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SUMMARY

Ocean water covers a vast portion of the earth’s surface and is also the world’s largest
solar energy collector. It plays an important role in maintaining the global energy balance
as well as in preventing the earth’s surface from continually heating up due to solar
radiation. The ocean also plays an important role in driving the atmospheric processes.
The heat exchange processes across the ocean surface are represented in an ocean thermal
energy budget, which is important because the ocean stores and releases thermal energy.
The solar energy absorbed by the ocean heats up the surface water, despite the loss of
heat energy from the surface due to back-radiation, evaporation, conduction and
convection, and the seasonal change in the surface water temperature is less in the
tropics. The cold water from the higher latitudes is carried by ocean currents along the
ocean bottom from the poles towards the equator, displacing the lower density water
above and creating a thermal structure with a large reservoir of warm water at the ocean
surface and a large reservoir of cold water at the bottom, with a temperature difference of
22°C to 25°C between them. The available thermal energy, which is the almost constant
temperature water at the beginning and end of the thermocline, in some areas of the
oceans, is suitable to drive ocean thermal energy conversion (OTEC) plants. These plants
are basically heat engines that use the temperature difference between the surface and
deep ocean water to drive turbines to generate electricity. A detailed heat energy budget
of the ocean is presented in the paper taking into consideration all the major heat inputs

and outputs. The basic OTEC systems are also presented and analyzed in this paper.
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1. INTRODUCTION

The Earth’s surface is approximately covered by seventy percent of water. Ocean water
makes up 97.4% of the total water available [1]. The global-ocean can be classified as a
continuous body of water that separates into several major oceans and seas [2]. The major
ocean divisions, according to their size, are the Pacific Ocean, Atlantic Ocean, Indian
Ocean, Southern Ocean, and the Arctic Ocean [2,3]. The average temperatures of the
ocean waters hardly exceed 30°C or reduce below -2°C [4]. It is the water in the oceans
that prevents wide variations of temperature on the Earth’s surface globally [5].
Moreover, the Earth is the only planet in the solar system with oceans [6]. The processes
that control the atmosphere are closely related to the ocean processes. Changes in weather
and climate are a result of the interaction between the Sun, the atmosphere, and the water

on the Earth’s surface [7].

Water has the highest heat capacity when compared to any other fluid. The amount of
heat energy required to raise the temperature of a given mass of water by 1°C is more
than that of other fluids [8]. Moreover, the ocean has the largest heat capacity compared
to any single component of the climate system [9]. This property of water allows a lot of
solar energy to be stored in the oceans, thus preventing the Earth’s surface from heating
up [5]. The major source of thermal energy entering the ocean is from the Sun. The ocean
plays an important role in maintaining the global energy balance of the Earth’s
atmosphere. The ocean stores thermal energy to a much greater extent than land because
of its high heat capacity [10]. The ocean can absorb heat in one region and restore it in a
different place, even after decades or centuries [11]. The amount of thermal energy
entering the ocean must be equal to the thermal energy leaving or the average
temperature of the ocean will change [12]. Significant heat exchange processes across the
ocean surface are represented in an ocean energy budget [13]. The ocean energy budget is
important because the ocean stores and releases much more heat than the land over

different seasons [14], thus preventing the Earth from heating up.



The thermal energy in the oceans is distributed around the globe by moving ocean
currents [15]. The waters of the ocean are continuously moving. Whereas winds are
described in terms of where they are blowing from, ocean currents are described in terms
of where they are blowing fowards [11]. The circulation of waters in the oceans helps to
distribute the thermal energy in the lower latitudes to certain areas in higher latitudes,
thus modifying climate conditions [16]. The equatorial regions, or the lower latitudes,
receive much more heat from the Sun than the polar regions because of the different
angles at which the sunlight strikes the Earth [5]. The major factors that drive the ocean
currents are solar energy and the Earth’s rotation [17]. Atmospheric winds derive energy
from the Sun and this energy is transferred to the upper layers of the ocean by tangential
stress on the ocean surface, thus setting the surface water in motion in the direction of the
wind. The rotation of the Earth alters the direction of the ocean currents driven by
atmospheric winds [17]. Solar energy that is directly absorbed by the ocean varies from
region to region due to unequal heating of the Earth’s surface [4]. This leads to variations
in density by affecting the temperature and salinity through heating, evaporation, and
precipitation. The density differences between bodies of water in different regions
(mainly at the equator and the poles) give rise to a density driven circulation of deep
water currents known as the thermohaline circulation [17]. Different flow profiles and
reference temperatures affect the possible values of heat transfer by ocean currents [18].
Ocean circulation is not driven by thermal energy due to temperature differences in
different locations [19]. However, thermal circulation is created in oceans by differential
heating through the surface causing density differences which are then acted upon by

gravitational forces [20].

The temperature of the ocean waters generally decreases with increasing depth, except for
polar regions [8,21]. The surface layer of the oceans is usually referred to as the mixed
layer, because the near-surface waters are well mixed by winds and waves and a nearly
isothermal condition is maintained [4,22]. Below the mixed layer is a region of rapidly
changing temperature known as the thermocline. 1t is this region that separates the upper
mixed layer of the ocean with deep ocean water [23]. Its characteristics vary with season,

latitudes, environmental conditions and ocean currents. The thermocline is the deepest in



the tropics and shallower in the polar regions [24]. Below the thermocline, is a region of
deep cold ocean water where the temperature reaches an almost isothermal condition
[25]. The deep cold ocean water is transferred from the polar latitudes [17,22]. The
surface water thus acts as a large reservoir of warm water and the deep water
(approximately at 1000 m) acts as a large reservoir of cold water in the tropical oceans
throughout the year [22]. This uniform temperature difference can be used to operate
Ocean Thermal Energy Conversion (OTEC) plants [26]. This is one of the many
renewable energy technologies available. Possible solutions to problems associated with
high CO, emissions are energy conservation through improved, energy efficient products

and increased use of renewable energy sources and technologies [27].

Ocean thermal energy conversion (OTEC) is a technique that utilizes the temperature
difference between warm surface water and deep cold water of the ocean to operate a low
pressure turbine [22,28]. An OTEC power plant acts as a heat engine that extracts energy
as heat from the warm surface water, converts part of that energy to generate electricity
and rejects the remaining energy as heat to the cold deep sea water in a cyclic process
[22,27]. 1t is a thermodynamic phenomenon and is in the category of green engineering
related to energy. In thermodynamics, the concept of green can be associated with an
energy source, an energy transfer, and energy conversion process. An energy source that
can be use to do work with minimal adverse impact on the environment and the future
supplies can be viewed as green. With this definition, clean, renewable and sustainable
energy like ocean thermal energy is green energy, but fossil fuels are not [29]. OTEC
plants can be integrated with a desalination plant, commonly known as the hybrid cycle,
to produce fresh water [30,31]. An OTEC plant is more suitable for low latitudes (tropical
oceans) because the water temperature remains almost uniform throughout the year with
few variations due to seasonal effects [28]. About 63% of the surface of the tropics
between latitudes 30°N and 30°S is occupied by ocean water [32]. Solar energy that is
absorbed by the tropical oceans maintains a relatively stable surface temperature of 26-
28°C to a depth of approximately 100 m. As the depth increases, the temperature drops,
and at depths close to 1000 m, the temperature is as low as 4°C. Below this depth, the

temperature drops only a few degrees.



Pacific Island countries have a lot of potential for implementation of OTEC technologies
because of the high ocean temperature gradient. Apart from generating electricity and
producing fresh water, OTEC plants can be utilized for other benefits such as production
of fuels such as hydrogen, ammonia, methanol, providing air-conditioning for buildings,

on-shore and near-shore mariculture, and extraction of minerals [33-35].

2. THE OCEAN ENERGY BUDGET

The ocean energy budget is an expression of the first law of thermodynamics for an
incompressible fluid, where the rate of change of the internal energy of the system is
equal to the net heat flux through the boundaries of the system. The internal energy is
represented by the temperature structure of the ocean [36]. The ocean heat budget
consists of thermal energy gains and losses [37]. The total thermal energy entering the
ocean must equal the total thermal energy lost or the average ocean temperature will
change over a certain period which will lead to significant warming or cooling trends
[38]. Apart from solar energy, the other forms of thermal energy available to the ocean
are from conduction through the ocean bottom from the Earth’s interior, heating and
cooling from chemical and biological processes, heat generated from friction developed
due to moving ocean currents, and heat gain from decay of radioactive matter in the
ocean [37]. But these processes are mostly neglected in the ocean heat budget because of
their small magnitude compared to solar energy input [36]. It can be assumed that all the
heat exchange processes occur at the surface of the ocean [11,39], where the ocean is the
thermodynamic system and the surface is the boundary between the ocean and the

atmosphere.

