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Abstract—Miniature Unmanned Aerial Vehicles, such as
quadrotors, have short operational range because of limited
battery capacities. As a result, they need to be charged more fre-
quently. Mobile charging platforms are a solution to this problem.
To be charged wirelessly, the Unmanned Aerial Vehicles need to
communicate with the mobile charging platforms; hence the use
of effective, fast and reliable technology, will be very beneficial to
the quadrotors, ensuring fast charging and an effective means of
transferring required data. In this paper, we consider a solution
for autonomous landing of multiple quadrotors, modeled as point-
masses. The multiple quadrotors, need to precisely land on mobile
platforms, assumed to be equipped with wireless charging. In
this article, the platforms are car-like vehicular robots, which
are also modeled as point-masses in a dynamical environment,
navigating in their workspace. The dynamic environment includes
fixed and moving obstacles. We use a Lyapunov-based Control
Scheme to propose a set of nonlinear control laws that guide the
quadrotors to land safely on the moving vehicular robots which
have designated targets. The effectiveness and robustness of the
nonlinear acceleration control laws are verified via computer
simulations.

Index Terms—Lyapunov, Point-mass robots, Quadrotors, Safe
landing, Stability

I. INTRODUCTION

Robotics is overwhelmingly occupied with the developing
difficulties of new and emerging avenues to reach the human
frontier. With recent advancements in technology, the prospect
of practical robots amongst humans is the result of collabo-
rating, investigating, and working with humans, and together
with scientific endeavours, the new generation of robots will
progressively influence humans and their lives [1]. The humans
fantasy of creating machines that are skilled, intelligent and
autonomous are becoming a reality now, with considerable
impact on many aspects of modern life, ranging from industrial
manufacturing to agriculture, healthcare, transportation, emer-
gency rescue and disaster relief, video shooting, fire-fighting,
maintenance, surveillance and transportation, to name a few
[2, 3, 4, 5, 6, 7, 8].

UAVs have recently gained considerable amount of interest
from researchers all over the globe, with its applications in
aerospace [9], military [10], demining [11] and civil [12].
UAV’s typically have a short operational range and a very
limited flight endurance, and with the growing use of mobile
robots in almost every aspect of life, the need for easier
and faster ways of landing and charging these quadrotors is
also increasing. The moving mobile platforms for autonomous
quadrotor landing and charging provides a solution [13, 14],
hence the need to explore more state-of-the-art methods for
solving such challenges. The autonomous landing of UAVs on
mobile platforms present unique challenges, as the communi-
cation between the UAV and moving platform is wireless. This
results in fast trajectory planning which demands a reliable and
effective communication between the two vehicular system
[15].

Quadrotors, amongst all the other types of UAVs, have been
frequently utilised in research. Recently, Raj et al. in 2020 [5]
used a Lyapunov-based Control Scheme (LbCS) for vertical
take-off maneuvers of quadrotors that were governed by dy-
namical equations. They presented a new set of continuous,
time-invariant nonlinear control laws that not only provided
smooth trajectories from an initial position to a designated
target, but also continuously minimised the roll and pitch of
the quadrotor for transporting valuable and fragile payloads.

In this paper, we use the LbCS to extract control laws that
govern the control and stability of mobile robots, modelled
as point-mass mobile robots. The LbCS has been employed
for the motion planning and control (MPC) of various robotic
systems, point-mass mobile robots [4], car-like mobile robotic
systems [7, 16], mobile manipulators [17], tractor-trailer sys-
tems [18, 19, 20] and quadrotors [1, 5]. The LbCS is used to
the extract centralised, continuous, time-invariant acceleration-
based control laws for the point-mass mobile robots. To the
authors knowledge, this is the first time that the LbCS has
been used to model mobile landing platforms.
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A. Contributions

The main contribution of this paper are as follows:

1) The acceleration-based control laws that governs the
convergence of the point-mass mobile robots on their
designated mobile platforms with collision-free maneu-
vers.

2) A dynamic environment that includes point-mass mobile
robots for autonomous landing on mobile platforms.

3) A 3-D rectangular boundary which acts as fixed ob-
stacles where the system utilizes the vehicle-to-vehicle
and vehicle-to-infrastructure communications for safe
navigation.

4) The direct method of Lyapunov ensures the stability of
the robotic system.

