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Abstract
Rainfall variability has a significant impact on hydrological cycle. Understanding rainfall variability over Fiji Islands is impor-
tant for decision-making in the backdrop of global warming. Reanalysis rainfall products are commonly used to overcome 
observed data quality challenges especially over ungauged highland areas. However, an evaluation of reanalysed datasets 
is important to ensure accurate and reliable climate information generated using such datasets, especially for small Island 
with high variable topography like Fiji. This work aims to validate the spatiotemporal performance of European Centre for 
Medium-Range Weather Forecasts (ECMWF) fifth-generation reanalysis rainfall (ERA5) data against ground-based station 
data from 19 stations for the period 1971–2020 over Fiji Islands. Correlation coefficient and difference statistics: bias, and root 
mean square error, are used to assess the performance of the data. Further, common Empirical Orthogonal Function (com-
mon EOFs) analysis was used to evaluate spatiotemporal performance of ERA5 datasets. The results of the station-by-station 
comparison shows that interpolated ERA5 annual rainfall matches the corresponding results from rain gauges remarkably 
well for many stations. The correlation coefficient values range from 0.5 to 0.85, while the bias spans from a negative 282 
to a positive 575, and the root mean square error (RMSE) varies between 285 and 662 mm for the annual rainfall across the 
study area. However, there is overestimation and underestimation of the observed rainfall by ERA5 datasets. The leading 
common EOF principal component for annual rainfall suggests that the inter-annual variability in ERA5 dataset is generally 
consistent with observed station datasets, cross validation results indicated high scores (correlations of 0.82), with limited 
spatial variation. This work presents a reliable data assessment of the ERA5 data over Fiji Islands, indicating there is good 
match of the annual observed rain gauged station data and ERA5. The findings give accuracy references for further use of 
the ERA5 data in understanding rainfall variability and change over the region.

1 Introduction

Global warming is associated with changes in rainfall pat-
terns all over the world, South Pacific region being included 
(IPCC 2021). In the South Pacific region, the average rainfall 
is decreasing, while the extreme precipitation and storms 
are increasing (Thomas et al. 2020). Fiji whose economy 
and livelihood is mainly dependent on agriculture, rainfall 
variability has devastating socioeconomic impacts. Thus, 
there is need for monitoring rainfall variability and change 
for informed decision-making in effort to build resilience 
against weather and climate variability impacts, the process 
requires reliable data (Vystavna et al. 2022; Deo 2011; Egeru 
et al. 2019; Manton et al. 2001).  This calls for a long series 
of quality historical precipitation data. The data is vital 
not only to the climate scientist, but for all professions in 
other socioeconomic sectors (e.g. agriculture, water, health, 
infrastructure, transport etc.) given that they are affected by 
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climate change impacts whether directly or indirectly (Kas-
par et al. 2022; Trenberth et al. 2003)

Lack of adequate long-term and high-resolution datasets, 
inaccessibility of the available station data and missing val-
ues in the available data due to technicalities is common 
in most developing regions including the South Pacific 
(Barlian Soeryamassoeka et al. 2020). The reliability of 
observed station datasets is mainly limited by the num-
ber and spatial coverage of surface stations, which is not 
enough to monitor the spatial features of precipitation well 
over the region (Chen et al. 2018; Sun et al. 2018). Satellite 
derived and climate reanalysis precipitation data have been 
widely used to overcome some of these challenges (Bes-
senbacher et al. 2022). This data is currently being used to 
understand the long-term trends in rainfall, temperature and 
their changing patterns globally (Gebrechorkos et al. 2019). 
With advances in technology, both satellite and reanalysis 
methods offer precipitation data with fine spatial–tempo-
ral resolutions, especially in far-remote areas with sparse 
in situ precipitation networks such as Fiji. The reanalysis 
methods offer precipitation estimations by assimilating all 
available data into a background forecast physical model 
(Funk et al. 2015; Wong et al. 2017). Over the last decade, 
satellite and reanalysis gridded precipitation datasets have 
been released by many forecasting centres which include 
the European Centre for Medium-Range Weather Forecasts 
(ECMWF), that is currently providing its fifth generation 
(ERA5) datasets (Hersbach et al. 2020). There are efforts to 
continuously upgrade data methodologies to remove some 
of the biases in the models (Decker et al. 2012). The dataset 
produced by these centres depends on the quality of the data 
assimilated as the initial conditions and the parameteriza-
tion schemes used in the models (Decker et al. 2012; Funk 
et al. 2015). For the ERA5 data, is produced using 4D-Var 
data assimilation and model forecasts in Cycle 41r2 of the 
Integrated Forecasting System (IFS), with 137 hybrid pres-
sure levels. ERA5 benefits from a decade of developments 
in model physics, core dynamics, and data assimilation. In 
addition to a significantly enhanced horizontal resolution 
(31 km grid spacing), it has several innovative features, 
which include hourly output throughout and an uncertainty 
estimate. The uncertainty information is obtained from a 
10-member ensemble of data assimilations with 3-hourly 
output at half the horizontal resolution (63 km grid spacing) 
(Hersbach et al. 2020). Therefore, it is necessary to evaluate 
the accuracy of these model outputs to understand the biases 
in the model before the use of the available data. This can 
only be done by comparing the data with the in-situ data 
that is strictly quality controlled. The ERA5 reanalysis is 
developed by the Copernicus Climate Change Service (C3S) 
and implemented by ECMWF. It combines vast amounts of 
historical observations into global estimates (Hersbach et al. 
2020). Several studies over the South Pacific region have 

used satellite estimates and reanalysis precipitation data. 
For example, drought monitoring over the Australia region 
by Bhardwaj et al. (2022), and studies done to monitor and 
estimate precipitation over the South Pacific region using 
both satellite and reanalysis data (Chen et al. 2018; Pfeifroth 
et al. 2013; Wild et al. 2021). However, few studies have 
used ERA5 dataset. Yeasmin et al. (2021) studied detection 
and verification of tropical cyclones and depressions over 
the South Pacific Ocean basin using the ERA5 reanalysis 
datasets. Findings showed that ERA5 reanalysis data can 
capture the climatology distribution of tropical depression 
over the South Pacific Ocean. These studies provide useful 
references when using ERA5 datasets. However, there have 
been few evaluation studies on ERA5 precipitation data over 
the Southwestern Pacific region, on how well the data rep-
resent the observed precipitation. Therefore, evaluating the 
performance of ERA5 dataset over the region will inform 
decision making in filling the deficiencies of traditional 
in situ gauge precipitation data and provide an alternative 
data source for ungauged areas. This study evaluates ERA5 
reanalysis precipitation datasets, to understand the biases in 
the dataset and to improve future precipitation assessments 
over the South Pacific region.

2  Data and methods

2.1  Study area

Fiji’s Island is unique in term of land mass and diversity in 
topography. The nation consists of over 300 islands with 
a total of around 18,300 km of land in the South Pacific 
region. The country lies between longitudes 175° E and 178° 
W, and latitudes 15° S and 22° S and is divided into five 
(5) divisions (S1). Viti Levu, the country’s largest island, 
is characterized by its relatively high topography (Fig. 1). 
Vanua Levu and Kadavu are located to the northeast and 
south of Viti Levu, respectively. The larger island is char-
acterized with mountainous topography which is known 
to influence rainfall over the country with windward side 
receiving more rainfall than the leeward. This explaining 
why orographic rainfall is the dominant form of precipita-
tion in Fiji (Chattopadhyay and Katzfey 2015). Further, the 
Pacific Island countries have been identified as particularly 
vulnerable to climatic change and variability, because of low 
adaptive capacity of the communities (IPCC 2022).

