidden layers and 5–30 neurons in 
each layer were used to ascertain the best network architecture. The 
models were trained with 100 experimental datasets and evaluated 
using metric indicators. The model’s accuracy was verified by testing the 
developed DNN model with 8 unobserved experimental values. 

This study is original in that it blends two supplementary cementi-
tious materials (SCMs), Vitellaria paradoxa ash and calcite powder, with 
PLC. This method would reduce these materials from landfills and 
leverage their pozzolanic and supplementary cementitious properties to 
significantly address resource and environmental problems and improve 
the mechanical strength of TBC. The significance of this research lies in 
its assurance of the application of the created DNN models in the 
building and construction industry for predicting the mechanical prop-
erties of concrete that incorporate SCMs without requiring any experi-
ment, saving time and cost. 

2. Materials and methods 

2.1. Materials 

Portland limestone cement (PLC, 42.5 R) that complies with BS 
197–1 [60], as shown in Fig. 1, was used. Shea nutshells and CP were 
locally obtained from Agbonle and Lagos, Nigeria. The nutshells were 
sun-dried for 7 days to aid the valorization processes. After that, the 
nutshells were calcined at 700 ◦C for 3 h under a control condition, 
obtaining about 30 wt% VPA shown in Fig. 1. After that, a 45-µm BS 
sieve was used to filter the VPA. Granite, with a maximum particle size 
of 12.5 mm, was utilized as CA. River sand having a maximum particle 
size of 4.75 mm, was used as FA. All aggregates used satisfied the BS 
requirements [61]. Binding materials were evaluated for specific gravity 
(SG) and bulk density (BD) as per BS [62]. Table 1 shows the physical 
properties of materials used. Table 2 presents the chemical compositions 
of PLC, VPA, and CP as analyzed by an XRF analyzer (JOEL-JSM 7600 F). 

Table 2 shows that CP and VPA satisfied ASTM pozzolanic standards 
[63], where the LOI was less than 6 %, and the combined amount of 
silica, alumina, and ferrite was more than 50 %. Since the CaO con-
centration of CP was more than 18 %, it is designated as Class C 

Table 4 
Statistical analysis of mechanical datasets.  

Factor Unit Minimum Maximum Mean Median SD Variable 

PLC Kg/m3  228  332  277.88  277  33.45 Input 
VPA Kg/m3  16.5  55.5  34.81  34.75  14.26 Input 
CP Kg/m3  16.5  55.5  34.81  34.75  14.26 Input 
FA Kg/m3  802  857  829.24  830  20.34 Input 
CA Kg/m3  919  919  919  919  0 Input 
BA Nil  0.18  0.22  0.20  0.20  0.016 Input 
WB Nil  0.54  0.61  0.58  0.58  0.035 Input 
CD Day  3  120  52.01  60  43.21 Input 
CS MPa  6.88  37.33  24.44  25.73  8.50 Output 
FS MPa  1.44  5.36  3.58  3.85  1.03 Output 
STS MPa  0.85  3.38  2.32  2.44  0.68 Output  
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Pozzolan; in contrast, the CaO level of VPA is classified as Class F 
Pozzolan. 

Fig. 2 shows the binding materials’ particle size distribution (PSD) as 
determined by laser diffraction using a Beckman Coulter LS-100 model. 
The aggregate grades, as defined by the BS [61], is shown in Fig. 3 
together with the lower limits (LL) and upper limits (UL). 

2.2. Experimental methods 

The ACI specification [64] is utilized in this research to design the 
proportions of the concrete samples with specified compressive 
strengths of 25 and 30 MPa. For all specimens in this study, the W/B 
ratios were set at 0.61 and 0.54 for 25 and 30 MPa to attain slump values 
between 25 and 50 mm [64]. Based on the unit weights, the control mix 
(VC0) consisting of 0 wt% VPA and CP was created for a volume of 1 m3. 
Although a range of 5–10 wt% of VPA and CP have been recommended 
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as cement replacements for concrete manufacturing to achieve better 
mechanical, durability, and sustainable properties [1,65]. Notwith-
standing, this research extended the replacement by preparing three 
TBC samples (VC5, VC10, and VC15), substituting PLC with 5, 10, and 
15 wt% VPA and CP. The quantity of mix design proportions is shown in 
Table 3. 