As solar energy enters the atmosphere, some energy is scattered, some is absorbed or
reflected by clouds, and some is reflected or absorbed by the ocean, land, and ice on the
Earth’s surface [8]. Variations in cloud cover over different regions causes the largest
variation in the amount of solar energy reaching the Earth’s surface [8, 40]. Heat is

exchanged across the ocean surface by four significant processes [12,14]:



1) short wave radiation from the Sun; ii) heat loss due to long-wave back radiation; iii)
latent heat loss as the water at the surface is evaporated; iv) sensible heat transfer due to
conduction or heat exchange between ocean and atmosphere as a result of temperature

difference between the sea surface and the atmosphere

Apart from the energy interactions at the ocean surface, thermal energy is also distributed
within the ocean by currents and mixing. Ocean currents transport thermal energy from
low to high latitudes by advection. The loss of thermal energy from low latitude regions
to high latitude regions ensures that the low latitude regions do not continually heat up
and the high latitude regions do not continually cool down [41]. Thermal energy lost by

the tropical regions to cooler regions also drives the atmospheric circulation [42].

The principal forms of heat transfer in a given area of the ocean are represented in Figure

1.The rate of heat gain or lost, QT , by a given vertical column of ocean water with a unit

horizontal cross sectional area [43] can be expressed as the difference between the total

heat coming from the Sun and the total thermal energy loss from the given area. The rate

of heat absorbed by the ocean from incoming solar radiation is QS , the rate of heat loss
by back radiation is Qb , sensible heat loss by convection and conduction is Qh , rate of

heat loss (latent heat) by evaporation from the ocean surface is Qe , and Qv is the thermal

energy transported by ocean currents moving out of the given area [4,36,39]. The heat
and thermal energy interactions mentioned in the present paper are all the rates of such

interactions.

The generally accepted formal sign convention for heat interaction is that heat transfer 7o
a system is positive and heat transfer from a system is negative [44]. The heat transfer
terms in Figure 1 can be represented by an equation according to the conservation of

energy principle [4, 36, 43]:

0,-0-0,-0,-0 -0, (0



The Qh , Qb , and Qv terms in equation 1 could be either positive or negative depending

on whether thermal energy is gained or lost by the given area [39,40]. The term in

equation 1 that transfers thermal energy from one region of the ocean to another is Qv ,

stating the effects of ocean currents [40]. However, for the ocean as a whole, Qv is taken

as zero because it only accounts for the redistribution of thermal energy within the ocean

[4,40]. There is a net gain of thermal energy throughout the year in the lower latitudes

(positive QT ), but a net gain in summer (positive QT) and a net loss (negative QT) in

winter in the higher latitudes [43,45].

The rate of heat gain (or loss) by a given area of the ocean is normally averaged over an

year. Therefore, the amount of heat available for heating a given area of the ocean over

any period, ¢, (taking Qv =0)is[12]:

jQT‘dt:j(Qs_Qb_Qh_Qe)df 2)

The distribution of the heat in the surface layer can also be calculated [12, 46]. A heat

budget can also be applied to the surface layer (or mixed layer) of the oceans [47,48].

2.1.Rate of heat added by short-wave solar radiation ( Qs )

The solar radiation that reaches the ocean surface is in the form of direct solar radiation
and indirect diffused sky radiation [49]. The sky radiation results from scattering due to
the presence of molecules in the Earth’s atmosphere [50] which causes the solar energy to
reach the Earth’s surface as diffused sunlight. The incoming radiation is termed as short
wave because about 99% of the solar radiation [39] is in the visible and near-visible parts
of the electromagnetic spectrum with wavelengths of approximately 0.4 to 4 pm [51].
The incoming radiation is affected by the altitude of the Sun, cloud cover, latitude, time

of the day, the season, and by the geographical location [52].Solar radiation intensity is



greatest at the equator, moderate at middle latitudes, and lowest at the higher latitudes
(poles) [45]. As shown in Figure 2, different regions on the Earth’s surface that are equal
in size receive different levels of solar radiation. The solar radiation intensity is largest
between 23.5 °N and 23.5 °S because the sunlight strikes at a right angle between these
latitudes, shown in Figure 2a [53]. Higher latitudes receive less solar energy compared to
the equator because of the decreasing angle at which the sunlight strikes the Earth’s
surface [5]. Also, the sunlight has to travel a larger distance through the atmosphere at
higher latitudes (Figure 2d), thus the atmosphere absorbs most of the solar radiation

intensity before it reaches the Earth [53].

At any given time, the Earth receives solar energy equal to the solar constant minus the
amount of shortwave radiation reflected back into space, times the cross-sectional area of
the Earth that is perpendicular to the beam of parallel solar radiation [54]. Solar constant
can be defined as the rate at which the Earth receives radiant energy from the Sun on an
area perpendicular to the Sun’s rays, measured at a point beyond the Earth’s atmosphere
when the Earth is at its mean distance from the Sun [55]. The solar constant is
approximately equal to 1.94 calories per minute per square centimeter of area

perpendicular to the Sun’s rays [55].

Figure 3 shows a division of 100 units of short-wave radiation from the Sun entering the
atmosphere and how it gets absorbed and scattered in various ways, representing a long-
term world-area average. Of the total incoming radiation units, about 29 parts are lost to
space by scattering from the atmosphere and the clouds. About 19 parts are absorbed in
the atmosphere and the clouds, and about 4 parts are reflected to space from the sea

surface. The remaining units enter the ocean, from which a small part is scattered

upwards, and the remainder represents the QS term of the heat budget (equation 1) [56].

After scattering in the water, a small part of the solar radiation radiates back in the form
of diffused underlight. The greatest part is absorbed by the water [49]. Of the total 48
parts absorbed by the ocean, about 29 parts reach the ocean as direct solar radiation,

whereas 19 parts from indirect scattered radiation from the atmosphere [56].



The absorbed energy heats up the surface water of the oceans and the surface layer
undergoes a temperature cycle similar to the atmosphere. The seasonal temperature
change is generally smaller in the tropics than in higher latitudes (disregarding upwelling,

seasonal current shifts, coastal effects, and advection) [8]. The incoming solar radiation is

absorbed gradually as it goes below the ocean surface [57]. The rate at which QS enters

the surface of the ocean and is available to raise the water temperature depends on the
Sun’s elevation, amount of sunlight reflected, and the amount that gets transmitted into

the water [56].

The intensity of incoming solar radiation on the ocean surface can be measured from
ships or coastal stations. A pyranometer or a solarimeter is a sensor that is used to
measure the incoming solar radiation [58,59]. Also, estimates can be made from tables
giving radiation from a cloudless sky, as a function of the latitudes and the time of the
year, with correction factors for cloud covers [43]. A simple approximation to calculate
short-wave radiation penetrating the sea after taking into account the atmospheric factors
and back radiation from the ocean surface is presented in [56,60]. The short-wave
radiation input averaged over 24 hours in the absence of clouds and allowing for
atmospheric loss is given as [56]:

QSO =044 1 (3)

d

where 4, is the noon altitude of the Sun in degrees, #; is the length of the day in hours
from sunrise to sunset. To calculate the back radiation from the ocean surface, the cloud
cover, C (measured in Oktas), is taken into account. The sky conditions are estimated by

how many eighths (or tenths) of the sky are covered by clouds, C = 0 meaning

completely clear and C = 8 meaning completely overcast [61]. The term QS is actually

the difference between the rate at which solar radiation is received at the ocean surface

and the reflected radiation from the ocean surface [39]. The amount of short-wave

radiation received by the surface of the ocean after cloud obstructions, QS,, 1S

approximated as [56,60]:



0,'=0, (1-0.0012¢?) @)

The amount of short-wave radiation reflected from the ocean surface, Qr’ is

approximated as:

0, =0.150,'~(0.010."’ ®)

Finally, Qs , which is the difference between QS, and Qr , 1s approximated as:

QS = QS '_Q.r ©)

These equations are approximations. To get comparable results, recorded tabulated values

over a long period should be used.
2.2. Rate of heat loss due to long-wave back radiation ( Qb )

The reflection of the incoming radiation at the ocean surface depends on the altitude of
the Sun and the state of the ocean surface described by the ocean waves [49]. Figure 4
shows the reflection of solar radiation from the ocean surface at different altitudes for
smooth and actual ocean surfaces. At Sun altitudes of over 40°, less than 5% of the solar
radiation is reflected back from the surface, thus, showing that there is almost complete
solar radiation absorption at the ocean surface in those regions. The reflection of solar
radiation at the ocean surface increases with decreasing altitudes of the Sun, thus,
explaining the cold regions towards the poles [49]. The percentage of the energy reflected
is called the albedo, and the albedo is higher over lighter areas such as snow and lower

over darker areas such as the oceans [62].