Rainfall in Fiji Island is highly variable in space and time, 
influenced by the island’s topography, and prevailing South-
east trade winds. The mountains in Viti Levu create wet 
climatic zone on their windward side and dry climatic zones 
on their leeward side (Mataki et al. 2006). The position and 
movement of South Pacific Convergence Zone (SPCZ) influ-
ence the seasonal rainfall distribution over Fiji which is the 
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main rainfall producing synoptic system over the region 
(Tigona et al. 2023; Irving et al. 2011). From November 
to April, the Fiji Islands are also frequented by tropical 
cyclones originating in the Pacific Ocean, which results in 
prolonged heavy rainfall and flooding of low-lying coastal 
areas (Rhee and Yang 2018). The Pacific Ocean also play 
central roles in the interannual variability of rainfall in Fiji. 
It is strongly associated with El Niño and La Niña Southern 
Oscillation (ENSO) (Kumar et al. 2014). The interannual 
fluctuations in ENSO and longer-term variability from the 
Interdecadal Pacific Oscillation (IPO), strongly influence 
moisture availability across the south Pacific region (McGree 
et al. 2016). La Niña is associated with above normal rain-
fall while, El Niño is associated with below normal rainfall 
that adversely affect agriculture and, in turn, causing food 
shortages (Glantz 2001). On the other hand, ENSO modulate 
in inter-annual time scale of tropical cyclone activities in 
the Pacific region, which oscillate between El Niño and La 
Niña (Chand et al. 2013; Dowdy et al. 2012; Kuleshov et al. 
2020; Lin et al. 2020; Zhao and Wang 2019). Therefore, the 
Pacific region’s current and future sustainable socio-eco-
nomic development will heavily depend on its ability to cope 
with climate variability and adapt to future climate changes. 
The country experiences a unimodal rainfall pattern dur-
ing the austral summer months (November–April). Its mean 

temperature has low temporal variability, with the difference 
of 3.61 °C between the warmest month (February) and the 
coolest month (July) (Ongoma et al. 2021). May–October is 
considered the cold season, while November–April, during 
the rainfall season, is considered the hot season.

The cool season is in the months of May–October, while 
the hot season is the November–April during the rainfall 
season.

2.2  Data

2.2.1  Weather station data

Daily precipitation data sourced from 21 gauge-based sta-
tions in Fiji Islands were used (Fig. 1; Table 1). The data 
was obtained directly from Fiji Meteorological Service 
(FMS) for the period of 1970–2020. The stations with high-
quality data were selected from a pool of 21 stations. The 
selected stations had as complete daily records as possible, 
with most stations having less than 10% of missing data, 
which is consistent with the findings by Sharma et al. (2021) 
(Table 1), however, Monasavu and Tokotoko stations had 
19.8% and 47.7% missing data respectively and were not 
used in the evaluation of ERA5 rainfall data. 19 stations 
were used in this study, their record was as long as possible, 

Fig. 1  The elevation map of Fiji showing the location of meteorological stations, Lat and Lon of Rotuma and Ono-i-Lau are shown
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and the station remained open at the time of request. The sta-
tions selected were of high quality, well maintained and had 
documented metadata consisting of a history of site location, 
observing instruments and practices and the station had not 
been moved from the original site location, for example the 
Tokotoko station was moved in 1985 because of land use 
change and further to the current location in 2003, therefore, 
it was not used in this study (information from station meta 
data).

2.2.2  ERA 5 datasets

As one of the high-resolution climate reanalysis datasets, 
ERA5 has a temporal resolution of hourly for large num-
ber of climate variables. The ERA5 is a successor of ERA-
Interim, provides dataset from 1950 to the present and about 
25 km spatial resolution (Hersbach et al. 2020). The data 
is generated by the ECMWF and is available to the public 
through https:// cds. clima te. coper nicus. eu/ cdsapp# !/ search? 
type= datas et& keywo rds= ((% 20% 22Pro duct% 20typ e:% 
20Rea nalys is% 22% 20)) & text= ERA5. In this study, daily 
ERA5 precipitation data from January 1970 to December 
2020 was annually aggregated and used in the evaluation.

2.3  Methods

All the station datasets were subjected to quality checks 
to remove days with negative rainfall values as well as 
missing values. The performance of ERA5 precipitation 
estimates in both magnitude and spatiotemporal character-
istics were evaluated against observed precipitation from 
19 stations for the period of 1971–2020. The evaluation 
compares the rain gauge data with the corresponding data 
from ERA5 interpolated to the same coordinate as the 
observed, this was to ensure the corresponding data from 
ERA5 is at the exact locations where observations were 
made and to ensures spatial consistency in the comparison 
of the two datasets. The comparison was done by com-
puting selected statistical evaluation metrics namely: the 
Pearson’s correlation coefficient (r) and the mean offset 
(mean bias) and root mean square error (RMSE) computed 
using the Eqs. (1), (2) and (3) respectively.

The correlation coefficient reflects the degree of lin-
ear correlation between the ERA5 precipitation data and 
observed precipitation data, this can be calculated by 
Eq. (1);

Table 1  List of stations from FMS with their respective location (Fig. 1)

The Percentage of available data, annual, summer and winter rainfall sum totals and % contribution of the seasonal rainfall to the annual total 
rainfall

Station Lat Lon % data 
availability

Annual rain-
fall (mm)

Summer 
rainfall (mm)

Winter rain-
fall (mm)

% contribution of 
summer rain

% contribu-
tion of winter 
rain

1 Ono-i-Lau − 20.67 178.72 89.8 1489.7 936.1 559.4 62.8 37.2
2 Yasawa-i-Rara − 16.7 177.58 91.5 1554.5 1131.1 426.4 72.8 27.2
3 Nacocolevu − 18.1 177.54 96.1 1738.6 1232.3 503.6 70.9 29.1
4 Matuku − 19.13 179.73 89.9 1663.7 1048.9 612 63.2 36.8
5 Nadi Airport − 17.76 177.44 100.0 1937.7 1502.8 437.1 77.6 22.4
6 Lakeba Airfield − 18.23 − 178.8 97.4 1898.9 1281 623.5 67.2 32.8
7 Lautoka Mill − 17.55 177.44 99.0 1970.2 1522.7 447.4 77.3 22.7
8 Savusavu Airfield − 16.81 179.34 97.7 2160.9 1381.7 774.8 63.9 36.1
9 Labasa Airfield − 16.47 179.34 98.3 2212.2 1732.6 468.7 78.4 21.6
10 Vunisea − 19.05 178.17 95.4 2174.2 1425.7 762.2 65 35
11 Penang Mill − 17.37 178.17 98.7 2298.4 1747.2 550.8 76 24
12 Seaqaqa Forestry − 16.59 179.14 96.8 2326.1 1829 491.1 78.6 21.4
13 Nabouwalu − 16.99 178.69 96.6 2404.1 1670.2 731.3 69.6 30.4
14 Udu Point − 16.14 − 179.99 92.5 2419.5 1681.6 733.6 69.5 30.5
15 Nausori Airport − 18.05 178.56 99.8 2963.1 1912.5 1059.2 64.3 35.7
16 Laucala Bay − 18.03 178.45 99.9 3043.8 1919.5 1132.8 63.1 36.9
17 Rotuma − 12.5 177.05 96.7 3369.5 1868 1493.9 55.4 44.6
18 Rarawai Mill − 17.56 177.68 97.2 2015.8 1553.1 450.8 77.1 22.9
19 Matei Airfield − 16.69 − 179.58 93.8 2482.8 1612.9 863.1 65.2 34.8
20 TokoToko − 18.22 178.17 52.3 3232.8 1897.6 1290.4 59.5 40.5
21 Monasavu − 17.75 178.05 80.2 4942.3 3249.9 1628.2 66.3 33.7