Various combinations of specimens were made and examined in 
compliance with the procedure specified by the BS [66] to determine the 
CS of concrete samples. The different concrete mixtures are moulded 
using cubes measuring 100 mm × 100 mm × 100 mm [67]. A 500 mm 
× 100 mm × 100 mm prismatic beam was used to assess the concrete’s 
FS as per BS’s specification [68]. Concrete’s STS was carried out in 
compliance with BS [69] using the 200 mm high with 100 mm diameter 
cylindrical moulds. All concrete samples were cured by immersion in 
water at 23 ± 5 ◦C and 65 ± 5 % relative humidity. Samples of cubes, 
cylinders, and beams for CS, STS, and FS tests are shown in Fig. 4. A trio 
of samples was used for each blended sample. 

2.3. DNN 

To investigate the mechanical properties of the concrete by 

experimental testing, time and resources are required. Because of the 
impact of multiple factors, such as geology, mineralogical compositions, 
and production techniques and procedures unique to each concrete 
constituent, it is difficult to precisely estimate the qualities of concrete. 
As a result, AI methods are needed to do this. A subset of AI called DNN 
has gained enormous traction in scientific and technical computing, 
where its techniques are used to solve challenging problems. Currently, 
the multilayer perceptron, the most common kind of neural network, is 
trained using the backpropagation technique [70]. One way to train a 
two-layer network to replicate most functions accurately is to utilize a 
two-layer sigmoid. Typically, two or three hidden layers are adequate in 
practical neural networks. The use of four or more layers is unusual 
[70–72]. Research on DNN’s optimizers such as Levenberg Marquardt 
(LM), scale conjugate gradient (SCG), and Bayesian regularization (BR) 
[73] and 2–4 hidden layers [74–76] demonstrated the superior perfor-
mance metrics for LM and the third hidden layer in comparison to other 
optimizers and hidden layers. Thus, this research engaged a 3-hidden 
layer network with 5–30 neurons per layer. 

2.3.1. Model training and testing 
The training and target datasets were loaded using a code created in 

MATLAB R2021a. While the training dataset had PLC, VPA, CP, FA, CA, 
BA, WB, and CD findings, the target dataset contained CS, FS, and STS 
values. The network was trained using training and target datasets using 
LM (’trainlm’) as the learning algorithm. The network was designed 
with 3 hidden layers and 5–30 nodes per layer to determine how 
different neurons affect DNN topology and to choose the best DNN 
structure for predicting the CS, FS, and STS of concrete. In this config-
uration, the first network’s output serves as the second network’s input 
and the second network’s output serves as the third network’s input. 
This shows that in a multilayer network, the output of one layer becomes 
the input for the layer that follows it. Eq. (1) provides an illustration of 
this procedure [70]. There may be variations in the transfer function as 
well as the total number of neurons in each layer. Eq. (2) thus displays 
the third network’s output [70]. 

am+1 = fm+1( Wm+1am + bm+1)form = 0,1,…,M − 1 (1) 

Fig. 11. Sensitivity analysis of each input variable on the output variable.  
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a3 = f3(W3f2( W2f1( W1p+ b1)+ b2 + b3 ) (2) 

The neurons in the first layer receive inputs from outside sources, as 
per Eq. (4). This provides the initial value for Eq. (3). 

a0 = p (3) 

The outputs of the neurons in the final layer, as indicated by Eq. (4), 
are known as the network outputs. 

a = aM (4)  

where a, f, m, p, W, and b represent output vector, transfer function, 
network layers, input vector, weight matrix, and bias vector. 