The remainder of the paper is organised as follows: in Sec-
tion II, the point-mass mobile robots are modelled as quadro-
tors and car-like mobile robots; in Section III, the Artificial
Potential Functions are defined; in Section IV, the Lyapunov
function is constructed and the nonlinear acceleration control
laws are extracted; in Section V, the stability analysis of the
robotic system is presented; in Section VI, the simulation
results are illustrated to demonstrate the effectiveness and
robustness of the controllers; and Section VII finally concludes
the paper with future work.

II. ROBOTIC MODEL

In this section, multiple point-mass mobile robots are
modelled, which represent quadrotors and mobile landing
platforms.

A. UAV model

The UAVs, in 3-D workspace, are modelled as point-mass
mobile robots. We give the following definition:
Definition 1. The ith UAV modelled as a point mass, Ppi, is a
sphere of radius rpi and centred at (xpi (t) , ypi (t) , zpi (t)) ∈
R3 for every time t ⩾ 0. The ith UAV point mass is the set:

Ppi =

{
(Z1, Z2, Z3) ∈ R3 :

(Z1 − xpi)
2 + (Z2 − ypi)

2 + (Z3 − zpi)
2 ⩽ rpi

2

}
,

for i = 1, . . . , n.
Letting the instantaneous velocities of Ppi to be

(νpi (t) , ωpi (t) , µpi (t)) = (ẋpi (t) , ẏpi (t) , żpi (t)), the
instantaneous accelerations be (σi1 (t) , σi2 (t) , σi3 (t)) =
(ν̇pi (t) , ω̇pi (t) , µ̇pi (t)) and assuming the initial conditions
at t = t0 ⩾ 0, the kinematic model of Ppi is:

ẋpi (t) = νpi (t) , ẏpi (t) = ωpi (t) , żpi (t) = µpi (t) ,

ν̇pi (t) = σi1 (t) , ω̇pi (t) = σi2 (t) , µ̇pi (t) = σi3 (t) ,

xpi0 := xpi (t0) , ypi0 := ypi (t0) , zpi0 := zpi (t0) ,

νpi0 = νpi (t0) , ωpi0 = ωpi (t0) , µpi0 = µpi (t0) .

 (1)

B. Mobile landing platform model

The mobile landing platform, in 3-D workspace, are mod-
elled as point-mass mobile robots. We give the following
definition:
Definition 2. The ith mobile landing platform modelled as

a point mass, Pvi, is a sphere of radius rvi and centred at
(xvi (t) , yvi (t) , zvi (t)) ∈ R3 for t ⩾ 0. Precisely, it is a set:

Pvi =

{
(Z1, Z2, Z3) ∈ R3 :

(Z1 − xvi)
2 + (Z2 − yvi)

2 + (Z3 − zvi)
2 ⩽ rvi

2

}
,

for i = 1, . . . , n.
Letting the instantaneous velocities of Pvi to be

(νvi (t) , ωvi (t) , µvi (t)) = (ẋvi (t) , ẏvi (t) , żvi (t)), the
instantaneous acceleration be (σi4 (t) , σi5 (t) , σi6 (t)) =
(ν̇vi (t) , ω̇vi (t) , µ̇vi (t)) and assuming the initial conditions
at t = t0 ⩾ 0, the system of first-order ODE’s is derived as:

ẋvi (t) = νvi (t) , ẏvi (t) = ωvi (t) , żvi (t) = µvi (t) ,

ν̇vi (t) = σi4 (t) , ω̇vi (t) = σi5 (t) , µ̇vi (t) = σi6 (t) ,

xvi0 := xvi (t0) , yvi0 := yvi (t0) , zvi0 := zvi (t0) ,

νvi0 = νvi (t0) , ωvi0 = ωvi (t0) , µvi0 = µvi (t0) .

 (2)

C. Dynamic model of the team
Using systems (1) and (2), the dynamic model of the team

of Ppi and Pvi are now given as:
ẋpi (t) = νpi (t) , ẏpi (t) = ωpi (t) , żpi (t) = µpi (t) ,

ν̇pi (t) = σi1 (t) , ω̇pi (t) = σi2 (t) , µ̇pi (t) = σi3 (t) ,

ẋvi (t) = νvi (t) , ẏvi (t) = ωvi (t) , żvi (t) = µvi (t) ,

ν̇vi (t) = σi4 (t) , ω̇vi (t) = σi5 (t) , µ̇vi (t) = σi6 (t)

 , (3)

for i = 1, . . . , n, with the main idea to navigate Ppi to Pvi
while ensuring collision-free maneuvers to their targets.