https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset&keywords=((%20%22Product%20type:%20Reanalysis%22%20))&text=ERA5
https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset&keywords=((%20%22Product%20type:%20Reanalysis%22%20))&text=ERA5
https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset&keywords=((%20%22Product%20type:%20Reanalysis%22%20))&text=ERA5
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The range of r is − 1 to 1, where 1 describes perfect cor-
relation while and − 1 is perfect inverse correlation.

Bias indicates the size of the deviation of ERA5 from 
the observed precipitation data. The bias can be calculated 
by Eq. (2);

where the range of deviation is − ∞ to + ∞ (the closer the 
deviation is to 0, the more accurate the data is) and bias 
values greater than 0 indicate overestimation, and less than 
0 indicate underestimation.

The RMSE reflects the overall level of error between the 
ERA5 precipitation data and the observed precipitation data.

where  XERA5 represents the precipitation data of ERA5,  Xobs 
represents the observed precipitation,

The range of RMSE is 0 to ∞, the smaller the value the 
smaller the overall deviation. The metrics are discussed in 
detail by Wilks (1995).

The station observed data had missing data, therefore 
when aggregating the annual totals, because of the missing 
data we used two different methods. First, the mean was 
multiplied by number of days per year, second, the sum of 
the daily dataset calculated as shown in the Eq. (4). The 
reason for using two different methods of estimating annual 
totals is that there were missing days in the observed data, 
and if the missing days are random, then we get a better 
estimate for annual totals with the former, but if the miss-
ing days tend to be from dry periods, we get more accurate 
results with the latter.

where n are the days in a given year.
This study used regression-based empirical statistical 

downscaling (ESD) to compare the rain gauge data with cor-
responding data from ERA5 interpolated at the same coor-
dinates of the observation station. To do the comparison for 
the whole group of stations, we applied common empirical 
orthogonal functions (Common EOFs). The common EOFs 
emphasize salient features connected to spatiotemporal 
covariance structures embedded in large climate data vol-
umes (Benestad et al. 2023). It provides the framework ena-
bles the extraction of the most pronounced spatial patterns 
of coherent variability within the joint dataset and provides a 

(1)

Correlation coefficient (r) =

∑n

i=1
(XERA5 − XERA5)(Xobs − Xobs)

�

∑n

i=1
(XERA5 − XERA5)

2(Xobs − Xobs)
2

(2)Mean Bias = Xobs − XERA5

(3)

Root mean square error (RMSE) =

√

√

√

√

1

n

n
∑

i=1

(

XERA5 − Xobs

)2

(4)xtot = n × x andxtotal =
∑

n
xn

set of weights for each model in terms of the principal com-
ponents (PCs) which refer to the same set of spatiotemporal 
patterns of covariance. In other words, common EOFs pro-
vide a means for extracting information from large volumes 
of data (Benestad et al. 2023; Hannachi et al. 2023). We 
used common EOFs to illustrate how well the ERA5 datasets 
reproduce the mean annual cycle in terms of spatiotemporal 
covariance compared to the Observed station data.

The common EOF requires complete data series with no 
missing values, so the missing data was filled with inter-
polated data based on the assumption of a fixed spatiotem-
poral covariance structure. In the ESD: y = f(X) where the 
properties of f(.) is used for the evaluation as explained by 
(Benestad et al. 2015). We used the open-source package 
in R esd, designed for climate and weather data analysis, 
empirical-statistical downscaling, and visualization. The 
analysis presented here was carried out using the R pack-
age esd, version 1.10.15 (Wilks 1995; Benestad et al. 2008; 
Benestad et al. 2015), within the R environment, version 
4.2.2 (R Core Team 2023).

The spatiotemporal patterns of Common EOFs from dif-
ferent data sources can be compared effectively when the 
data is standardized onto a common grid and consolidated 
into a single matrix. Both conventional EOF and common 
EOFs can be used in diagnostic analyses as well as providing 
a basis for comparison of the two datasets. The conventional 
EOFs and the associated principal components (PCs) are 
model dependent while the common EOF method is a gener-
alized PC analysis that involves combining multiple datasets 
onto a common grid or spatial domain before performing 
the EOF analysis. This enables the identification of shared 
spatial patterns of variability across the datasets, which can 
be useful for understanding different datasets (Jolliffe 2002; 
Hannachi et al. 2007; Hannachi 2021). It is possible to com-
bine a number of different data sets through concatenation 
along the time dimension, and then estimate EOFs for the 
combined data matrix. Such EOFs are known as common 
EOFs (Barnett 1999), and were used here to represent the 
ERA5 data, where the PCs contained information about the 
different stations and the EOFs described spatial structures 
common to all. Hence, the assessment of skill involved a 
comparison between the PCs from the common EOFs.

3  Results and discussion

The observed rainfall data was analysed to establish the 
completeness of the station dataset or the percentage of the 
missing data in each station (Table 1). Two stations had 
more than 10% of the data missing, therefore, they were 
excluded from further analysis. Figure 2 shows the per-
centage of valid points for the 19 observing stations used. 
Fourteen (14) stations had nearly 100% of the valid points. 
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Nadi airport station and Laucala bay had less than 0.2% of 
the data missing (Table 1). The evaluation was important 
because it enabled us to decide which aggregation method to 
use for the annual totals in the analysis. The gaps were filled 
with interpolated data based on the assumption of a fixed 
spatiotemporal covariance structure; this is provided in the 
esd r package. This was done to enable the use of common 
EOFs on the two datasets.

Figure 3 shows the standardized annual rainfall time 
series for some of the rainfall stations in Fiji. It is evident 
that rainfall over Fiji Islands is highly variable in time and 
space. The variability of the annual rainfall, both wet and 

dry seasons have considerable year-to-year variation, as 
indicated in Fig. 3. The annual variability is evident in all 
meteorological stations used. The variability of dry and wet 
years is clearly seen, with 1987, 1998 and 2015 amongst the 
driest years, while 1975, 1999, 2012 being the wet years. 
The driest and wettest year’s conditions are strongly associ-
ated with El Niño and La Niña phenomenon (Kumar et al. 
2006, 2014; Kuleshov et al. 2014). During El Niño event, 
the SPCZ moves towards northeast resulting in dry season in 
most part of Fiji Islands. Conversely, during the La Niña the 
SPCZ tend to move southward, resulting to wet conditions 
in most part of Fiji (Mataki et al. 2006). In addition, tropical 
cyclone plays a major role in the inter-annual rainfall vari-
ability over Fiji Island, by contributing to the extreme rain-
fall, especially in the months of January–February–March 
this is because the peak tropical cyclone activities occurs 
during these months (Deo et al. 2021; Hannachi et al. 2007).