The DNN model can be prone to overfitting due to the additional 
classes of abstraction that enable rare-dependent training of datasets 
[26]. For this reason, a random stream (fitted function) was applied to 
prevent overfitting [53,74,76]. Additionally, this stream guarantees that 
the network always produces the same output after training. 

The fitness function was used to build the network structure and 
learning algorithm. For each strength, CS, FS, and STS, 108 datasets 
were produced from the experimental research. Of these datasets, 
96.6 % (or 100 data) were used for learning, while the remaining 7.4 % 
(or 8 datasets) were used as untrained datasets to confirm the accuracy 
of the models that were constructed. For training, validation, and 
testing, 70, 15, and 15 % of the learning datasets were utilized, 
respectively. The data division matrix was displayed in Fig. 5. In the end, 

the network was trained using the relation displayed in Eq. 5: 

[P, R] = t[X, Y ,́ Ź ] (5)  

where P, R, t, X, Y, and Z connote predictor, record, train, network, 
training dataset, and target dataset. 

2.3.2. Validation of developed models 
To ascertain model uncertainty, the best approach is to validate 

model predictions against observations made under various conditions. 
Complete set design proportion validation has not been carried out very 
often, despite being a crucial component of concrete strength fore-
casting. Generally, validation research has been limited to evaluating 
the components of the binary blend assessment model over a brief period 
[45,77–79]. Over the complete range of conditions that call for model 
predictions, little to no validation has been done. Such extensive vali-
dation requires significant time and money. This is why model valida-
tion has not received much attention in research. Model validation can 
often be almost difficult because of either extremely low levels of the 
spectrum of conditions or excessively extensive periods that the model 
considers. Thus, 8 datasets from the experimental results covering the 
full range conditions were used as untrained datasets to verify the ac-
curacy of the developed models. 

2.3.3. Evaluation of performance indicator 
The precision of models was verified using R (correlation coeffi-

cient), R2 (coefficient of determination), MSE (mean square error), and 
RMSE (root mean square error). These are illustrated in Eqs. (6)-(9). 
Mathematically, DNN models are more accurate when R and R2 values 
are around 1, and MSE and RMSE values are around 0. The models were 
verified by performance plot, training state, histogram, and regression 
outputs. Eqs. 10 and 11 were used to validate the developed DNN. Fig. 6 
displays the DNN flowchart procedure. The best DNN models are rep-
resented graphically in Fig. 7(a) and (b). They depict the best DNN 
structures for CS and FS, and STS. Fig. 7(a) consists of input layers 
having 8 input variables (PLC, VPA, CP, FA, CA, BA, WB, and CD), 3 
hidden layers with 25 neurons in each layer, and an output or target 
variable (compressive strength). This architecture also yielded the best 
performance metrics for FS. However, Fig. 7(b) consists of input layers 
having 8 input variables (PLC, VPA, CP, FA, CA, BA, WB, and CD), 3 
hidden layers with 20 neurons in each layer, and an output or target 
variable (split tensile strength). 
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function[CS, FS, or STS] = n[P, D] (10)  

CS, FS, or STS = P(Dʹ) (11)  

where n and D represent test network and data. 
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Fig. 13. R and R2 values for (a) CS, (b) FS, and (C) STS.  
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2.4. Sensitivity analysis 

It is imperative to comprehend which variables have the greatest 
influence on model predictions. The derivatives of a model’s outputs 
with respect to its inputs were computed to achieve this. Greater sig-
nificance is indicated by high derivative values, and smaller significance 
is indicated by values near zero [80,81]. Sensitivity analyses are a useful 
tool for gauging the possible significance of model parameters as sources 
of uncertainty in model predictions when faulty model formulation is 
not anticipated to be a significant issue [80]. Machine learning requires 
numerous tests to evaluate and confirm the quality and dependability of 
the created model on a range of data sets. Improvements in the pre-
diction model’s accuracy and efficacy throughout training, testing, and 
validation of available data sets may not imply or promise improved 
performance in the end [77]. Consequently, Eqs. (12) and (13) are 
engaged to evaluate the relative importance of the variables that 
explained the outcome (CS): 

Rangeoutput = Max
(
xoutput

)
− Min

(
xoutput

)
(12)  

SA =
Range output

∑p

i=1
Range output

(13)  

where Rangeoutput defines the output range as the difference between the 
maximum and minimum CS output values observed when a parameter is 
changed while maintaining constant, the mean values of the other in-
puts; SA is sensitivity analysis. 