All bodies with a temperature above absolute zero radiate heat. The amount is
proportional to the fourth power of the absolute temperature, 7, given by Stefan-

Boltzmann law. The ocean surface radiates heat as a black body having the same



temperature of the surface water, which is approximately 290 K [14]. Much of the back
radiation from the ocean surface is affected by the presence of clouds and water vapor in

the atmosphere, which absorbs and re-radiates the heat back to the ocean surface [14].
The effective back radiation from the ocean surface, Qb, therefore, is the difference

between the outward radiation from the ocean surface and the downward radiation (re-
radiation) from the atmosphere [39]. The back radiation from the ocean surface is termed
as long-wave radiation because the electromagnetic wavelength has a value of 10,
which falls in the long-wave heat radiation range (3 to 80 pm) [49, 56]. The Qh term
depends on the ocean surface temperature, humidity of the atmosphere, and the cloud

cover [43]. In the presence of clouds, Qb is reduced because the downward radiation

from the atmosphere is increased.

The long-wave back radiation from the ocean surface, Q,, can be measured using a

radiometer, which is a device that measures the radiant flux of electromagnetic radiation
[63]. Also, estimates can be made from formulas by taking into account the sea surface
temperature, humidity of atmosphere, and the cloud cover [43]. The Stefan-Boltzmann
law in its original form cannot be applied to calculate the theoretical back radiation from
the ocean surface. If used in its original form, it would appear that the ocean surface loses
more energy than it receives [12]. The factors that affect back radiation such as clouds
and water vapor in the atmosphere have to be taken into account [8]. Equation 7 is an
empirical formula that calculates the effective back radiation in cal. per cmz.per minute

[49]:
: 4 ~0.055¢
O, =oT"|1-| 0.210+0.174x10 0 1(1-0.765C) (7)

where o is the Stefan-Boltzmann constant, 7 is the absolute temperature (which can be
equal to the water temperature), ¢, is the water vapor pressure over the ocean surface in
millibars, and C is the mean cloudiness in tenths of sky coverage. A similar

approximation is provided in ref. [39].



An evaluation of the incoming solar radiation, 0, and back radiation, Q,, at the ocean

surface shows that there is more solar energy coming from the Sun at all latitudes on an
annual average when compared to back radiation [49]. This radiation balance is much

more over the ocean surface compared to land [12].

2.3. Rate of heat loss by evaporation ( Qe )

Evaporation is the largest contributing factor to the overall thermal energy losses from the
ocean surface [8]. On a yearly average, about 120 cm of water is evaporated from the
ocean surface [56]. When evaporation occurs, there is an increase in salinity at the ocean
surface, and precipitation, conversely, decreases salinity. This affects the density of the
surface water [64], which can be accounted for in an ocean salinity budget. The rate of
heat loss by the ocean surface from evaporation is gained by the atmosphere in the form
of latent heat. This heat is released from the atmosphere by the condensation of water
vapor [65]. Ninety percent of the radiative heating of the global ocean is balanced by

evaporation from the ocean surface [66].

The ocean surface is usually a degree or two warmer than the air directly above it [12].
Evaporation takes place when the air close to the ocean surface becomes unsaturated with
water vapor. The air becomes unsaturated with water vapor by the heating from the ocean
surface (ocean surface is warmer than the air directly above it) [49]. The higher the
temperature of this air, the more water vapor it can absorb [67]. As long as the sea
temperature is more than about 0.3 K greater than the air temperature, there will be heat
lost from the ocean to the atmosphere due to evaporation [56]. The heat transfer from the
ocean surface to the lowest atmospheric layers that are very close to the ocean surface
causes the air to become unstable and to be convected upwards [68]. The cooler drier air
replaces the upward moving warmer air, and becomes saturated with water vapor as
evaporation continues at the ocean surface. These small convection processes remove the
air saturated with water vapor and allow it to be replaced with unsaturated air which
accepts more moisture through evaporation [12]. Condensation occurs when the air at a

certain temperature blows over water that is cooler. When thermal energy is lost from the



air close to the ocean surface, the air becomes stable and less turbulent. Therefore, the
thermal energy gained by the ocean from condensation is very small compared to the loss
of latent heat by evaporation [49]. The wind speed over the ocean surface also enhances
evaporation because it gives rise to turbulent transfer processes. The winds generate
waves on the surface of the ocean and turbulence in the air close to the ocean surface
[69]. Strong winds lead to breaking waves from which spray is formed, thus enhancing
evaporation [70,71]. Waves break when the wave height exceeds the wavelength by a

ratio of 1:7 [53].

The rate of evaporation from the ocean surface varies at different latitudes and seasons
[72]. As shown in Figure 5, the atmosphere at higher latitudes is less capable of absorbing
water vapor because of the low air temperatures close to the ocean surface, thus, the
evaporation is less compared to lower latitudes. At the equator (0°), the air is already
saturated with water vapor, therefore, evaporation is smaller in comparison to 20° [49].
Also, the wind velocities are small close to the equator due to the Cariolis force being

zero [73].

The rate of latent heat loss by evaporation from the sea surface is estimated based on the
vapor pressure at the ocean surface, the actual vapor pressure in the air at a height of 10

m above ocean surface, and the wind speed at 10 m height [12,49] . The rate of latent heat

loss from the ocean surface, Qe , due to evaporation is given as [56]:

Q =F L (8)

where F, is the rate of evaporation of water in kg/s per square meter of sea surface, and L,
is the latent heat of evaporation in kilojoules for a given mass. The value of L, for pure

water depends on the water temperature, and is given as [56]:

L =(2494-2.2T) €))



The rate of evaporation of water, F,, is approximated by taking into account the eddy

diffusivity of water vapor, 4., which depends on the turbulence character of water, and

the gradient of water vapor concentration in the air above the ocean surface, de/dz [56].
de

Fe = _Ae Ty (10)
dz

An empirical formula is mostly used to estimate the rate of evaporation from the ocean

surface. Taking into account the wind speed and substituting equations 9 and 10 into

equation 8, the empirical formula obtained is [56]:
5 _ _ -3
Qe = 1.4(eS e )W .(2494 2.2TS).10 (11)

where e is the saturated water vapor pressure at the surface, e, is the actual vapor
pressure at a height of 10 m above the surface (both in kPa), and W is the wind speed in
m/s at a height of 10 m above the sea level. A similar empirical estimation is provided by

Jacob in ref. [12].
2.4. Rate of sensible heat loss (Qh)

The rate of heat loss by conduction and convection from the ocean surface depends on the
temperature gradient between the ocean surface and the air. On the average, the surface
temperature of the ocean is higher than the lowest atmospheric layers [12]. Convection
occurs due to the air close to the ocean surface being heated. The lowest part of the
atmosphere close to the ocean surface gets heated and becomes unstable. A vertical
convection occurs in the atmosphere, and air masses heated by the ocean surface get
replaced by cooler air masses from the upper atmosphere. The air at the ocean surface

expands and rises in the atmosphere, thus carrying heat away from the surface [12,49].

The surface heat fluxes of the ocean-atmosphere coupling have regional and seasonal

variations [74]. The heat transfer from the water to the air is more significant than the



reverse because at equal temperatures, the heat capacity of water is much higher [8]. The
conduction terms of the ocean heat budget are calculated from equations which involve
the difference between the ocean surface temperatures, 7§, and the air temperature, 7,, at
a standard height above the ocean surface, and the wind speed W [43]. The rate of heat
loss is, however, not controlled by molecular forces [12]. The heat transfer increases with
increasing wind speed, where as a high speed increases turbulence across the ocean-
atmosphere interface [68]. Heat transfer by conduction is proportional to the vertical
temperature gradient in the lowest atmospheric layer, dt/dz, the eddy conductivity, Ay,

and the specific heat of air at constant pressure, C,. [49,56]:

0, = —C,.4, dt/dz (12)

Wiyrtki, in ref. [56], simplified this equation to calculate the heat budget for the Pacific

Ocean, given as:

0,=-1.88W.(T.-T) (13)

The rate of sensible heat loss or conduction, Qh , and the latent heat loss by evaporation,
Qe , varies together over the ocean surface due to climatic variations. It can therefore be
said that the ratio, %, known as the Bowens ratio, B, remains almost constant [40].
Considering equationel, and taking QV and QT to be zero, (no advection and steady
state), and substituting B:

_ Qs - Qb

%= B+ (1)

The Bowen’s ratio is also calculated by using the temperatures and the vapor pressures,

and by assuming that A, and A, are numerically similar [12,54]:

e —e

N a

B:Q%{ﬂ_EJ (15)



The Bowen’s ratio increases with latitude for both land and oceans [64]. The average
value of B at the equator is 0.1 [40]. Figure 6 shows the Qh and Qe terms at different

latitudes.