The annual rainfall cycle indicates that the summer rain-
fall season starts in the month of November and ends in the 
month of April, and it’s called the wet season (Fig. 4). While 
May–October is the winter rainfall season, which is known 
as the dry season in Fiji. The peak rainfall month is between 
January and April, whereas, July is the driest month for most 
of the stations (Fig. 4). The wet season accounts for more 
than 60% of the total annual rainfall in all stations, and less 
than 40% during the dry season. This implies that most of 
the stations received their rainfall during the summer season, 
but Rotuma station receive nearly equal amount of rainfall 
in both seasons.

Figure 5 shows the spatial variability of rainfall over Fiji 
Island, with the mean annual rainfall ranging from 1600 to 

Fig. 2  Percentage of valid data points in the observed stations

Fig. 3  Standardized annual rainfall over Fiji Island for the period 1971–2020
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3600 mm. Rotuma station records the highest rainfall over 
Fiji Island. In the two main Island of Fiji (Vanua Levu and 
Viti Levu), the spatial variability is mainly influenced by the 
topography, mountainous elevation of up to 1300 m above 
sea level. This is indicated by high rainfall spatial variability 
rainfall on the two main Island. For instance, Laucala bay 
and Nausori station which are located on the wind ward side 
receive more rainfall than Nadi Airport, Nacocolevu, Lau-
toka and Rawawai mill stations which are on the leeward 

side (Fig. 5; Table 1). The topography has a strong influence 
on rainfall generation during tropical storms and passing 
trade winds, blowing from the east or south-east directions 
associated with the Hadley Circulation, bringing moisture 
onshore (Kuleshov et al. 2014). Resulting in more rainfall 
in eastern side of Fiji which is the wind side and less rainfall 
in the leeward on the western side (Terry et al. 2004; Kumar 
et al. 2014). It is evident from the fact that the yearly rainfall 
at Nadi (on the leeward side) is only approximately 60% of 
what is observed at Laucala (on the windward side), that 
orography has a significant effect in the spatial distribution 
of rainfall over Viti Levu as compared to the Vanua Levu 
where low spatial variability between stations (Fig. 5).

Figure 6 shows a time series of annual rainfall for both 
observed station data and ERA5. The ERA5 captured the 
interannual variability of rainfall relatively well. The station-
by- station comparison shows that interpolated ERA5 annual 
rainfall matches the corresponding results from rain gauges 
for many of the stations, however, there are few instances of 
underestimation and over estimation from the ERA5 data-
sets. For instance, between 1990 and 1998, ERA5 under-
estimated rainfall in Nausori Airport, Vunisea and Rotuma 
stations and overestimated for Yasawa-I-Rara station. The 
results also suggest that both the annual summed values and 
that of the product between mean and number of days have 
very similar estimates, reducing the concern about missing 
data. This is important because we were able to use any of 
the aggregated annual totals in the common EOFs analysis 

Fig. 4  Mean monthly rainfall over Fiji Island for the period 1971–2020

Fig. 5  Special map of Fiji showing the annual mean rainfall for the 
meteorological stations
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Fig. 6  Comparison of annual rainfall time series derived from station 
gauge observations and ERA5, where black curves represent annual 
rainfall based on the product between the mean and the number of 

days, red dashed are estimates based on the summed values and 
dashed blue curves represent ERA5 datasets
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and got similar results. Despite high temporal rainfall vari-
ability in Fiji, ERA5 was able to capture the temporal vari-
ability in all the stations analyzed.

Table 2 presents the annual bias, RMSE and r, and the 
spatial pattern of the RMSE is shown in Fig. 7. The annual 
rainfall totals for observed and ERA5 are moderately to 
highly correlated with corresponding r, RSME and bias 
ranging from; 0.47 to 0.84, 285 to 662, and − 282 to 575 
respectively. Most of the stations had high values of r. Nadi, 
Yasaw-I-Rara, Lautoka and Nacocolevu have high r values 
and low RMSE. In addition, the RMSE values were lower in 
stations located in the western division as compared to the 

stations in the central division. This indicates that ERA5 can 
adequately determine precipitation in areas that receive low 
rainfall. For instance, Laucala, and Nausori Airport have 
higher RMSE than Nadi station which had the lowest RMSE 
(Table 2). The bias also show the same pattern as RMSE, 
whereby the wet areas have higher bias as compared to the 
dry areas of the study area. The low values of RMSE, high 
r values and the low bias indicate that ERA5 performed 
well in the study area. Therefore, there is high reliability 
of the ERA5 rainfall data over the study area. The result 
of bias analysis also gives an indication of overestimation 
and underestimation of ERA5 datasets. The High correlation 
coefficient values indicate that good correlation of ERA5 
dataset to station observed data.

The ability of the ERA5 data to accurately represent the 
spatiotemporal variability of rainfall over Fiji was assessed 
by applying common EOF analysis to the annual rainfall 
totals. A large spread would indicate less similarity between 
the two data sets compared to smaller spread, the results are 
shown in Figs. 8 and 9. The results indicated that there was 
a moderate spread, suggesting that the ERA5 dataset was 
moderately constrained in reproducing the observed data.

Figure 8 presents the leading EOF mode of the annual 
rainfall for the observed and ERA5 data over Fiji. The spa-
tial map (Fig. 8a) shows the structure of the most dominant 
covariance pattern of the annual rainfall and the eigenval-
ues (Fig. 8b) suggest that this mode dominates the annual 
rainfall behaviour. Both the spatial pattern and eigenvalues 
were estimated from both ERA5 and observed datasets. In 
Fig. 8c, show the Principal Component (PC) time series of 
the annual rainfall totals of the first model (Fig. 8c). Based 
on the PC time series, it is found that the annual rainfall in 
Fiji show a strong inter-annual variability. Moreover, it is 
observed ERA5 data capture the largest positive and nega-
tive peaks, corresponding to ENSO years.

The first mode explains 79.5% of the total variance in 
the annual rainfall (Fig. 8a). The results from the leading 

Fig. 6  (continued)

Table 2  Root mean square error (RMSE), correlation coefficient (r) 
and bias

Station RMSE (mm) r Bias (mm/year)

Ono-i-Lau 356 0.6 − 62
Yasawa-i-Rara 397 0.84 − 282
Nacocolevu 285 0.81 − 69
Matuku 297 0.76 104
Nadi airport 296 0.84 17
Lakeba airfield 401 0.53 − 53
Lautoka mill 408 0.81 121
Savusavu airfield 427 0.56 − 33
Labasa airfield 457 0.62 46
Vunisea 634 0.76 550
Penang mill 588 0.68 333
Seaqaqa forestry 550 0.65 252
Nabouwalu 616 0.59 357
Udu point 581 0.66 255
Nausori airport 662 0.7 575
Laucala bay 590 0.66 432
Rotuma 566 0.66 408
Rarawai mill 523 0.78 323
Matei airfield 594 0.47 346
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EOF, suggest that rainfall in Fiji is variable from one sta-
tion to the other, suggesting that different mechanism maybe 
responsible for the spatial variability in the study area (Park 
et al. 2020). The singular values suggested that this leading 
mode could account for almost 80% of the variance, which 
also indicated that the ERA5 spatial covariance structure 
was like that of the observed. The two leading EOFs could 
explain 94% of the total variance as explained by the scree 
plot (Fig. 8b), suggesting that the ERA5 was able to produce 
spatiotemporal pattern with similar characteristics as those 
in the observed data (Fig. 8b). The spatial structure associ-
ated with the common EOFs indicated that the strongest 
rainfall variability was in the stations in the western division 
and there was least rainfall variability at the Rotuma station 
(Fig. 8a), which is in northwest of Fiji. This explains the 
high skill of the ERA5 data in representing the observed 
rainfall pattern in Fiji with all the stations having positive 
EOF loadings.