3. Results and discussion 

3.1. Statistical datasets 

Table 4 displays the summary of statistical analysis and outcomes of 
the mix design proportions and strength values. Detailed raw datasets 
for CS, FS, and STS as well as code generation are freely available in 
Zenodo Repository at https://zenodo.org/doi/10.5281/ 
zenodo.10998160. 

Fig. 8 shows the mean CS, FS, and STS of the control concrete (VC0) 
using the identical mix design proportions. The results revealed that CS, 
FS, and STS of both concrete grades (C 25 and 30 MPa) increased with 
increasing curing ages. After 28 days curing, the CS, FS, and STS for C 
25 MPa in Fig. 8(a) exhibited 27.25, 4.04, and 2.53 MPa, while that of C 
30 MPa in Fig. 8(b) yielded 33.38, 4.66, and 2.88 MPa. 

3.2. Relationship between the mechanical properties 

There are similar patterns in the TBC’s split tensile strength, 
compressive strength, and flexural strength. Fig. 9 indicates an increase 
in flexural and split tensile strengths with increasing compressive 
strength. A strong correlation exists between compressive strength and 
flexural strength with 95.48 % R2. In the same vein, the relationship 
between the compressive strength and split tensile strength of ternary 
blended concrete yielded a robust correlation with 95.46 % R2. These 
results corroborate a relevant study, which reported a strong correlation 
(R2 > 90 %) between the CS and STS and CS and FS of blended concrete 
[1]. Ultimately, it can be inferred that the effects of input variables (PLC, 
VPA, CP, FA, CA, BA, WB, and CD) on compressive strength could also 
influence the flexural and split tensile strengths at 96 % confidence 
bound. 

Fig. 14. Best validation performances for (a) CS, (b) FS, and (c) STS.  
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3.3. Effects of input variables on compressive strength 

Fig. 10 (a)-(g) illustrate the contributions of each training (input) 
variable in the ternary blend to the target (output) variable, CS. As seen 
in Fig. 10 (a), an increase in PLC content causes an increase in CS. During 
the hydration phase, PLC particles react with water to generate the 
strength matrix and bind the aggregates. Cement hydrates to create 
phases of calcium hydroxide (CH) and alumina (C3A). Alite (C3S) and 
belite (C2S) from cement pastes react with water to generate CH. CH is 
responsible for strength development [82,83]. As shown in Fig. 10 (b) 
and (c), the addition of VPA and CP at 5–10 % of PLC replacement 
(16.50–37 kg/m3) enhanced TBC’s CS and allowed it to meet the 25 and 
30 MPa target strengths. A possible explanation for the increase in CS is 
the interplay between VPA/CP and the distributed CH during PLC hy-
dration [1]. The strength improvement might also be a result of the 
cementitious chemicals that are produced when the added pozzolana 
(VPA) and PLC hydrate [1]. Furthermore, the addition of VPA allows 