III. LYAPUNOV-BASED CONTROL SCHEME

In this section, we formulate the artificial potential field
functions for the dynamical team that will ensure collision-
free trajectories and convergence of the mobile robots to their
designated targets in a 3D workspace.

A. Target attraction functions
The target attraction functions for Ppi and Pvi, for i =

1, . . . , n, are formulated below.
1) Attraction function for Ppi: The target of Ppi is a

sphere with centre (xvi, yvi, zvi) and radius rpi. To ensure
that each Ppi in the 3D space is attracted to its mobile target
Pvi, the target attraction function is:

V pi =
1

2

[
(xpi − xvi)

2 + (ypi − yvi)
2

+(zpi − (zvi + rvi + rpi))
2 + νpi

2 + ωpi
2 + µpi

2

]
(4)

for i = 1, . . . , n.
2) Attraction function for Pvi: A sphere with centre

(τi1, τi2, τi3) and radius rτi is modelled as a stationary target
for Pvi. To ensure that each Pvi is attracted to its defined
target, the target attraction function is:

V vi =
1

2

[
(xvi − τi1)

2 + (yvi − τi2)
2 + (zvi − τi3)

2

+νvi
2 + ωvi

2 + µvi
2

]
, (5)

for i = 1, . . . , n.

B. Auxiliary functions
1) Auxiliary function for Ppi: To guarantee the conver-

gence of each Ppi to its designated target and ensure that
the non- linear controllers vanish at the target, the auxiliary
function is:

Gpi =
1

2

[
(xpi − xvi)

2 + (ypi − yvi)
2

+(zpi − (zvi + rvi + rpi))
2

]
, (6)

for i = 1, . . . , n.
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2) Auxiliary function for Pvi: To guarantee the conver-
gence of each Pvi to its designated fixed target and ensure that
the non- linear controllers vanish at the target, the auxiliary
function is:

Gvi =
1

2

[
(xvi − τi1)

2 + (yvi − τi2)
2 + (zvi − τi3)

2] , (7)

for i = 1, . . . , n.

C. Obstacle Avoidance Functions

In this section, we design functions that act as obstacle
avoidance functions for Ppi and Pvi.

1) Workspace Boundary Limitations: We consider a 3-
dimensional workspace of dimension η1 × η2 × η3. The
boundary walls are treated as fixed obstacles which the mobile
robots need to avoid.Thus we construct the obstacle avoidance
functions.

a) Boundary avoidance by the UAV model: For each
Ppi to avoid the workspace boundaries, the following obstacle
avoidance functions are designed:

Wpi1 = xpi − rpi, Wpi4 = η1 − (xpi + rpi) ,

Wpi2 = ypi − rpi, Wpi5 = η2 − (ypi + rpi) ,

Wpi3 = zpi − rpi, Wpi6 = η3 − (zpi + rpi) ,

 (8)

for i = 1, . . . , n.
b) Boundary avoidance by the mobile landing platform

model: For each Pvi to avoid the workspace boundaries, the
following obstacle avoidance functions are designed:

Wvi1 = xvi − rvi, Wvi4 = η1 − (xvi + rvi) ,

Wvi2 = yvi − rvi, Wvi5 = η2 − (yvi + rvi) ,

Wvi3 = zvi − rvi, Wvi6 = η3 − (zvi + rvi) ,

 (9)

for i = 1, . . . , n.
2) Fixed obstacles: Let us consider q ∈ N spherically

shaped obstacles with center (or1, or2, or3) and radius ror. For
Ppi and Pvi to avoid these fixed obstacles, obstacle avoidance
functions are designed.

a) Fixed obstacle avoidance by the UAV model: For each
Ppi to avoid the qth fixed spherical obstacle, the following
obstacle avoidance function is designed:

Fpir =
1

2

[
(xpi − or1)

2 + (ypi − or2)
2 + (zpi − or3)

2

−(rpi + ror)
2

]
, (10)

for r = 1, ..., q and i = 1, . . . , n.
b) Fixed obstacle avoidance by the mobile landing plat-

form model: For each Pvi to avoid the qth fixed spherical ob-
stacle, the following obstacle avoidance function is designed:

Fvir =
1

2

[
(xvi − or1)

2 + (yvi − or2)
2 + (zvi − or3)

2

−(rvi + ror)
2

]
, (11)

for r = 1, ..., q and i = 1, . . . , n.
3) Moving Obstacles: Each mobile robot becomes a mov-

ing obstacle for all the other mobile robots in the workspace.
There are moving obstacles in the form of the point-mass
mobile robots which represents the quadrotor and the vehicular
mobile robots. Obstacle avoidance functions are designed to
ensure the mobile robots avoid each other.