The cross validation of the PCA mode 1 (Fig. 9a), Indi-
cate a high score of 0.82 with similar pattern with that of 
EOF (Fig. 8a). The combination of spatial weights from 
the multiple regression in the ESD cross-validation exer-
cise reproduced a similar spatial pattern as the leading EOF 
(Fig. 8a), and a correlation coefficient of 0.82 in the cross-
validation indicated a strong link between the two datasets 
as shown by the time series on Fig. 9d. The observed and 
reconstructed (ERA5) trends matched well (de-trended 
data were used for calibration but the trends in ERA5 were 
included in the reconstruction). Here, only the results for the 
leading EOF and PCA mode are shown as the higher order 
patterns were associated with lower proportion of the total 
covariance. The principal of retention of the EOF modes 
for further analysis followed the elbow rule in the scree 
plot as in Fig. 8b. These results are encouraging for using 
the ERA5 to represent the observed datasets where there 

are data inadequacies. Generally, based on the evaluation 
of ERA5 and ground observation, we found out that ERA5 
performs well in reproducing the spatiotemporal variability 
of annual rainfall over Fiji. However, bias exists in repro-
ducing the annual rainfall. The results from the evaluation 
show a high correlation, low bias and low RMSE between 
the two datasets. Jiang et al. (2021) in their comparison of 
ERA5 with gauge-based precipitation datasets found out that 
ERA5 has relatively high biases in precipitation estimates 
over areas of high topography variation. However, they also 
note that the performance of ERA5 in precipitation estimates 
varies significantly across different sub-regions of mainland 
China. The study also confirms that the performance of rea-
nalysis datasets could be different in different regions. Hou 
et al. (2023) evaluated the performance of ERA5 over the 
desert area in the northern China, found out that the ERA5 
has some biases in both annual and seasonal precipitations, 
similar results were obtained by Ren et al. (2022), who com-
pared the performance of reanalysis datasets in Central Asia, 
and their results show that ERA5, had higher correlation 
and high deviation with gauge-based precipitation datasets.

The biases in the ERA5 rainfall data are likely attrib-
uted to the significant variation in topography across Fiji, 
which affects the spatial distribution of rainfall. Addition-
ally, the representation of small islands in the models may 
have resulted in high biases for stations such as Vunisea, 
located on low-lying small islands. As shown in the previ-
ous work by Gomis-Cebolla et al. (2023), the performance 
of ERA5 is dependent on the climatic region, precipitation 
intensity and orography. This also confirms the findings of 
Smith et al. (2001), which highlighted the uncertainty in 
model simulations compared to observed data. Other studies 
have also found the overestimation and underestimation of 
ERA5 datasets (Hou et al. 2023; Jiang et al. 2021; Nogueira 
2020). The spatial and temporal variability of rainfall in Fiji, 

Fig. 7  Distribution of RMSE for annual rainfall for each station, a Spatial RMSE. b Bar graph of RMSE between Observed and ERA5
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is controlled by different factors which include the terrains 
which has significantly dynamical and thermal impacts on 
local climate (Ma et al. 2009). Fiji has over 300 small Island, 

therefore, simulation of the mesoscale convective system in 
ERA5 data is needed, to reduce the biases. The poor repre-
sentation of complex topography in the models may lead to 

Fig. 8  Common EOFs which 
represent the Covariance struc-
ture of the inter-annual variabil-
ity in the annual mean rainfall 
for ERA5 and Observed data. a 
Present the spatial covariance 
structure of the leading mode, b 
indicate the variance associated 
with 19 leading modes, and c 
the leading PC

Fig. 9  Results from the ESD 
downscaling indicated; a shows 
the pattern of the leading EOF 
estimated for the annual rainfall, 
b shows the anomalies from 
the ERA5 associated with 
variations in the leading PC, c 
shows a scatter plot between the 
Observed data and ERA5 cross-
validation, and the d shows the 
observed (original) time series 
(black) and the ERA5 (esti-
mated) data (red)
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uncertainty in precipitation simulation (Zhang et al. 2013). 
Several studies have indicated that assimilation of more 
observations in the model may help to reduce the uncer-
tainty of precipitation estimates in the reanalysis products 
(Zhang et al. 2012).

4  Conclusion

The present study utilized common EOFs method to give 
a spatiotemporal evaluation of ERA5 rainfall dataset over 
Fiji. The study finds ERA5 perform well in reproducing 
the spatiotemporal variability of annual rainfall over Fiji 
Island, with correlation coefficient of greater than 0.5 and 
low RMSE for the annual rainfall for most stations and the 
leading mode of Common EOFs analysis was able to explain 
more than 75% of the spatial and temporal variance. How-
ever, the biases exist with high biases in areas receiving 
high amount of rainfall, while low biases were observed in 
areas that receives less than 70% of the annual total rainfall 
in one season. While this study has provided some initial 
assessment of ERA5 rainfall data over small island countries 
with high topography, more work is needed to explore the 
causes of the biases in the ERA5 data. In addition, this study 
provided reference for the ERA5 rainfall data for climate 
simulation and other analysis. It also gives feedback to the 
global community in fine turning the model parameters to 
enhance the performance of the ERA5 data for small Island 
countries with high topography variation. The study iden-
tifies a margin of variance between the observed and the 
ERA5 data to be 20%. The analysis of the merged ERA5 
and the gauged stations (Multi-Source Weighted-Ensemble 
Precipitation) is required to assess whether there are vari-
ance in the two datasets.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00703- 024- 01025-z.

Acknowledgements We gratefully acknowledge the Fiji Meteorologi-
cal Service (FMS) for supplying the rainfall data. And we thank the 
ECMWF for the ERA5 precipitation data. A lot of appreciation goes to 
The University of the South Pacific for providing a research-enabling 
environment.

Authors contribution Philip Obaigwa Sagero: conceptualization, meth-
odology, software, formal analysis, writing original draft. Arti Pratap 
collected the data used, developed the study area map, and reviewed 
the manuscript. Royford Magiri: review and edit the manuscript. Victor 
Ongoma: review and editing. Philip Okello: reviewed the manuscript.

Data availability The datasets used in this study is available on request 
to the corresponding author.

Declarations 

Conflict of interest The authors declare no competing interests.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Consents for publication from all the co-
authors are received.