silica (SiO2) to react with the lime produced during cement hydration, 
producing additional cementitious chemicals that contribute to strength 
improvement. On the other hand, CP is a calcium carbonate crystal that 
is meta-stable and aragonite. It takes part in the hydration processes of 
blended cement. For instance, during cement hydration, it partially 
dissolves and precipitates, which appears to stabilize the production of 
ettringite, encourage the growth of calcium carboaluminate, and aid in 
the formation of Portlandite and other C-S-H matrix phases [84]. This 
has favorable effects on the hydration process, hydration products, and 
microstructure development in the blended cement system, which 
improve strength development. However, after a 10 % replacement, the 
strength started to decrease. High VPA and CP replacement levels reduce 
the PLC content. This decreases the amount of C-S-H gels from the hy-
dration of PC at early ages and retards the strength development. This is 
in line with pertinent research, which found that the CS typically de-
creases as seashell powder content increases in blended cement mixes 
[84]. It also shows a strong correlation with the rise in the effective w/c 
ratio due to the substitution of seashell powder for cement. In blended 
cement mixtures, the modulus of C-S-H matrix phases typically de-
creases as seashell powder content rises [84]. Studies have shown that 
CS frequently decreases with increasing VPA content [1,85,86]. This is 
because the VPA’s ability to delay PLC’s early hydration slows down the 
potential for concrete to develop strength. 

A drop in CS is seen in Fig. 10 (d) as the blended concrete’s FA 
content rises. FA contributes very little to the prediction of CS because of 
its filling role [87]. Generally, concrete strength increases with 
decreasing aggregates in the mix due to the packing capability between 
the constituents. This supports the results depicted in Fig. 10 (d). Fig. 10 
(e) indicates a rise in CS with decreasing BA content, strengthening the 
binding matrix (FA and CA) and causing early and later strength growth. 
The components of FA and CA did not appear to have a substantial 
impact on strength because pertinent research showed that aggregates’ 
form, PSD, and ITZ had a greater effect on strength growth than their 
contents [88–90]. To enhance strength development, lower FA and CA 
levels, as well as higher paste volume, are also required [91]. 

Fig. 10 (f) demonstrates a decrease in CS with increasing WB. The 
reason for this is that as WB increases, capillary pores increase [92]. As a 
result, too much water will result in unwanted capillary pores in the 
concrete’s mass. The porosity of concrete decreases with increasing 
porosity as the number of pores rises. The mass of the anhydrous cement 
increased as the hydration process went on, which caused the hydration 
product to increase. The hydrated product’s incapacity to fully fill the 
capillary holes because of the increase in water-generated gel mass 
during the hydration process results in porous concrete. Fig. 10 (g) 
shows an increase in CS with increasing CD. This corroborates a study 
that reported an increase in the CS of blended concrete with increasing 
CD due to cement hydration [92]. Tricalcium silicate (C3S) is the reason 
for the short time strength of 3 and 7 days because it combines with 
water easily to produce heat of hydration. CH is produced in greater 
amounts by C3S and C-S-H in relatively lower amounts. Dicalcium sili-
cate (C2S), which hydrates considerably more slowly and generates less 
heat during hydration, is the cause of the cement’s long-term strength 
enhancement, which lasts 28 days or more as it hydrates endlessly. 
There is less CH produced and the C-S-H created is denser [83,93,94]. 

3.4. Sensitivity analysis 

Each input variable’s effect on the strength of concrete prediction is 
displayed in Fig. 11. The input factors play a major role in the outcome 
projection. All of the input variables (CS) affected the target variable. 
With a contribution to the model’s development of 25.37 %, the sensi-
tivity analysis showed that CD is highly crucial in relation to the key 
variable’s degree of significance. PLC, WB, and VPA came second, third, 
and fourth with percentage contributions of 24.87, 12.46, and 10.47 %, 
respectively. This is in line with the response results between the input 
and target variables in Fig. 8, which show that when WB and VPA 

Fig. 15. Histogram errors for (a) CS, (b) FS, and (c) STS.  
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decreased, and PLC and CD increased, the blended concrete’s CS 
increased. Nevertheless, the remaining parameters had a smaller impact; 
specifically, the contributions from BA, CP, CA, and FA were 9.87, 5.89, 

5.79, and 5.28 % to the TBC output variable. These outcomes are 
consistent with a prior study that found that the following factors 
affected the prediction of concrete’s CS modified with SCMs: CD, PLC, 