2.5. Thermal energy transport by ocean currents ( QV )

In lower latitudes, there is a radiation surplus of the Earth-atmosphere system which
decreases with increasing latitude [45], as shown in Figure 7. The surplus thermal energy
at the lower latitudes is transported to higher latitudes by ocean currents, maintaining an
even temperature distribution [62,75]. The temperature of a given location in the
atmosphere or in the ocean, averaged over several years is nearly constant. Long term
climatic changes are negligible compared to daily and seasonal changes. Advection plays
a major role in the overall heat energy balance of the ocean. Changes in the oceanic
circulation will affect the overall ocean-atmosphere heat energy balance by affecting

weather patterns, since ocean currents are also driven by atmospheric winds [12].

The amount of radiation received at different latitudes is different because of different
angles at which sunlight strikes the Earth, discussed in section 2.1. The 0, term in the

heat budget (equation 1), or advection ensures that the low latitudes do not continually
heat up and the high latitudes do not continually cool down [40]. Because of its higher
density and minimal mixing with the warmer water of the surface, the cold water from
the higher latitudes is carried by ocean currents along the ocean bottom from the poles
towards the equator, displacing the lower density water above. These two physical
processes create a thermal structure with a large reservoir of warm water at the ocean
surface and a large reservoir of cold water at the bottom, with a temperature difference

between them of 22°C to 25°C [22]. The thermal structure of the oceans is discussed in
section 3.1. For the ocean as a whole, 0, is taken as zero because it takes into account

the redistribution of thermal energy within the ocean [4,40,49]. Ocean circulation
accounts for 40% of the latitudinal heat transfer from the equator to the poles, whereas

the remaining 60% heat transfer occurs through the atmosphere [76].



Accurate measurements and prediction of the amount of thermal energy in the oceans
remains a difficult task. Zhang et al. [77] studied 1 - 2 decades of radiative flux data sets,
ocean surface turbulence flux data sets, and ocean thermal energy data sets and found that
even though there are some imbalances, the data sets show excellent quantitative
agreement. Studies done by Josey et al. [38] show that there are some imbalances of the
overall energy budget, but they attribute this to possible errors in flux equations. Together
with an oceanic thermal energy balance, there is a salt and water balance. The amount of
water that is evaporated from the ocean surface is replaced by water from rainfall and
river runoff [78]. A conservation of volume analysis based on evaporation and
precipitation is shown in ref. [56]. Salt is left behind when ocean water evaporates.
Coastal regions have lower salinities because of water coming from rivers [4]. The
average salinity of the oceans remains almost constant [54], and it would be hundreds of
years before an increase in the salinity is detected if all the salts are brought into the

oceans from rivers [12,56].

The rate of heat addition to the ocean by short-wave radiation is highest in the equatorial
regions and varies with different latitudes and seasons. The rate of heat loss by back
radiation from the ocean surface increases with decreasing altitudes of the Sun. The rate
of latent heat loss by evaporation from the ocean surface is the largest contributing factor
to the overall heat losses from the ocean and is higher close to the equator and decreases
with increasing latitudes. The rate of heat loss by convection and conduction varies with
seasons and latitudes, and depends on the temperature difference between the ocean
surface and the air close to the surface. Ocean currents transfer thermal energy from the
lower latitudes to cooler regions in the higher latitudes, ensuring that the lower latitudes
do not continually heat up or the higher latitudes do not continually cool down. The
ocean heat budget quantifies the amount of thermal energy gained and lost by the ocean,
and this can be used to determine the overall temperature change of the system over a
certain period of time. The transport of cold water from the higher latitudes towards the
equator along the ocean bottom results in the displacement of the lower density water
above and creates a thermal structure with a large reservoir of warm water at the ocean

surface and a large reservoir of cold water at the bottom, with a temperature difference



between them of 22°C to 25°C. This temperature difference can be used to drive an ocean

thermal energy system.

3. OCEAN THERMAL ENERGY CONVERSION (OTEC)

An ocean thermal energy conversion (OTEC) plant is basically a heat engine that utilizes
the temperature difference between the warm surface water and deep cold sea water to
produce electricity [28]. From the view of a thermodynamicist, any temperature

difference can be used to generate power [22].

The technology for OTEC was first proposed by Jacques d’Arsonval, in the year 1881 in
France [79,80]. He proposed a closed cycle OTEC design that used ammonia as the
working fluid [81]. However, it was his student, George Claude who built the first OTEC
plant in Cuba in 1930 [82]. A low pressure turbine was used to generate 22 kW of
electricity for a short while before the system got damaged [83]. Ocean thermal energy is
a potential source of renewable energy and with proper designing, it could provide a
source of clean renewable energy with constant power output with many other benefits
such as pure drinking water, which can benefit many small island countries and
developing countries [84]. An OTEC system in its simplest form contains three basic
constituents: an energy supply source, a power generation system, and a possible

desalination system [85].

Ocean thermal energy conversion power systems are basically divided into three
categories: open cycle, closed cycle, and hybrid cycle. An open cycle OTEC system
utilizes the warm surface water as the working fluid. The surface water is pumped into a
chamber where a vacuum pump reduces the pressure to allow the water to boil at low
temperature to produce steam. The steam drives a turbine coupled to a generator and then
is condensed (using deep cold seawater pumped to the surface) to produce desalinated
water [22, 86]. A closed cycle OTEC system incorporates a working fluid, such as
Ammonia or Ammonia/Water mixture, operating between two heat exchangers in a

closed cycle. A closed cycle utilizes the warm surface water to vaporize the working fluid



in a heat exchanger (evaporator). The vaporized fluid drives a turbine coupled to a
generator. The vapor is then condensed in a heat exchanger (condenser) using cold deep
seawater pumped to the surface. The condensed working fluid is pumped back to the
evaporator where vapor is generated and the cycle is repeated. The thermodynamic
principles of the open cycle and the closed cycle are similar [22,87]. The cycles are basic
Rankine cycles that operate between a heat source and sink to generate electricity [88,89]
with efficiencies close to 3% [88]. To increase the thermal efficiency of the OTEC
system, other kinds of energies such as solar energy, geothermal energy, industrial waste
energy, and solar ponds can be introduced to increase the temperature difference [90-92].
Preheating of the feed water is also done in commercial plants operating on Rankine
cycles, such as fuel-fired plants, to improve the efficiency [93]. Major differences
between the open and closed cycle systems are the sizes of ducts and turbines, and the
surface area required by heat exchangers for effective heat transfer [22]. For a given
OTEC system with a certain power output, a closed cycle system with ammonia as the
working fluid requires a much smaller duct and turbine diameter compared to an open
cycle system which has water as the working fluid [94]. The difference is attributed to the
pressure difference across the turbine and the specific volume of the working fluids. The
heat exchangers for closed cycle systems require large surface areas to have effective heat

transfer [22].

The hybrid system integrates the power cycle with desalination to produce electricity and
desalinated water. Nearly 2.28 million liters of desalinated water can be obtained
everyday for every MW of power generated by a hybrid OTEC system [95]. Electricity is
generated in the closed cycle system circulating a working fluid and the warm and cold
seawater discharges are passed through the vacuum chamber and condenser to produce
fresh water [22]. The power that the pumps need to do work is supplied from the gross
power output of the OTEC power generating system. The hybrid cycle eliminates the use
of a large low-pressure turbine as is required by an open cycle. The vacuum chamber is
also reduced in size [22]. The working fluids for either closed or hybrid cycles should be
such that the system is able to operate between the low temperatures and still give

optimum efficiency. Mostly Freon and ammonia are used, whereas ammonia and water



mixture are also accepted for use [96]. The use of mixtures instead of one component
fluid improves the thermodynamic performance of power cycles [97]. Studies done by
Kim et al. [98] suggest that working fluids can be selected based on the specific

environment and working conditions without affecting the efficiency much.

An energy harnessing scenario involves three steps: i) determining the activities in the
target society that requires energy, ii) determining the available energy resources, and iii)
matching the demand and the supply [99]. Moreover, even though the thermal resource is
available to many countries, there are many factors that must be taken into account before
a particular country or location is selected for an OTEC plant installation. Some of them
are: distance of the thermal resource from land; depth of the ocean bed; depth of the
resource; size of the thermal resource within the exclusive economic zone (EEZ);
replenishment capability for both warm and cold water; ocean currents; waves;
hurricanes; seabed conditions for mounting; seabed conditions for power cables of
floating plants; current local power source; annual consumption; present cost per unit;
local oil or coal production; scope for other renewables; aquaculture potential; potable

water potential; and environmental impacts [100].