a) Moving obstacle avoidance by the UAV model: For the
ith mobile robot to avoid the jth mobile robot, we consider
the following obstacle avoidance function:

Mpij =
1

2

[
(xpi − xpj)

2 + (ypi − ypj)
2 + (zpi − zpj)

2

−(2rpi)
2

]
, (12)

where i, j = 1, . . . , n and j ̸= i.
b) Moving obstacle avoidance by the mobile landing

platform model: For the ith mobile landing platform to avoid
the jth mobile landing platform, we consider the following
obstacle avoidance function:

Mvij =
1

2

[
(xvi − xvj)

2 + (yvi − yvj)
2 + (zvi − zvj)

2

−(2 rvi)
2

]
, (13)

where i, j = 1, . . . , n and j ̸= i.

IV. DESIGN OF THE NONLINEAR CONTROL LAWS

In this section, the nonlinear control laws governing system
(3) will be designed in accordance to the LbCS. First we con-
struct the Lyapunov function and then extract the control laws
that will govern the motion of Ppi and Pvi, for i = 1, . . . , n.

A. Lyapunov Function

The Lyapunov function, also known as the total potentials,
is a sum of all attractive and repulsive potential functions.
The obstacle avoidance functions, when suitably combined
with the appropriate tuning parameters, form the repulsive
potential field functions. We begin by defining the following
tuning parameters:
(i) αir > 0, r = 1, ..., q, for Ppi to avoid the rth fixed

spherical obstacle;
(ii) ςir > 0, r = 1, ..., q, for Pvi to avoid the rth fixed

spherical obstacle;
(iii) βis > 0, s = 1, ..., 6, for Ppi to avoid the sth boundary

wall of the workspace;
(iv) γis > 0, s = 1, ..., 6, for Pvi to avoid the sth boundary

wall of the workspace;
(v) ζij > 0, j = 1, . . . , n, j ̸= i, for Ppi to avoid the jth

mobile robot;
(vi) ψij > 0, j = 1, . . . , n, j ̸= i, for Pvi to avoid the jth

mobile landing platform,
for i = 1, . . . , n. The tentative Lyapunov function for system
(3) is defined as follows:

L (x) =

n∑
i=1



V pi (x) + V vi (x) +Gpi (x)

6∑
s=1

βis
Wpis (x)

+Gpi (x)

 n∑
j=1
i̸=j

ζij
Mpij (x)

+

q∑
r=1

αir

Fpir (x)


+Gvi (x)

n∑
j=1
i̸=j

ψij

Mvij (x)

+Gvi (x)

(
q∑

r=1

ςir
Fvir (x)

+

6∑
s=1

γis
Wvis (x)

)



,

(14)
which is positive over the domain.
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B. Nonlinear Acceleration Controllers
The differentiation of various components of L (x) along t

is used to extract the kinodynamic system’s control laws.The
following are the components of the control inputs:

fi1 =

1 +

q∑
r=1

αir

Fpir
+

6∑
s=1

βis
Wpis

+

n∑
j=1
i̸=j

ζij
Mpij

 (xpi − xvi)

−Gpi


q∑

r=1

αir

(Fpir)
2 (xpi − or1) +

βi1

(Wpi1)
2

+2

n∑
j=1
i̸=j

ζij

(Mpij)
2 (xpi − xpj)−

βi4

(Wpi4)
2

 ,

fi2 =

1 +

q∑
r=1

αir

Fpir
+

6∑
s=1

βis
Wpis

+

n∑
j=1
i̸=j

ζij
Mpij

 (ypi − yvi)

−Gpi


q∑

r=1

αir

(Fpir)
2 (ypi − or2) +

βi2

(Wpi2)
2

+2
n∑

j=1
i̸=j

ζij

(Mpij)
2 (ypi − ypj)−

βi5

(Wpi5)
2

 ,

fi3 =

(
1 +

q∑
r=1

αir

Fpir
+

6∑
s=1

βis
Wpis

)
(zpi − zvi − rvi − rpi)

−Gpi


q∑

r=1

αir

(Fpir)
2 (zpi − or3) +

βi3

(Wpi3)
2

+2

n∑
j=1
i̸=j

ζij

(Mpij)
2 (zpi − zpj)−

βi6

(Wpi6)
2


+

n∑
j=1
i̸=j

ζij
Mpij

(zpi − zvi − rvi − rpi),

fi4 =

1 +

q∑
r=1

ςir
Fvir

+

6∑
s=1

γis
Wvis

+

n∑
j=1
i̸=j

ψij

Mvij

 (xvi − τi1)