Fig. 16. Correlation between experimental and DNN approaches for (a) CS, (b) FS, and (c) STS.  
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water, CA, blast furnace slag, fly ash, and FA contributed 27.8, 21.7, 
11.5, 7.6, 6.1, 5.8, and 2.1 % to the strength development [95]. Another 
research found that water-total material ratio, recycled CA, FA, natural 

CA, and water-cement ratio are the most important parameters that 
influence the CS of concrete with 20, 17, 16, 14, and 13 % contributions 
[96]. Nonetheless, the evaluation of sensitivity depends on the number 
of input variables and data points utilized to train the model. Addi-
tionally, ML approaches have an impact on every variable; hence, 
different results are produced when additional input variables are 
introduced, and the proportions of the concrete mix are changed [95]. 

3.5. Performance metrics of DNN structures 

The performance metrics used in the training, validation, and testing 
sets of the DNN are displayed in Figs. 12 and 13. The MSE, RMSE, R, and 
R2 results demonstrated and supported the model’s flexibility and val-
idity for all network architectures. The results from Figs. 12 and 13 
showed an improvement in performance as the number of neurons in the 
hidden layers increased, which is consistent with earlier studies [53,97]. 
The 8–25–25-25-1 network structure, as indicated in Fig. 12 (a) and (b), 

Fig. 16. (continued). 

Table 5 
Untrained experimental datasets and predicted values.  

PLC CCA GOS FA CA 
(kg/m3) 

BA WB CD 
(days) 

Experimental (MPa) 
CS FS STS 

Predicted (MPa) 
CS FS STS  

261  32.5  32.5  849  919  0.18  0.61  3  9.96  2  1.20  10.19  2.06  1.19  
293  16.5  16.5  857  919  0.18  0.61  7  18.10  2.37  2  17.96  2.29  1.97  
228  49  49  842  919  0.19  0.61  28  20.47  3.75  2.20  19.77  3.65  2.13  
293  16.5  16.5  857  919  0.18  0.61  90  29.20  4.36  2.97  28.85  4.18  2.85  
258  55.5  55.5  802  919  0.22  0.54  7  14.15  2.16  1.70  14.3  2.30  1.64  
295  37  37  811  919  0.21  0.54  28  31.41  4.51  2.65  31.34  4.44  2.60  
332  18.5  18.5  818  919  0.21  0.54  60  34  4.77  3.13  33.93  4.70  3.10  
258  55.5  55.5  802  919  0.22  0.54  120  32.4  4.38  2.86  32.35  4.33  2.80  

Table 6 
AB and RE between experimental and predicted variables.  

Absolute error Relative error (%) 

CS FS STS CS FS STS 
-0.23 -0.06 0.01 -2.31 -3.00 0.83 
0.14 0.08 0.03 0.77 3.38 1.50 
0.70 0.10 0.07 3.42 2.67 3.18 
0.35 0.18 0.12 1.20 4.13 4.04 
-0.15 -0.14 0.06 -1.06 -6.48 3.53 
0.07 0.07 0.05 0.22 1.55 1.89 
0.07 0.07 0.03 0.21 1.47 0.96 
0.05 0.05 0.06 0.15 1.14 2.10  
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outperformed other structures for training, validating, and testing with 
lesser MSE and RMSE values of 0.0115 and 0.107 for both CS and FS 
models. The MSE performance indicator of 8-25–25-25–1 network 
structure was about 40–96 % lower than other network architectures. 
However, the 8-20–20-20-1 network topology, as shown in Fig. 12 (c), 
produced the best metrics for predicting the STS of TBC. Higher R and R2 