3.1. The thermal structure of the ocean

Below the ocean surface, as the depth increases, the temperature of the water generally
decreases [8,21]. The depth at which the temperature gradient, which is the rate of
decrease of temperature with increase of depth, is a maximum is called the thermocline
[101]. Below the water surface, the water is usually divided into three zones based on the
temperature structure of the ocean: an upper zone with a depth of approximately 50 to
200 m with temperatures similar to that of the surface, a zone below 200 m and extending
upto 1000 m in which the temperature changes rapidly (this is the thermocline), and a
zone below 1000 m in which the temperature changes are small [56]. The actual depth of
the zones is difficult to determine because of the minor irregularities in the temperature
against depth profile. Figure 8 shows the temperature vs. depth profile at different

latitudes. Figure 9 shows the temperature vs. depth profiles for some countries.



In low and middle latitudes, there is a permanent thermocline present at all the times
whereas there is no permanent thermocline in polar waters [17]. The thermocline is
shallow in spring and summer, deep in the autumn, and disappears in winter. In winter,
the heat loss at the surface produces instability and the resulting convection mixes the
water column to a greater depth, thus eliminating the thermocline. In the tropics, winter
cooling is not strong enough to destroy the thermocline, and thus, the tropical thermocline
or permanent thermocline is maintained throughout the year [104]. The temperature in the
lower half of all the oceans is uniformly cold, with temperatures as low as 2.3°C [12].
The surface temperature of the oceans range from as high as 28 °C from the equator to -2
°C at high latitudes. Figure 11 shows the ocean surface temperature variation with
latitudes. The temperature is highest at low latitudes and decreases at higher latitudes
[56]. In lower latitudes there is a radiation surplus (Figure 7) which decreases with
increasing latitude [52]. It is the almost constant temperature at the beginning and end of
the thermocline that can be used to drive OTEC plants. Above the thermocline, there is an
almost constant source of heat and below the thermocline there is an almost constant heat
sink [22]. An OTEC plant, which is similar to a heat engine governed by the first law of
thermodynamics, is driven between the heat source and sink to produce work output [35],

shown by a schematic diagram in Figure 10.

The temperature of the ocean water can be described in two ways: in terms of in situ
temperature and in terms of potential temperature [12]. In situ temperature is the
observed temperature of a parcel of water at a certain depth, whereas potential
temperature is defined as the temperature of a parcel of water at the sea surface if it is
raised adiabatically from some depth in the ocean. Adiabatically raising the parcel of
water means that it is raised in an insulated container so that there is no exchange of heat
with its surroundings [105]. The water parcel, however, is not actually brought to the
surface. The potential temperature is therefore always less than the in situ temperature
[12, 105-107]. Potential temperature finds applications for stratified fluids, which are
fluids with varying densities along the axis of gravity. Changes in pressure affect the

water temperature and the water temperature can increase with depth in very deep ocean



trenches and within the ocean mixed layer. The use of potential temperature eliminates

these unstable conditions [108].

Thermal energy in the oceans is distributed by three processes, advection, diffusion, and
vertical mixing. All these processes do not change the energy content of the ocean.
Vertical mixing redistributes thermal energy within a column of the ocean whereas
advection and diffusion move it horizontally as well [109]. The strength of the vertical
mixing depends on the wind speeds on the ocean surface [110]. In a vertical water
column in the ocean, the yearly changes in heat content are more notable in the upper
layers of the ocean than the lowermost layers [111]. A vertical column of the ocean gains
thermal energy from the incoming solar radiation and loses it by back radiation and
evaporation. The rate of sensible heat gain or loss depends on whether the sea is warmer
or colder than the air close to the ocean surface [112]. The vertical heat transfer can be
thought of as being caused by very slow large-scale vertical water motion and by faster
vertical motion in small eddies. Upwelling and downwelling can be considered as large-
scale water motion, where upwelling reduces the energy content of the column because it
brings up cold water from the bottom of the ocean, and downwelling increases the heat

content [111].

The heat source and the heat sink at the beginning and end of thermocline can be used to
drive OTEC plants. The analyses of basic OTEC systems are presented in sections 3.2,
3.3, and 3.4. The equations are derived from references [22,44,87,89-91,96,97,
113,114,117].

3.2. Closed cycle OTEC system

The analysis of the three systems is similar with most of the equations being same,

since all the three systems undergo the same thermodynamic cycles. Figure 12 shows a

schematic of a closed cycle OTEC system and its T-S diagram.



The net power, 7, , of an OTEC plant is the net power of the thermal cycle minus the

pumping power required by the working fluid pump, and the warm and cold water pumps

[22], given as:

W _=W_ —W, W +W

N6 Pysp *Wesp W wrp) a7

where W, is the power available at the generator, ,,, is the power required for pumping
warm surface water, W, is the power required for pumping deep cold seawater, and

Wyep 18 the working fluid pumping power.
a) Generator power, W,

Since the working fluid pump, the evaporator, the condenser, and the turbine are steady
flow devices, the processes of the power cycle are analyzed as steady flow processes.
Work is done by the turbine, therefore positive work output. Process 1-2 is adiabatic and

undergoes isentropic expansion. The generator power is given as:

w

G = Mg hy) (18)

where 71, is the mass flowrate of working fluid, 7, is the turbine efficiency, and 7, is

the generator efficiency.
b) Condenser

1) Heat rejection from working fluid in the condenser is:

Qc :mWF(h2 _h3) (19)

i) The heat gained by cold water in the condenser



QC :mCSCp(Tcso _Tcsi) (20)

‘SO IS

where 7 1s the mass flowrate of the deep cold sea water, C, is the specific heat, T,

the temperature of cold seawater at exit of condenser, and 7., is the cold sea water

Si

temperature at inlet of condenser.

iii) The heat transfer in the condenser based on the heat transfer coefficient and the log

mean temperature difference is:

Oc =UcAc(AT,)¢ (21)

where U, is the overall heat transfer coefficient of the condenser, 4. is the heat transfer
area of the condenser, and (AT,,). is the log mean temperature difference (LMTD) of the

condenser.

The log mean temperature difference is calculated as:

(TZ _Tcsi)_(zg _Tcso)
AT =
( m)C ln{ T2 —T, } (22)

csi

T,-T,

cso

where 7> and 73 are temperatures of the working fluid at the inlet and outlet of the

condenser.

¢) Working fluid pump power, W,:p

Work is done on the pump, therefore negative work output. Process 3-4 is adiabatic and

undergoes isentropic compression. The working fluid pump power is calculated as:



. My (hy —hy)
Wyep = —WF\4 737 (23)
Nwrp

where 7, 1s the working fluid pump efficiency.

The shaft work for a steady flow device (pump) is:

4

W= I v.dp (24)
3

The working fluid pumping power is also given as:

Wyep = mypv ,(By = Py) (25)

where v, is the specific volume of the working fluid, and P;and P,are operating

pressures.
d) Evaporator

1) Heat absorption by the working fluid in the evaporator is given as:

Op =ity (hy —hy) (26)

i1) The heat lost by warm water in the evaporator

QE = mWSCp (Twsi _Twso) (27)

where 1y is the mass flowrate of the warm surface sea water, C, is the specific heat,

Ty 1S the temperature of warm seawater at inlet of evaporator, and Ty, 1s the warm sea

water temperature at outlet of evaporator.



iii) The heat transfer in the evaporator based on the heat transfer coefficient and the log

mean temperature difference is:

Op =Up A (AT,) g (28)

where U, is the overall heat transfer coefficient of the condenser, 4, is the heat transfer
area of the condenser, and (AT,,), is the log mean temperature difference (LMTD) of the

evaporator.

The log mean temperature difference is calculated as:

_ (Twsi _TI)_(TWSO _T4)
(AT,)r = P (29)
ll’l wsi 1
Twso_T4

where 7; and T, are temperatures of the working fluid at the inlet and outlet of the

evaporator.
¢) Cold sea water pumping power, W g,
The cold seawater pumping power is given as:

. m~c AR
Wesp = Mmeg82Ncsp. (30)

Ncsp

where 7. 1s the pump efficiency, g is the gravitational acceleration, and Ak, is the

total head loss in the cold water pipe. The total head loss across the cold water piping

system is:



Ahcgp = (Aheg)sp + (Aheg )y + (Dheg) e + (Aheg), 31

where (4dhcs)sp, is the head loss due to friction in the straight pipe, (44¢s)y is the minor
head losses due to bends, (44¢s)c is head loss of cold water in the condenser, and (44¢s)y
is the head loss due to density differences. The cold seawater pumping power is thus

given as:

: _ thsg[(AhCS Ysp +(Aheg) yr +(Ahes) e +(Aheg )y ]
Wesp = . (32)
csp

¢) Warm sea water pumping power, Wy

The warm surface seawater pumping power is given as:

. m Ah
Wysp = ws R Nysp (33)
NMwsp

where 7, 1s the pump efficiency, g is the gravitational acceleration, and Ay, is the

total head loss in the warm water pipe. The total head loss across the warm water piping

system is:
Ahygp = (Mg ) sp + (Ahyg) yy + (Mg ) o (34)

where (4hws)sp, is the frictional headloss in the straight pipe, (4hws)y is the minor head
losses in the pipe due to bends, and (4hys)g, is the head loss of warm water in the

evaporator. The warm seawater pumping power is thus given as:

W - mWSg[(AhWS )sp + (Ahyg )y + (Ahyg )E]
wsp = . (35)
WSP

3.3. Open cycle OTEC system



Figure 13 shows a schematic of an open cycle OTEC system and its T-S diagram.