−

1 +

q∑
r=1

αir

Fpir
+

6∑
s=1

βis
Wpis

+

n∑
j=1
i̸=j

ζij
Mpij

 (xpi − xvi)

−Gvi


q∑

r=1

ςir

(Fvir)
2 (xvi − or1) +

γi1

(Wvi1)
2

+2

n∑
j=1
i̸=j

ψij

(Mvij)
2 (xvi − xvj)−

γi4

(Wvi4)
2

 ,

fi5 =

1 +

q∑
r=1

ςir
Fvir

+

6∑
s=1

γis
Wvis

+

n∑
j=1
i̸=j

ψij

Mvij

 (yvi − τi2)

−

1 +

q∑
r=1

αir

Fpir
+

6∑
s=1

βis
Wpis

+

n∑
j=1
i̸=j

ζij
Mpij

 (ypi − yvi)

−Gvi


q∑

r=1

ςir

(Fvir)
2 (yvi − or2) +

γi2

(Wvi2)
2

+2
n∑

j=1
i̸=j

ψij

(Mvij)
2 (yvi − yvj)−

γi5

(Wvi5)
2

 ,

fi6 =

 q∑
r=1

ςir
Fvir

+

6∑
s=1

γis
Wvis

+

n∑
j=1
i̸=j

ψij

Mvij

 (zvi − τi3)

−

 q∑
r=1

αir

Fpir
+

6∑
s=1

βis
Wpis

+

n∑
j=1
i̸=j

ζij
Mpij

(zpi − zvi

−rvi − rpi

)

−Gvi


q∑

r=1

ςir

(Fvir)
2 (zvi − or3) +

γi3

(Wvi3)
2

+2

n∑
j=1
i̸=j

ψij

(Mvij)
2 (zvi − zvj)−

γi6

(Wvi6)
2


+(zvi − τi3)−

(
zpi − zvi − rvi − rpi

)
.

Choosing the convergence parameters to be
δi1, δi2, δi3, δi4, δi5, δi6 > 0, we get the following controllers:

σi1 = − (δi1νpi + fi1) , σi2 = − (δi2ωpi + fi2) ,

σi3 = − (δi3µpi + fi3) , σi4 = − (δi4νvi + fi4) ,
σi5 = − (δi5ωvi + fi5) , σi6 = − (δi6µvi + fi6) ,

 (15)

for i = 1, . . . , n.

V. STABILITY ANALYSIS

Using the notations xei := (τi1, τi2, τi3) ∈ R3 and xe :=
(xe1 , . . . ,xen) ∈ R3n, we state the following theorem:

Theorem 5.1: A stable equilibrium point of system (3) is
xe ∈ D(L(x)).

Proof. Since the Lyapunov function L (x) of system (3) is
defined, continuous and positive over the domain D (L(x)) =
{x ∈ R3n : Wpis (x) > 0, s = 1, ..., 6; Wvis (x) > 0, s =
1, ..., 6; Fpir(x) > 0, r = 1, ..., q; Fvir(x) > 0, r =
1, ..., q; Mpij(x) > 0, j ̸= i; Mvij(x) > 0, j ̸= i} for
i = 1, ..., n, it can easily be verified that L (x) satisfies the
following properties:

1) L (x) is continuous in the region D in the neighborhood
of the point xe of system (3);

2) L(xe) = 0;
3) L(x) > 0 ∀x ∈ D(L(x))/xe.

Then, along a solution of system (3), we have:

L̇(3) (x) =

n∑
i=1


fi1ẋpi + fi2ẏpi + fi3żpi

+fi4ẋvi + fi5ẏvi + fi6żvi

+σi1ẋpi + σi2ẏpi + σi3dotzpi

+σi4ẋvi + σi5ẏvi + σi6żvi

 (16)

Using (15), we have the following time derivative of L (x)
which is the semi-negative definite function for system (3):

L̇(3) (x) = −
n∑

i=1

[
δi1νpi

2 + δi2ωpi
2 + δi3µpi

2

+δi4νvi
2 + δi5ωvi

2 + δi6µvi
2

]
⩽ 0.