values of 0.99993 and 0.99997 for training, 0.99680 and 0.99840 for 
validation, and 0.99783 and 0.99924 for testing in Fig. 13 (a) corrob-
orate the CS’ MSE and RMSE results. In the same vein, FS prediction, as 
indicated in Fig. 13 (b), exhibited the best R and R2 of 0.99495 and 
0.99747 for training, 0.97995 and 0.98992 for validation, and 0.97367 
and 0.98675 for testing. Higher R and R2 values with 0.99657 and 
0.99828 for training, 0.99159 and 0.99579 for validation, and 0.99182 
and 0.99590 for testing compared to other structures, as displayed in 
Fig. 13 (c), support the error performance metrics (MSE and RMSE). 
Strong correlation and accuracy of the model are indicated by lower 
values of the errors (MSE and RMSE) and higher values of the co-
efficients (R and R2) [98]. Thus, it is clear from Figs. 12 and 1 that 
training, validating, and testing TBC datasets using a 3 hidden layers of 
25 nodes for CS and FS, and 20 nodes for STS allowed the datasets to 
reach their optimal learning structures and produce optimal perfor-
mance metrics. These findings can be associated with the generalization 
abilities of several layers, enabling them to learn all features between 
the input and target variables and perform advanced categorization. 

The best DNN validation performance is displayed in Fig. 14 using 
the LM backpropagation training technique. The best validation results 
were 0.36418 for CS at epoch 21, 0.035188 for FS at epoch 11, and 
0.0080441 for STS at epoch 17 in Fig. 14 (a)-(c). 

In a similar vein, Fig. 15 shows the error difference between the 
expected and actual results, with the overall error range split into 20 

smaller bins. Fig. 15 (a)-(c) demonstrate bins corresponding to the errors 
of 0.02471, 0.0125, and 0.002881 for CS, FS, and STS. At zero error in 
Fig. 15 (a) for CS, the highest bin height was about 50, with 88 % for 
training datasets, 2 % for validating datasets, and 10 % for testing 
datasets. The maximum bin height at zero error in Fig. 15 (b) for FS was 
around 34, with 82 % for training datasets, 7 % for validating datasets, 
and 11 % for testing datasets. At zero error in Fig. 15 (c) for STS, the 
highest bin height was about 28, with 88 % for training datasets, 6 % for 
validating datasets, and 6 % for testing datasets. Fig. 16 displays the 
evaluation of the direction and intensity of the linear correlations be-
tween the target and expected parameters. With strong correlation co-
efficients of 99.924, 97.992, and 99.510 % at 95 % confidence level and 
prediction intervals shown in Fig. 16 (a)-(c), the developed DNN struc-
tures are able to predict the CS, FS, and STS, and are judged to be 
dependable, accurate, and outstandingly performed. 

3.6. Validation of developed DNN architectures 

The validation process employed raw datasets from the experimental 
works to further demonstrate the capabilities of the 8–25–25–25-1 
structure for CS and FS and 8-20–20–20-1 topology. Table 5 presents the 
correlation between the actual and anticipated strengths along with the 
corresponding absolute errors (AB) and relative errors (RE) in Table 6. 
Experimental values were normalized by mean and standard deviation 
of 23.71 and 9.206 for CS, 3.537 and 1.166 for FS, and 2.339 and 0.6795 
for STS, with 95 % confidence bound. Fig. 17 presents the verification of 
predicted results against experimental data. It is evident, therefore, that 
the created DNN models learned and accurately predicted the experi-
mental data with 99.91, 99.57, and 99.81 R2 for CS, FS, and STS in 
Fig. 17 (a)-(c). This also implies that the newly created DNN models are 

(a) (b)

(c)

Fig. 17. Relationship between the predicted and experimental variables for (a) CS, (b) FS, and (c) STS.  
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robust and capable of accurately reproducing the experimentally 
observed results with remarkably high accuracy, given the explanatory 
model parameters. Additionally, the developed models are able to un-
derstand the relationship between various design parameters and the 
responses to the outcomes. Moreover, the performance indicators, 
0.3021, 0.07783, and 0.03153 RMSE pertaining to CS, FS, and STS in 
Fig. 17 (a)-(c), exhibit a high degree of comparability, with minimal 
differences that show the model’s overall efficacy. The validation of 
developed GEP model with the datasets from previous studies reported 
the RMSE above 1, demonstrating wavering forecast accuracy [77]. 
However, in the model validation of green concrete incorporating 
GGBFS and CCA, the R2 and RMSE values for the projected response 
using raw experimental datasets were 0.9861 and 1.4180 for CS, 0.9811 
and 0.1342 for FS, and 0.9694 and 0.1160 for STS [53]. Therefore, it is 
evident from Fig. 17 (a)-(c) that the created models are able to forecast 
the concrete’s CS, FS, and STS. 