The net power, W, , is given as:

Wy =W =Wysp +Wesp +Wy) (36)

where W, is the power available at the generator, ,,, is the power required for pumping
warm surface water, W, is the power required for pumping deep cold seawater, and W),

is the power required by the vacuum pump.

a) Generator power, W

The generator power is calculated as:

: ) T
W, :nTQin(l_MJ (37
Twsi

where 7, is the turbine efficiency, O, is the heat input to the system, 7, is the
temperature of warm seawater entering the flash evaporator, and (7,,,,)..c1S the
condensing temperature of steam.

b) Heat transfer in the condenser when steam condenses:

Oc = Myeqn (hy —hs) (38)

where m is the mass flowrate of steam, #, is the enthalpy of vapor before the turbine,

steam

and &g is the enthalpy of vapor at exit of turbine. The mass flowrate of steam is

calculated as:



mwscp (Twsi _Twso)

mseam = 39
t Hfg_cp(Twso _Tsat) ( )

where 7, is the mass flowrate of warm surface water, C, is the specific heat, 7, is the

i

warm water temperature at inlet of flash evaporator, T,

WSso

is the warm water temperature

at exit of flash evaporator, H , is the latent heat of vaporization, and T,,, is the saturation

temperature at corresponding flash evaporator pressure.

i1) the heat gained by cold water in the condenser is given by equation 20:

QC = mCSCp (Tcso _Tcsi)

where g is the mass flowrate of the deep cold sea water, C, is the specific heat, 7, is

SO

the temperature of cold seawater at exit of condenser, and 7,; is the cold sea water

Si

temperature at inlet of condenser.

ii1) The heat transfer in the condenser based on the heat transfer coefficient and the log

mean temperature difference is given by equation 22:

Qc = UCAC (ATm)C

where U is the overall heat transfer coefficient of the condenser, 4. is the heat transfer
area of the condenser, and (AT,,). is the log mean temperature difference (LMTD) of the

condenser

c) Heat transfer in the flash evaporator is given by equation 27:

QFE = mWSCP (TWSi - TWSO)



where iy is the mass flowrate of the warm surface sea water, C, is the specific heat,

Ty 1s the temperature of warm seawater at inlet of flash evaporator, and 7y, is the

warm sea water temperature at outlet of flash evaporator.

Cold water pumping power

¢) Cold sea water pumping power, W

The cold seawater pumping power is given by equation 30:

s 8Ahcsp

Ncsp

WCSP =

where 7.4 1s the pump efficiency, g is the gravitational acceleration, and Ah g, is the

total head loss in the cold water pipe. The total head loss across the cold water piping

system is:

Ahcsp =(Aheg)sp + (Aheg )y + (Ahes) e + (Ahes )4 (40)

where (4hcs)sp s the head loss due to friction in the straight pipe, (4%cs)y is the minor
head losses due to bends, (44¢s)c is head loss of cold water in the condenser, and (44¢s)y
is the head loss due to density differences. The cold seawater pumping power is thus

given as:

W — Mesg [(Ahcs)sp + (Ahcg )y + (Ahcg) o + (Ahcg )d]
P Ncsp

(41)

Warm water pumping power

¢) Warm sea water pumping power, W



The warm surface seawater pumping power is given by equation 33:

My EAhysp

Nwsp

WWSP =

where 7, is the pump efficiency, g is the gravitational acceleration, and A%y, is the

total head loss in the warm water pipe. The total head loss across the warm water piping

system is: The total head loss across the cold water piping system is:

Ahysp = (Ahyg) sp + (Ahyyg) yy + (Ahys) e (42)

where (Ahys)sp, s the frictional headloss in the straight pipe, (4hws)ys is the minor head
losses in the pipe due to bends, and (4hws)re is the head loss across the flash evaporator.

The warm seawater pumping power is thus given as:

: _ mWSg[(AhWS )sp + (Ahys )y + (Ahyg )FE]
Wywsp = 43)
Mwsp

3.4. Hybrid cycle OTEC system

Figure 14 shows a schematic of a hybrid cycle OTEC system and its T-S diagram.

The net power, W, , is given as:

WN = WG - (WWSP + WCSP + WWFP + WV) (44)

Where W, is the power available at the generator, W, is the power required for
pumping warm surface water, W,y is the power required for pumping deep cold
seawater, W, is the working fluid pumping power, and %, is the power required by the

vacuum pump.



Power cycle analysis

a) Generator power, W

The generator power is calculated using equation 18:

We =nmyenne(h —hy)

where 71, is the mass flowrate of the working fluid, 7, is the turbine efficiency, and 7,

is the generator efficiency.
b) Condenser

1) The heat rejection from the working fluid in the condenser is calculated using equation

19:

Qc =ty (hy — hy)

i) Heat gained by cold water in the condenser is calculated using equation 20:

QC = mCS Cp (Tcso - Tcsi)

ii1) The heat transfer in the condenser based on the heat transfer coefficient and the log

mean temperature difference is calculated using equation 22:

Qc = UCAC (ATm)C

¢) Working fluid pump power, W,



The working fluid pumping power is given by equations 23 and 25:

j h, —h
Wy = iy (hy 3)
Nwrp

Wipep = iy (Py = B)

d) Evaporator

1) Heat absorption by the working fluid in the evaporator is given by equation 26:

QE = My (hy —hy)

ii) The heat lost by warm water in the evaporator is given by equation 27:

QE = mWSCp (Twsi _Twso)

ii1) The heat transfer in the evaporator based on the heat transfer coefficient and the log

mean temperature difference is calculated using equation 28:

Qp =UpAdp(AT,)g
Cold water pumping power
¢) Cold sea water pumping power, W g,

The cold seawater pumping power is given by equation 30:



The total head loss across the cold water piping system is:
Ahesp = (Aheg)sp + (Aheg) y + (Aheg) e + (Aheg) g + (Aheg) pe (45)

where (4hcs)sp 1s the head loss due to friction in the straight pipe, (4Acs)y is the minor
head losses due to bends, (4hcs)c is head loss of cold water in the condenser, (4hcs)q 1s
the head loss due to density differences and (44cs)pc is the head loss in the desalination

condenser. The cold seawater pumping power is thus given as:

W, = mcsg[(Ahcs )sp + (Aheg )y + (Aheg) o + (Al )y + (Ahgg )DC] (46)

Nesp

Warm water pumping power

¢) Warm sea water pumping power, Wp
The warm surface seawater pumping power is given by equation 33:

My EAhysp

Mwsp

Wysp =

The total head loss across the cold water piping system is:

Ahysp = (Ahyg) sp + (Ahys ) yp + (Dhyg) g + (Alyg ) 1, 47)

where (Ahys)sp, 1s the frictional headloss in the straight pipe, (4hys)y is the minor head
losses in the pipe due to bends, (4hws)e is the head loss of warm water in the evaporator,
and (4hysg)s is the head loss across the flash chamber. The warm seawater pumping

power is thus given as:



. Mys & I_(AhWS)SP + (Ahys )y + (Ahys ) + (Ahyyg )_ch
Wysp = n (48)
WSP

3.5. Feasibility, technological issues, and impacts of OTEC plants

Ocean thermal energy conversion plants can be located across about 60 million square
kilometers of tropical oceans, generally at latitudes within about 20 or 25 degrees of the
equator. Ocean water more than 1000 meters below the surface is normally at a
temperature of about 4 °C. This vast resource of cold water is constantly supplied by the

deep cold water that flows from the polar regions [22,119].

3.5.1 Feasibility

There is a high potential for OTEC plants in tropical island countries where the
temperature difference between surface and deep cold water at 1000 m is approximately
between 20 - 24°C and is sufficient to operate OTEC plants [22]. The ocean thermal
gradient essential for OTEC plants operation is mostly found between latitudes 20°N and
20°S [120,121]. There are at least two separate markets for OTEC plants: (i) industrial
nations and islands, (ii) smaller or less industrialized islands with modest needs for power

as well as desalinated water [122].