References

Barlian Soeryamassoeka SBS, Wahyudi Triweko R, Yudianto D (2020) 
Validation of tropical rainfall measuring mission (TRMM)data in 
the upper Kapuas River Basin. J Civ Eng Sci Technol 11(2):125–
131. https:// doi. org/ 10. 33736/ jcest. 2618. 2020

Barnett TP (1999) Comparison of near-surface air temperature variabil-
ity in 11 coupled global climate models. J Clim 12(2):511–518. 
https:// doi. org/ 10. 1175/ 1520- 0442(1999) 012% 3c0511: CON-
SAT% 3e2.0. CO;2

Benestad RE, Chen D, Hanssen-Bauer I (2008) Empirical-statistical 
downscaling. World Scientific Publishing Company

Benestad RE, Mezghani A, Parding KM (2015) Documentation for the 
climate analysis tool package. Met Rep. https:// doi. org/ 10. 13140/ 
RG.2. 1. 5190. 1920

Benestad RE, Mezghani A, Lutz J, Dobler A, Parding KM, Landgren 
OA (2023) Various ways of using empirical orthogonal functions 
for climate model evaluation. Geosci Model Dev 16(10):2899–
2913. https:// doi. org/ 10. 5194/ gmd- 16- 2899- 2023

Bessenbacher V, Seneviratne SI, Gudmundsson L (2022) Climfill 
v0.9: a framework for intelligently gap filling earth observations. 
Geosci Model Dev 15(11):4569–4596. https:// doi. org/ 10. 5194/ 
gmd- 15- 4569- 2022

Bhardwaj J, Kuleshov Y, Chua ZW, Watkins AB, Choy S, Sun Q 
(2022) Evaluating satellite soil moisture datasets for drought 
monitoring in Australia and the South–West Pacific. Remote Sens 
14(16):3971. https:// doi. org/ 10. 3390/ rs141 63971

Chand SS, McBride JL, Tory KJ, Wheeler MC, Walsh KJE (2013) 
Impact of different ENSO regimes on Southwest Pacific Tropi-
cal cyclones. J Clim 26(2):600–608. https:// doi. org/ 10. 1175/ 
JCLI-D- 12- 00114.1

Chattopadhyay M, Katzfey J (2015) Simulating the climate of South 
Pacific Islands using a high-resolution model: simulating the cli-
mate of South Pacific Islands. Int J Climatol 35(6):1157–1171. 
https:// doi. org/ 10. 1002/ joc. 4046

Chen A, Chen D, Azorin-Molina C (2018) Assessing reliability of 
precipitation data over the Mekong river basin: a comparison of 
ground-based, satellite, and reanalysis datasets. Int J Climatol 
38(11):4314–4334. https:// doi. org/ 10. 1002/ joc. 5670

Decker M, Brunke MA, Wang Z, Sakaguchi K, Zeng X, Bosilovich MG 
(2012) Evaluation of the reanalysis products from GSFC, NCEP, 
and ECMWF using flux tower observations. J Clim 25(6):1916–
1944. https:// doi. org/ 10. 1175/ JCLI-D- 11- 00004.1

Deo RC (2011) On meteorological droughts in tropical Pacific Islands: 
time-series analysis of observed rainfall using Fiji as a case study: 
droughts in tropical Pacific Islands-a case study of Fiji. Meteorol 
Appl 18(2):171–180. https:// doi. org/ 10. 1002/ met. 216

Deo A, Chand SS, Ramsay H, Holbrook NJ, McGree S, Magee A, 
Bell S, Titimaea M, Haruhiru A, Malsale P, Mulitalo, S, Daphne 
A, Prakash B, Vainikolo V, Koshiba S (2021) Tropical cyclone 
contribution to extreme rainfall over southwest Pacific Island 
nations. Clim Dyn 56(11):3967–3993. https:// doi. org/ 10. 1007/ 
s00382- 021- 05680-5

Dowdy AJ, Qi L, Jones D, Ramsay H, Fawcett R, Kuleshov Y (2012) 
Tropical cyclone climatology of the South Pacific Ocean and its 

https://doi.org/10.1007/s00703-024-01025-z
https://doi.org/10.33736/jcest.2618.2020
https://doi.org/10.1175/1520-0442(1999)012%3c0511:CONSAT%3e2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012%3c0511:CONSAT%3e2.0.CO;2
https://doi.org/10.13140/RG.2.1.5190.1920
https://doi.org/10.13140/RG.2.1.5190.1920
https://doi.org/10.5194/gmd-16-2899-2023
https://doi.org/10.5194/gmd-15-4569-2022
https://doi.org/10.5194/gmd-15-4569-2022
https://doi.org/10.3390/rs14163971
https://doi.org/10.1175/JCLI-D-12-00114.1
https://doi.org/10.1175/JCLI-D-12-00114.1
https://doi.org/10.1002/joc.4046
https://doi.org/10.1002/joc.5670
https://doi.org/10.1175/JCLI-D-11-00004.1
https://doi.org/10.1002/met.216
https://doi.org/10.1007/s00382-021-05680-5
https://doi.org/10.1007/s00382-021-05680-5


Validation of ERA5 rainfall data over the South Pacific Region: case study of Fiji Islands  Page 13 of 14    28 

relationship to El Niño–southern oscillation. J Clim 25(18):6108–
6122. https:// doi. org/ 10. 1175/ JCLI-D- 11- 00647.1

Egeru A, Barasa B, Nampijja J, Siya A, Makooma MT, Majaliwa 
MGJ (2019) Past, present and future climate trends under varied 
representative concentration pathways for a sub-humid region in 
Uganda. Climate 7(3):35. https:// doi. org/ 10. 3390/ cli70 30035

Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, 
Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) 
The climate hazards infrared precipitation with stations—a 
new environmental record for monitoring extremes. Sci Data 
2(1):150066. https:// doi. org/ 10. 1038/ sdata. 2015. 66

Gebrechorkos SH, Hülsmann S, Bernhofer C (2019) Long-term trends 
in rainfall and temperature using high-resolution climate data-
sets in East Africa. Sci Rep 9(1):11376. https:// doi. org/ 10. 1038/ 
s41598- 019- 47933-8

Glantz MH (2001) Currents of change: impacts of El Niño and La 
Niña on climate and society, 2nd edn. Cambridge University 
Press, Cambridge

Gomis-Cebolla J, Rattayova V, Salazar-Galan S, Frances F (2023) Eval-
uation of ERA5 and ERA5-Land reanalysis precipitation datasets 
over Spain (1951–2020). Atmos Res 284:106606. https:// doi. org/ 
10. 1016/j. atmos res. 2023. 106606

Hannachi A (2021) Pattern identification and data mining in weather 
and climate. Springer, Berlin, p 600

Hannachi A, Jolliffe IT, Stephenson DB (2007) Empirical orthogonal 
functions and related techniques in atmospheric science: a review. 
Int J Climatol 27(9):1119–1152. https:// doi. org/ 10. 1002/ joc. 1499

Hannachi A, Finke K, Trendafilov N (2023) Common EOFs: a tool for 
multi-model comparison and evaluation. Clim Dyn 60(5):1689–
1703. https:// doi. org/ 10. 1007/ s00382- 022- 06409-8

Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-
Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons 
A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati 
G, Bidlot J, Bonavita M, Thépaut J (2020) The ERA5 global rea-
nalysis. Q J R Meteorol Soc 146(730):1999–2049. https:// doi. org/ 
10. 1002/ qj. 3803

Hou C, Huang D, Xu H, Xu Z (2023) Evaluation of ERA5 reanalysis 
over the deserts in Northern China. Theor Appl Climatol 151(1–
2):801–816. https:// doi. org/ 10. 1007/ s00704- 022- 04306-y

IPCC (2021) Summary for Policymakers. In: MassonDelmotte V, Zhai 
P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, 
Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Mat-
thews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B 
(eds) Climate change 2021: the physical science basis contribution 
of working group I to the sixth assessment report of the intergov-
ernmental panel on climate change. Cambridge University Press, 
Cambridge, pp 3–32