The predicted CS and FS with 8-25–25-25-1 network architecture, 
and STS of TBS with 8-20–20-20–1 topology, as shown in Table 6, 
exhibited error lines within − 2.31 and +3.42 % for CS, − 6.48 and 
+3.38 % for FS, and +0.83 and +4.04 % for STS for validating the 
developed DNN structures. The reliability of the proposed models was 
clearly shown by very little difference between experimental and pro-
jected values. Thus, the created models are suitable and passably 
accurate. 

4. Conclusions 

This research investigates the development of DNN-based AI tech-
nique to evaluate and forecast the mechanical strengths of TBC. TBC 
strengths were predicted using DNN models in the range of 
6.88–37.33 MPa for CS, 1.44–5.36 MPa for FS, and 0.85–3.38 MPa for 
STS. The developed models were predicated on extensive and depend-
able datasets on TBC’s CS, FS, and STS that were acquired via a number 
of experimental works involving important mix design variables. The 
investigation yielded the following conclusions: 

The addition of VPA and CP enhanced TBC’s CS, FS, and STS. 
However, 28-day curing strength targets were met at 10 % VPA and 
10 % CP replacements. All input variables significantly influence the CS, 
FS, and STS of TBC with CD, PLC, WB, and VPA contributing about 26, 
25, 13, and 11 %. The relationship between the CS and FS, and CS and 
STS yielded strong correlation with 95.45 % R2. Furthermore, the 8–25- 
25-25-1 network topology demonstrated the best prediction accuracy in 
forecasting the TBC with R and MSE of 99.92 % and 0.012 for CS and 
99.01 % and 0.012 for FS. Thus, there was about 40–96 % and 6–27 % 
reduction in MSE when 8–25–25-25-1 network architecture is engaged 
in predicting the CS and FS of TBC compared to other network struc-
tures. The 8–20-20-20-1 outperformed other network architectures in 
properly predicting the STS of TBC, generating R and MSE of 99.51 % 
and 0.0030. With the developed DNN structures, the predicted CS, FS, 
and STS were found to be accurate with the experimental values, 
yielding 99.91, 99.57, and 99.81 % R2. Ultimately, validating the 
developed models with untrained datasets highlights the remarkable 
performance of the 8-25–25-25-1 and 8–20–20–20-1 network architec-
tures with RMSE values of 0.30 for CS, 0.078 for FS, and 0.032 for STS. 

This study provides theoretical and practical recommendations for 
optimization of concrete mix proportion that maximizes efficiency and 
saves time. More industrial and agricultural waste materials might be 
used for TBC rather than being irresponsibly dumped in landfills and 
dumps since the built and verified models can recreate accurate and 
realistic outcomes. It is advantageous to make TBC with RWMs because 
it addresses environmental and resource challenges. These encourage 
sustainable and ecologically friendly building practices. 

5. Future recommendations 

Metaheuristic algorithms, such as nuclear reaction optimization and 

lightning search algorithm are recommended to predict the strength of 
concrete, as these techniques can produce also accurate results. Further 
input parameters can be included, such as the concrete’s slump, density, 
and chemical and physical characteristics of the ingredients. One way to 
improve the accuracy and responsiveness of the models is to add more 
variables. Additional strength and durability characteristics of TBC, 
including resistance to carbonation, sulfate, acid, and chloride, can be 
predicted using machine learning techniques. Furthermore, sensitivity 
analysis (SA) was used in this study to determine the impact of each 
variable on the TBC strengths. However, the SHAP methodology can be 
applied and contrasted with the SA results. 
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