Commercial OTEC plants should be located in a stable resourceful environment for
efficient operation of the system [123]. The country’s population, economies, policies
and energy demands should also be looked at. An energy analysis that involves the
environment, economy, and services should be put together for an emergy evaluation
(emergy with an ‘m’) to determine the cost benefits [124]. Since capital costs are very
high for OTEC plants, the by-products of these plants, such as fresh water, should be
considered in a financing strategy to help overcome the initial costs [125]. Studies have
been done by Srinivasan et al. [126] on the cost effectiveness of OTEC plants and they

designed a new OTEC system by introducing a subsea condenser. When identifying



locations for OTEC plants, the thermal gradient suitable to drive the plants should not be
very far away from the shore. The OTEC piping systems are a major part of the initial
capital cost of OTEC plants [119]. Table 1 shows some countries with their thermal

gradients and the distance of the thermal resource from the shore.

Ocean thermal energy conversion plants can be land based, shelf mounted on platforms,
or floating types on deep water [127,128]. The plants installed on or near land do not
require complicated mooring, long power cables, or high maintenance costs such as with
open-ocean environments. They can be installed in sheltered areas to keep it safe from
storms and heavy seas. Land based or near shore located OTEC plants can be operated in
combination with industries such as for mariculture or for desalinated water [127,129]. A
shelf mounted OTEC plant can be towed to a favorable site of about 100 m depth and
fixed to the sea bottom. This is done to have closer access to the cold water resource.
Shelf mounted plants has to bear the open ocean environmental conditions and the power
delivery is also a concern because of the long underwater cables required to reach land
[127,129]. Floating OTEC plants are designed to operate offshore, and are preferred for
large power capacity plants. Offshore plants are difficult to stabilize and to moor in deep
water, and the cables attached to floating plants are more vulnerable to damages in the
open ocean environments. External forces such as waves, wind, and ocean currents affect

the stability of the plant [127,130].

3.5.1.1 Some OTEC case studies

The first ever OTEC plant that was successfully commissioned was in Hawaii in 1979. A
50 kW closed cycle floating demonstration plant was constructed offshore. Cold water at
a temperature of 4.4 °C was drawn from a depth of 670 m. The seabed at the site was a
steep rocky volcanic slope with very rough topography. The platform was moored by
using a 30000 Ib submerged weight. Ammonia was used as the working fluid.
Polyethylene pipe was used for transporting cold water. Polyethylene has a very smooth
interior and this reduces biofouling [131]. Two plate type titanium heat exchangers were

used [132]. During actual operation of the plant, it was found that biofouling, effects of



mixing the deep cold water with the warm surface water, and debris clogging did not
have any negative effects on plant operation. The longest continuous operation was for
120 hours. The plant designers had expected 50 kW of electricity to be generated and 40
kW to be consumed in running the pumps and other equipment on board, and these were

met [131].

A 100 kW OTEC pilot plant was constructed on-land for demonstration purposes in the
republic of Nauru in October 1981 by Japan. This pilot plant proved the validity of the
mechanical and electrical designs and also the deepwater pipelines for deep cold water.
The system operated between the warm surface water and the cold heat source of 5-8°C
at a depth of 500-700 m, with a temperature difference of 20°C. A pipeline length of 945
m was required to reach a depth of 580 m. Freon-22 was used as the working fluid in the
closed cycle because it is less harmful compared to ammonia. The heat exchanger tubes
were surface treated with titanium to improve performance. The shape of the seabed was
very irregular from the lagoon tip to a 50 m depth, after which there was a continuous
slope with a 40-45 degree inclination. This favorable coastal site was utilized to construct
the demonstration plant on land. The pipe material used was polyethylene after
investigating the thermal and mechanical stresses. Polyethylene pipes are superior in
flexibility to steel pipes and adapts well to seabed irregularity [133]. The tests done were
load response characteristics, turbine, and heat exchanger performance tests. The internal
efficiency of the turbine was well over 80%. Heat exchanger performance was highly
satisfactory. During operation, warm water from the surface brought some seaweeds and
sand, but nothing was trapped in the screen for cold water. The plant had operated by two
shifts with one spare shift, and a continuous power generation record of ten days was
achieved. The plant produced 31.5 kW of OTEC net power during continuous operation

and was connected to the main power system [133].

A 1 MW floating demonstration plant was planned to be built off the coast of Tamil Nadu
by the National Institute of Ocean Technology (NIOT), India, with a gross power
generation capacity of IMW and a net power 500 kW. This was to be commissioned

south east of Tutricorin, South India. The plant was supposed to have ammonia as a



working fluid and would have been the world’s first floating plant. The evaporators had
a special steel coating on the ammonia side to enhance nucleate boiling. An after-
condenser was introduced after laboratory tests. A four stage ammonia turbine was also
developed and the plant was integrated on a floating barge. The floating barge was to be
moored on a single point mooring at a depth of 1200 m using a 1 m diameter high density
Poly Ethylene pipe, which was the intake for the cold water pipe [94]. Even though all
the components were tested before commissioning, there was a problem in establishing
the 1 km long high density Polyethylene pipeline. Thus, this project was abandoned with
focus diverted to desalination using the OTEC cold water pipe [134].

A land based open cycle OTEC experimental plant was installed in Hawaii in 1993. The
turbine-generator was designed for an output of 210 kW for 26°C warm surface water
and 6°C deep water temperature. A small fraction (10 percent) of the steam produced was
condensed using a surface condenser to produce desalinated water. The experimental
plant successfully operated for six years. The highest gross power achieved was 255 kWe

with a corresponding net power of 103 kW and 0.4 L/s of desalinated water [30].

Saga University, Japan, is actively involved in OTEC and its byproduct studies.
Experimental studies have been conducted on heat exchangers for use as evaporators and
condensers. A spray-flash evaporation desalination system is also being investigated.
This desalination system can be utilized to convert 1% of raw seawater to fresh water.
Other studies done are on mineral water production using deep cold water, lithium
extraction from seawater, hydrogen production, air-conditioning and aquaculture
applications using deep cold water, and using the deep cold water for food processing and

medical (cosmetic) applications [135].

3.5.2 Technological issues

The proper designs of OTEC systems include the consideration of leakage of piping

systems that carry ammonia in a closed cycle. A major disadvantage of OTEC systems is

the high capital cost [79]. Extensive research has been done on the OTEC components,



for example, heat exchangers should have compact designs with optimum heat transfer
and low unit cost [136]. Experimental studies on heat exchangers for use in OTEC plants
have also been conducted in Saga University, Japan [22]. Guo-Yan et al. [137] has
presented a techno-economic study on compact heat exchangers to choose an optimum
heat exchanger with minimum pressure drop. They concluded that all compact heat
exchangers are feasible from an energetic point of view. However the performance differs
due to the materials used. Biofouling in the heat exchangers provides resistance to heat
transfer, therefore affecting their performance [87]. Cleaning methods such as continual
circulation of close fitting balls and by chemical additives to the water are used [87].
Together with a large pressure difference across the turbine, a high heat transfer rate
between the working fluid and the ocean water in the heat exchangers is required for
optimal power production in OTEC plants. Very large size turbines are required for the

low temperature and low pressure vapor at the evaporator [22].

Another major design concern is the cold water pipe that transports cold water from the
deep ocean to the surface. The cold water pipes that pump deep cold ocean water to the
surface require a lot of pumping power which increases the costs [113]. Approximately 4
m’/s of warm surface seawater and 2 m’/s of deep cold seawater (ratio 2:1), for a
temperature difference of 20°C, are required for every MW of electricity generated [138].
It is subjected to forces such as drag by ocean currents, oscillation forces, stresses at the
connections, forces due to harmonic motion of the platform, ad the dead weight of the
pipe itself. Also, problems will arise during installation due to difficulties in construction
and transportation to deployment site due to its very large size. The choice of materials is
also debatable [22,87, 139]. The successful installations of offshore oil drilling platforms
have provided technical guidance that can be directly applicable to OTEC cold water pipe
design [22].

3.5.3 Environmental impacts of OTEC plants

Renewable energy utilization will always have some impacts on the environment. Ocean

thermal energy conversion plants will have an impact on the physical characteristics of



the region it is deployed in [140]. These plants can be used to help improve the
environment by combining it with artificial coral reef ecosystems [141]. However,
changes in the climate characteristics are also possible [140]. Ocean thermal energy
conversion plants can alter the ocean surface energy balance by lowering the surface
temperatures, the tropical ocean environment can be modified by OTEC implemented
upwelling and increase in CO; production due to increased mixing rate between surface
and deep ocean waters. The deep water temperature can increase and the albedo of the

surface can also increase due to increased phytoplankton on the surface [22,140].