Therefore, L̇(3)(x) ≤ 0 ∀x ∈ D(L(x)) and L̇(3)(xe) = 0.
Moreover L(x) ∈ C1 (D(L(x))), hence, for system (3), L(x)
is classified as its Lyapunov function and xe is a stable
equilibrium point.

Authorized licensed use limited to: University of the South Pacific. Downloaded on February 10,2026 at 23:19:15 UTC from IEEE Xplore.  Restrictions apply. 



VI. SIMULATION RESULTS

This section provides an example of the navigation control
of n = 2 point-mass model of UAVs and mobile landing
platforms in an environment cluttered with spherical obstacles.
Each UAV point-mass navigates and lands on its assigned
mobile landing platform. After smooth landing, the combined
system of the UAV point-masses and the mobile landing
platforms converge together to their designated target, while
ensuring obstacle avoidance. In order to avoid the fixed
obstacles, the combined systems needed to move either right or
left, while ensuring collision avoidance between the different
combined systems and thus, guaranteeing the stability of the
landed UAV modelled point-masses. The initial conditions,
constraints and the parameters used in the simulations are
provided in Table I.

The trajectories at different viewing angles are shown in
Figure 1. Figures 1(a), 1(b) and 1(c) demonstrate the default,
bird’s-eye and front views of the trajectories of Ppi and Pvi
for i = 1, 2, at times t = 0, 40, 410, 2200, respectively. Figure
2(a) shows the behaviour of the Lyapunov function while its
time derivative is shown in Figure 2(b) along the trajectories of
the system. The stability results obtained from the Lyapunov
function are verified numerically.

TABLE I
THE PARAMETERS USED IN THE NUMERICAL SIMULATION WITH n = 2

AND q = 2.

Description Value
Initial state of the point-mass mobile robots

Workspace η1 = 210, η2 = 150, η3 = 120
Initial position, radius of Ppi (xp1, yp1, zp1) = (30, 20, 100), rp1 = 1

(xp2, yp2, zp2) = (10, 100, 100), rp2 = 1
Initial position, radius of Pvi (xv1, yv1, zv1) = (30, 20, 10), rv1 = 4

(xv2, yv2, zv2) = (20, 100, 10), rv2 = 4
Spherical obstacles (o11, o12, o13) = (150, 100, 21), ro1 = 20
- position, radius (o21, o22, o23) = (80, 80, 21), ro2 = 20

Constraints
Target centre, radius (τ11, τ12, τ13) = (200, 130, 10), rτ1 = 3

(τ21, τ22, τ23) = (200, 40, 10), rτ2 = 3
Control and convergence parameters

Avoidance of workspace by
Ppi

βis = 10 for i = 1, 2, s = 1, . . . , 6

Avoidance of workspace by
Pvi

γis = 10 for i = 1, 2, s = 1, . . . , 6

Avoidance of spherical obsta-
cle by Ppi

αir = 100, for i = 1, 2, r = 1, 2

Avoidance of spherical obsta-
cle by Pvi

ςir = 100, for i = 1, 2, r = 1, 2

Inter individual collision
avoidance by Ppi

ζij = 5 for i = j = 1, 2, j ̸= i

Inter individual collision
avoidance by Pvi

ψij = 5 for i = j = 1, 2, j ̸= i

Convergence of Ppi to Pvi δi1 = δi2 = δi3 = 20, for i = 1, 2
Convergence of Pvi to target δi4 = δi5 = 103, δi6 = 106, for i = 1, 2

VII. CONCLUSION

The motion planning and control of robotic systems is a
very intriguing problem with researchers all over the globe
devising advanced methods of control, with advancements in
technology, following the growing need in the military and
civilian sectors. The novelty of the paper lies in the use of the

LbCS, which has been applied to derive a set of robust, unique
continuous time-invariant acceleration-based control laws for
the MPC of UAVs modelled as point-masses for autonomous,
precise and safe landing on mobile platforms. The dynamic
environment under consideration included fixed and moving
obstacles which were avoided by the UAV and the mobile
landing platforms. The direct method of Lyapunov is used to
prove the stability of the dynamic model. Computer simula-
tions were used to illustrate the effectiveness and robustness
of the control scheme.

This work paves the manner for several future headings. Au-
tonomous landing of quadrotors on mobile landing platforms
in the presence of obstacles would be a new addition to the
MPC problem.
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(a) Default 3D motion view. (b) Top 3D motion view. (c) Front 3D motion view.

Fig. 1. The different viewpoints of Ppi and Pvi, for i = 1, 2, in its motion to its target while avoiding spherical obstacles.
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