IPCC (2022) Climate change 2022: impacts, adaptation, and vulner-
ability. In: Pörtner H-O, Roberts DC, Tignor M, Poloczanska 
ES, Mintenbeck K, Alegría A, Craig M, Langsdorf S, Löschke 
S, Möller V, Okem A, Rama B (eds) Contribution of working 
group II to the sixth assessment report of the intergovernmental 
panel on climate change. Cambridge University Press. Cambridge 
University Press, Cambridge, UK and New York, NY, USA, pp 
3056. https:// doi. org/ 10. 1017/ 97810 09325 844

Irving D, Perkins S, Brown J, Sen Gupta A, Moise A, Murphy B, Muir 
L, Colman R, Power S, Delage F, Brown J (2011) Evaluating 
global climate models for the Pacific Island Region. Clim Res 
49(3):169–187. https:// doi. org/ 10. 3354/ cr010 28

Jiang Q, Li W, Fan Z, He X, Sun W, Chen S, Wen J, Gao J, Wang J 
(2021) Evaluation of the ERA5 reanalysis precipitation dataset 
over Chinese mainland. J Hydrol 595:125660. https:// doi. org/ 10. 
1016/j. jhydr ol. 2020. 125660

Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, 
New York

Kaspar F, Andersson A, Ziese M, Hollmann R (2022) Contributions to 
the improvement of climate data availability and quality for Sub-
Saharan Africa. Front Clim 3:815043. https:// doi. org/ 10. 3389/ 
fclim. 2021. 815043

Kuleshov Y, McGree S, Jones D, Charles A, Cottrill A, Prakash B, 
Atalifo T, Nihmei S, Seuseu FLSK (2014) Extreme weather 
and climate events and their impacts on island countries in the 
Western Pacific: cyclones, floods and droughts. Atmos Clim Sci 
04(05):803–818. https:// doi. org/ 10. 4236/ acs. 2014. 45071

Kuleshov Y, Gregory P, Watkins AB, Fawcett RJB (2020) Tropi-
cal cyclone early warnings for the regions of the Southern 
Hemisphere: strengthening resilience to tropical cyclones 
in small island developing states and least developed coun-
tries. Nat Hazards 104(2):1295–1313. https:// doi. org/ 10. 1007/ 
s11069- 020- 04214-2

Kumar VV, Deo RC, Ramachandran V (2006) Total rain accumulation 
and rain-rate analysis for small tropical Pacific Islands: a case 
study of Suva, Fiji. Atmos Sci Lett 7:53–58. https:// doi. org/ 10. 
1002/ asl. 131

Kumar R, Stephens M, Weir T (2014) Rainfall trends in Fiji: rainfall 
trends in Fiji. Int J Climatol 34(5):1501–1510. https:// doi. org/ 10. 
1002/ joc. 3779

Lin I-I, Camargo SJ, Patricola CM, Boucharel J, Chand S, Klotzbach 
P, Chan JCL, Wang B, Chang P, Li T, Jin F-F (2020) ENSO and 
tropical cyclones. In: El Niño southern oscillation in a changing 
climate. pp 377–408. https:// doi. org/ 10. 1002/ 97811 19548 164. 
ch17

Ma L, Zhang T, Frauenfeld OW, Ye B, Yang D, Qin D (2009) Evalu-
ation of precipitation from the ERA-40, NCEP-1, and NCEP-2 
reanalyses and CMAP-1, CMAP-2, and GPCP-2 with ground-
based measurements in China. J Geophys Res 114(D9):D09105. 
https:// doi. org/ 10. 1029/ 2008J D0111 78

Manton MJ, Della-Marta PM, Haylock MR, Hennessy KJ, Nicholls N, 
Chambers LE, Collins DA, Daw G, Finet A, Gunawan D, Inape 
K, Isobe H, Kestin TS, Lefale P, Leyu CH, Lwin T, Maitrepierre 
L, Ouprasitwong N, Page CM, Yee D (2001) Trends in extreme 
daily rainfall and temperature in Southeast Asia and the South 
Pacific: 1961–1998. Int J Climatol 21(3):269–284. https:// doi. org/ 
10. 1002/ joc. 610

Mataki M, Koshy KC, Lal M (2006) Baseline climatology of viti levu 
(Fiji) and current climatic trends. Pac Sci 60(1):49–68. https:// doi. 
org/ 10. 1353/ psc. 2005. 0059

McGree S, Schreider S, Kuleshov Y (2016) Trends and variability in 
droughts in the Pacifc Islands and Northeast Australia. J Clim 
29:8377–8397. https:// doi. org/ 10. 1175/ JCLI-D- 16- 0332.1

Nogueira M (2020) Inter-comparison of ERA-5, ERA-interim and 
GPCP rainfall over the last 40 years: process-based analysis of 
systematic and random differences. J Hydrol 583:124632. https:// 
doi. org/ 10. 1016/j. jhydr ol. 2020. 124632

Ongoma V, Rahman MA, Ayugi B, Nisha F, Galvin S, Shilenje ZW, 
Ogwang BA (2021) Variability of diurnal temperature range over 
Pacific Island countries, a case study of Fiji. Meteorol Atmos Phys 
133(1):85–95. https:// doi. org/ 10. 1007/ s00703- 020- 00743-4

Park C-K, Park D-SR, Ho C-H, Park T-W, Kim J, Jeong S, Kim B-M 
(2020) A dipole mode of spring precipitation between Southern 
China and Southeast Asia associated with the Eastern and Central 
Pacific types of ENSO. J Clim 33(23):10097–10111. https:// doi. 
org/ 10. 1175/ JCLI-D- 19- 0625.1

Pfeifroth U, Mueller R, Ahrens B (2013) Evaluation of satellite-based 
and reanalysis precipitation data in the Tropical Pacific. J Appl 
Meteorol Climatol 52(3):634–644. https:// doi. org/ 10. 1175/ 
JAMC-D- 12- 049.1

R Core Team: R (2023) A Language and Environment for Statistical 
Computing, R Foundation for Statistical Computing, Vienna, Aus-
tria.  https:// www.R- proje ct. org/. Accessed 2 June 2023

https://doi.org/10.1175/JCLI-D-11-00647.1
https://doi.org/10.3390/cli7030035
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1038/s41598-019-47933-8
https://doi.org/10.1038/s41598-019-47933-8
https://doi.org/10.1016/j.atmosres.2023.106606
https://doi.org/10.1016/j.atmosres.2023.106606
https://doi.org/10.1002/joc.1499
https://doi.org/10.1007/s00382-022-06409-8
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.1007/s00704-022-04306-y
https://doi.org/10.1017/9781009325844
https://doi.org/10.3354/cr01028
https://doi.org/10.1016/j.jhydrol.2020.125660
https://doi.org/10.1016/j.jhydrol.2020.125660
https://doi.org/10.3389/fclim.2021.815043
https://doi.org/10.3389/fclim.2021.815043
https://doi.org/10.4236/acs.2014.45071
https://doi.org/10.1007/s11069-020-04214-2
https://doi.org/10.1007/s11069-020-04214-2
https://doi.org/10.1002/asl.131
https://doi.org/10.1002/asl.131
https://doi.org/10.1002/joc.3779
https://doi.org/10.1002/joc.3779
https://doi.org/10.1002/9781119548164.ch17
https://doi.org/10.1002/9781119548164.ch17
https://doi.org/10.1029/2008JD011178
https://doi.org/10.1002/joc.610
https://doi.org/10.1002/joc.610
https://doi.org/10.1353/psc.2005.0059
https://doi.org/10.1353/psc.2005.0059
https://doi.org/10.1175/JCLI-D-16-0332.1
https://doi.org/10.1016/j.jhydrol.2020.124632
https://doi.org/10.1016/j.jhydrol.2020.124632
https://doi.org/10.1007/s00703-020-00743-4
https://doi.org/10.1175/JCLI-D-19-0625.1
https://doi.org/10.1175/JCLI-D-19-0625.1
https://doi.org/10.1175/JAMC-D-12-049.1
https://doi.org/10.1175/JAMC-D-12-049.1
https://www.R-project.org/