Deep cold seawater used in OTEC plants contains a lot of dissolved inorganic nutrients
such as phosphate, nitrate and silicate, which could be expected to promote blooms of
photosynthetic organisms if the seawater is discharged and contained within the upper
ocean or in coastal waters [142]. However, the rich nutrients will be discharged at the
surface which is poor in nutrients and is much warmer compared to deep ocean water.
The resulting complications due to this forced nutrient mixing are not fully understood
[143]. Alterations in climate and ocean surface conditions will be more significant when
multiple OTEC plants operate in a region. Also, the water intake by OTEC plants at the
ocean surface would induce circulation, which could affect the coastal circulation [22].
An experimental an analytical study conducted by Jirka et al. [144] on the mixing and
recirculation of surrounding ocean waters of an OTEC plant shows that large discharge

velocities and plant flowrates contribute a lot to recirculation.

4. CONCLUSIONS

The heat exchange processes across the ocean surface and the technology for ocean
thermal energy conversion are presented. The heat exchange processes across the ocean
surface are represented in an ocean energy budget. The heat added to the ocean by short
wave radiation is different at different latitudes and over different seasons, the maximum
being at the equator. Heat lost by back radiation from the surface of the ocean increases
with decreasing altitudes of the Sun. The effective back radiation from the ocean surface

is the difference between the outward radiation from the surface and the re-radiation (or



down radiation) from the atmosphere. Heat lost by evaporation from the ocean surface is
the largest contributing factor to the overall heat losses from the ocean. The evaporation
is higher close to the equator and decreases with increasing latitudes. Heat lost by
convection and conduction has seasonal and regional variations, and depends on the
temperature difference between the ocean surface and the air close to the surface. Ocean
currents transfer thermal energy from the lower latitudes to cooler regions in the higher
latitudes. The ocean energy budget quantifies the amount of heat gained and lost by the
ocean, and this can be used to determine the overall temperature change of the system
over a certain period of time. The accurate measurements and predictions of the ocean
energy budget terms are difficult and some errors and imbalances are still present. The
transport of cold water from the higher latitudes towards the equator along the ocean
bottom results in the displacement of the lower density water above and creates a thermal
structure with a large reservoir of warm water at the ocean surface and a large reservoir
of cold water at the bottom, with a temperature difference between them of 22°C to 25°C.
This temperature difference can be used to drive an ocean thermal energy system. Ocean
thermal energy conversion (OTEC) plants operate using this temperature difference to
run a turbine with efficiencies close to 3%. The thermal structure of the oceans, or the
thermocline, varies with different latitudes and is permanent for lower latitudes. The
thermodynamic principles are similar for the basic cycles, namely, open cycle, closed
cycle, and hybrid cycle. There are many technological issues for OTEC plant
implementation, such as getting cold water from the ocean depths, which is a major
concern. Many technological problems are however solved, such as fouling and compact
designs of heat exchangers. The case studies clearly show that OTEC technology can be
successfully commissioned. However, proper design and planning is required. It is seen
that most of the power generated at the turbine is used up in running the pumps and other
equipment. The first 50 kW OTEC plant in Hawaii in 1979 used 40 kW of the power in
running the pumps and other equipment on board. The initial capital cost for OTEC
plants is very large, but once the plant is operational, the costs will be recovered in the
long run. Ocean thermal energy conversion plants can alter the ocean surface energy

balance by altering the surface temperatures and increased CO, production due to



increased mixing of surface and deep waters. But no such issues were faced during the

actual operation of the demonstration OTEC plants in Hawaii and Nauru.

NOMENCLATURE
Ac = Heat transfer area of condenser, m’
Ae = Eddy diffusivity of water vapor, m*/s
Ag = Heat transfer area of evaporator, m’
Ap = Eddy conductivity, kg/m.s
A, = Noon altitude of the sun, Degrees
B = Bowen’s Ratio
C = Cloud cover, Okta
Gy = Specific heat of air (or water) at constant pressure, kJ/kg.°C
dt/dz = Vertical temperature gradient in the lowest atmosphere, °C/m
de/dz = Gradient of water vapor concentration in the air above ocean surface
€q = Actual vapor pressure at 10 m above ocean surface, kPa
e = Saturated water vapor pressure at ocean surface, kPa
F. = Rate of evaporation of water, kg/s per square meter of sea surface
g = Gravitational acceleration, m/s”
h = Enthalpies, kJ/kg
Hp, = Latent heat of vaporization, kJ/kg
L, = Latent heat of vaporization, kJ/kg
Mg = Mass flowrate of cold seawater, m’/s
M gim = Mass flowrate of steam, m’/s
- = Mass flowrate of working fluid, m’/s
My = Mass flowrate of warm seawater, m*/s
N = Precipitation, cm/year
P = Operating pressures, Pa
Qb =Rate of heat loss from the ocean by back radiation, W/m®

0. = Heat transferred in the OTEC condenser, W



Oy
Qe
0,

= Heat transferred in the OTEC evaporator, W
= Rate of heat loss by evaporation from the ocean surface, W/m®

= Rate of sensible heat loss from ocean surface by convection and

conduction,W/m?

Os

O
Oy

T wsi
Twso
Tcsi

Tcso

(Tsteam) cond
Uc

Ug

v

vr
w
We

Wy

= Amount of short-wave radiation reflected from the ocean surface, W/m?
=Rate of heat added to ocean by short-wave solar radiation, W/m?

= Amount of solar radiation received by ocean surface after cloud
disturbance approximations, W/m®

= Total rate of heat gain or loss by a given area of the ocean, W/m®
= Heat transported by moving currents (advection) within the ocean, W/m*

= Salinity, parts per thousand (% 0)

= Period, s

= Temperature, °C

= Air temperature at standard height (10 m) above ocean surface, °C
= Length of day (sunrise to sunset), hours

= Ocean surface temperature, °C

= Warm seawater temperature at inlet of evaporator, °C

= Warm seawater temperature at outlet of evaporator, °C

= Cold seawater temperature at inlet of condenser, °C

= Cold seawater at outlet of condenser, °C

= Temperature of steam in open cycle OTEC condenser, °C
= Overall heat transfer coefficient of condenser, W/m*.K

= Overall heat transfer coefficient of evaporator, W/m>.K
= Evaporation, cm/year

= Specific volume of liquid working fluid, m’/kg

= Wind speed at 10 m above sea surface, m/s

= Generator power of an OTEC plant, W

= Net power of an OTEC plant, W



WV = Vacuum pump power, W

W = Power required by cold seawater pump, W
stp = Power required by warm seawater pump, W
Wyep = Power required by working fluid pump, W
ne = Efficiency of generator
nr = Efficiency of turbine
ncsp = Efficiency of cold seawater pump
nwrp = Efficiency of working fluid pump
nwsp = Efficiency of warm seawater pump
Ahcsp = Total head loss across cold water piping, m
Ahwsp = Total head loss across cold water piping, m
(Ahcs)c = Head losses in the condenser, m
(Ahws)Ee = Head losses in the evaporator, m
(Ahcs)a = Head losses due to density differences, m
(Ahes)m = Minor head losses in the cold water pipe, m
(Ahws)m = Minor head losses in the warm water pipe, m
(4hcs)pe = Head loss in the desalination condenser, m
(Ahws)re = Head losses in the flash evaporator of open cycle system, m
(Ahcs)sp = Frictional head loss in cold water pipe, m
(Ahws)sp = Frictional head loss in warm water pipe, m
(Ahws)s = Head losses in the flash chamber of hybrid cycle system, m
(AT)c = Log mean temperature difference of condenser, °C
(ATw)E = Log mean temperature difference of evaporator, °C
AT = Change in seawater temperature, °C
p = Seawater density, kg/m’

= Stefan-Boltzmann constant, Wm™>K™*
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Tablel

Country/Area Temperature Difference (°C) between the | Distance from
surface water and water at a depth of Resource to Shore
1000 m (km)
Africa
Benin 22-24 25
Gabon 20-22 15
Ghana 22-24 25
Kenya 20-21 25
Mozambique 18-21 25
Sao Tomé and Pri- |22 1-10
ncipe
Somalia 18-20 25
Tanzania 20-22 25
Latin America and the Caribbean
Bahamas, The 20-22 15
Barbados 22 1-10
Cuba 22-24 1
Dominica 22 1-10
Dominican Republic |21-24 1
Grenada 27 1-10
Haiti 21-24 1
Jamaica 22 1-10
Saint Lucia 22 1-10
Saint Vincent and the |22 1-10

Grenadines




Trinidad and Tobago |22-24 10
U.S. Virgin Islands |21-24 1
Indian and Pacific Oceans

Comoros 20-25 1-10
Cook Islands 21-22 1-10
Fiji 22-23 1-10
Guam 24 1
Kiribati 23-24 1-10
Maldives 22 1-10
Mauritius 20-21 1-10
New Caledonia 20-21 1-10
Pacific Islands Trust |22-24 1
Territory

Philippines 22-24 1
Samoa 22-23 1-10
Seychelles 21-22 1
Solomon Islands 23-24 1-10
Vanuatu 22-23 1-10