 P. O. Sagero et al.   28  Page 14 of 14

Ren Y, Yu H, Liu C, He Y, Huang J, Zhang L, Hu H, Zhang Q, Chen 
S, Liu X, Zhang M, Wei Y, Yan Y, Fan W, Zhou J (2022) Attribu-
tion of dry and wet climatic changes over Central Asia. J Clim 
35(5):1399–1421. https:// doi. org/ 10. 1175/ JCLI-D- 21- 0329.1

Rhee J, Yang H (2018) Drought prediction for areas with sparse moni-
toring networks: a case study for Fiji. Water 10(6):788. https:// doi. 
org/ 10. 3390/ w1006 0788

Sharma KK, Verdon-Kidd DC, Magee AD (2021) A decision tree 
approach to identify predictors of extreme rainfall events—a case 
study for the Fiji Island. Weather Clim Extremes. https:// doi. org/ 
10. 1016/j. wace. 2021. 100405

Smith SR, Legler DM, Verzone KV (2001) Quantifying uncertainties 
in NCEP reanalyses using high-quality research vessel observa-
tions. J Clim 14(20):4062–4072. https:// doi. org/ 10. 1175/ 1520- 
0442(2001) 014% 3c4062: QUINRU% 3e2.0. CO;2

Sun Q, Miao C, Duan Q, Ashouri H, Sorooshian S, Hsu K (2018) A 
review of global precipitation data sets: data sources, estimation, 
and intercomparisons. Rev Geophys 56(1):79–107. https:// doi. org/ 
10. 1002/ 2017R G0005 74

Terry JP, Mcgree S, Raj R (2004) The exceptional flooding on Vanua 
Levu Island, Fiji, during tropical cyclone ami in January 2003. J 
Nat Dis Sci 26(1):27–36. https:// doi. org/ 10. 2328/ jnds. 26. 27

Thomas A, Baptiste A, Martyr-Koller R, Pringle P, Rhiney K (2020) 
Climate change and small island developing states. Annu Rev 
Environ Resour 45(1):1–27. https:// doi. org/ 10. 1146/ annur ev- envir 
on- 012320- 083355

Tigona R, Ongoma V, Weir T (2023) Towards improved seasonal rain-
fall prediction in the tropical Pacific Islands. Theor Appl Climatol 
154(1):349–363. https:// doi. org/ 10. 1007/ s00704- 023- 04560-8

Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The chang-
ing character of precipitation. Bull Am Meteorol Soc 84(9):1205–
1218. https:// doi. org/ 10. 1175/ BAMS- 84-9- 1205

Vystavna Y, Cullmann J, Hipel K, Miller J, Soto DX, Harjung A, Wat-
son A, Mattei A, Kebede S, Gusyev M (2022) Better understand 
past, present and future climate variability by linking water iso-
topes and conventional hydrometeorology: summary and recom-
mendations from the International Atomic Energy Agency and 

World Meteorological Organization. Isot Environ Health Stud 
58(4–6):311–315. https:// doi. org/ 10. 1080/ 10256 016. 2022. 21084 
18

Wild A, Chua Z-W, Kuleshov Y (2021) Evaluation of satellite precipi-
tation estimates over the Southwest Pacific Region. Remote Sens 
13(19):3929. https:// doi. org/ 10. 3390/ rs131 93929

Wilks DS (1995) Statistical methods in the atmospheric sciences: an 
introduction. Elsevier, New York, p 467

Wong JS, Razavi S, Bonsal BR, Wheater HS, Asong ZE (2017) 
Inter-comparison of daily precipitation products for large-scale 
hydro-climatic applications over Canada. Hydrol Earth Syst Sci 
21(4):2163–2185. https:// doi. org/ 10. 5194/ hess- 21- 2163- 2017

Yeasmin A, Chand S, Turville C, Sultanova N (2021) Detection and 
verification of tropical cyclones and depressions over the South 
Pacific Ocean basin using ERA-5 reanalysis dataset. Int J Climatol 
41(11):5318–5330. https:// doi. org/ 10. 1002/ joc. 7131

Zhang L, Kumar A, Wang W (2012) Influence of changes in observa-
tions on precipitation: a case study for the climate forecast system 
reanalysis (CFSR): influence of observations on CFSR precipita-
tion. J Geophy Res Atmos. https:// doi. org/ 10. 1029/ 2011J D0173 47

Zhang Q, Körnich H, Holmgren K (2013) How well do reanalyses 
represent the Southern African precipitation? Clim Dyn 40(3–
4):951–962. https:// doi. org/ 10. 1007/ s00382- 012- 1423-z

Zhao H, Wang C (2019) On the relationship between ENSO and 
tropical cyclones in the Western North Pacific during the boreal 
summer. Clim Dyn 52(1):275–288. https:// doi. org/ 10. 1007/ 
s00382- 018- 4136-0

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1175/JCLI-D-21-0329.1
https://doi.org/10.3390/w10060788
https://doi.org/10.3390/w10060788
https://doi.org/10.1016/j.wace.2021.100405
https://doi.org/10.1016/j.wace.2021.100405
https://doi.org/10.1175/1520-0442(2001)014%3c4062:QUINRU%3e2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014%3c4062:QUINRU%3e2.0.CO;2
https://doi.org/10.1002/2017RG000574
https://doi.org/10.1002/2017RG000574
https://doi.org/10.2328/jnds.26.27
https://doi.org/10.1146/annurev-environ-012320-083355
https://doi.org/10.1146/annurev-environ-012320-083355
https://doi.org/10.1007/s00704-023-04560-8
https://doi.org/10.1175/BAMS-84-9-1205
https://doi.org/10.1080/10256016.2022.2108418
https://doi.org/10.1080/10256016.2022.2108418
https://doi.org/10.3390/rs13193929
https://doi.org/10.5194/hess-21-2163-2017
https://doi.org/10.1002/joc.7131
https://doi.org/10.1029/2011JD017347
https://doi.org/10.1007/s00382-012-1423-z
https://doi.org/10.1007/s00382-018-4136-0
https://doi.org/10.1007/s00382-018-4136-0

	Validation of ERA5 rainfall data over the South Pacific Region: case study of Fiji Islands
	Abstract
	1 Introduction
	2 Data and methods
	2.1 Study area
	2.2 Data
	2.2.1 Weather station data
	2.2.2 ERA 5 datasets

	2.3 Methods

	3 Results and discussion
	4 Conclusion
	Acknowledgements 
	References


