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Abstract

The Remote Sensing and GIS Laboratory at Utah State University (USU) began the process of es-
tablishing a remote sensing national land cover monitoring center in order to monitor land cover and
use in Honduras. A national land cover map derived from MODIS (Moderate Resolution Imaging Spec-
trometer) imagery products was developed. We designed a protocol for interpretation and analysis of
MODIS data products that included a Google-Earth on-screen sampling scheme, a field data collec-
tion of training samples and a classification tree algorithm. The first land cover map prototypes and
algorithms were developed using a time series of MODIS 2007 and 2008 imagery, elevation data
(STRM) and a time series of MODIS’s Enhanced Vegetation Index (EVI). In the model validation, the
Kappa coefficient was K = 65.1% and the overall model accuracy was 70%. This map will serve as a
base line to monitor future land cover changes in Honduras.
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Resumen

Generación de un mapa de cobertura del suelo en Honduras a partir de datos MODIS:
una base para el diseño de un centro nacional de seguimiento

El Laboratorio de Teledetección y SIG en la Universidad Estatal de Utah (USU) inició el proceso
de establecer un centro de monitoreo de detección de la cobertura y uso de la tierra a fin de monito-
rear la cubertura en Honduras. Un mapa de la cubertura derivado de MODIS (Espectrómetro de Imá-
genes de Resolución Moderada) fue desarrollado. Se diseñó un protocolo para la interpretación y aná-
lisis de productos de datos MODIS que incluyó un protocolo de Google-Earth para toma de muestras
en pantalla, una colección de campos de datos de muestras de entrenamiento y una clasificación ba-
sada en un algoritmo de árboles de decisión. El primer prototipo de mapas y algoritmos fueron desa-
rrollados usando una serie temporal de imágenes MODIS del 2007 y 2008, datos de elevación (STRM)
y una serie de tiempo del Índice Mejorado de Vegetación de MODIS (EVI). En la validación del mo-
delo, el coeficiente Kappa fue de K = 65,1% y la exactitud global del modelo fue del 70%. Este mapa
servirá como línea base para monitorear cambios en la cobertura futura de la tierra en Honduras.
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Introduction

Land resources throughout the world are ra-
pidly being depleted, and developing countries
in the tropics are experiencing some of the most
detrimental effects from rapid land use con-
version. Some 10.4 millions of tropical forests
were lost in the last f ive years (FAO, 2005).
Central America and Mexico have the second
highest global deforestation rate (Eggen-McIn-
tosh, 1994). All Central American countries are
classified with a high threat to loose their fo-
rest resources (Global Forest Watch, 2010). The
global Forest Resources Assessment indicates
that Honduras lost some 186,000 hectares of
forest between 2000-2005, the highest annual
deforestation rate in Central America: 2.8%
(FAO, 2005). This causes an enormous envi-
ronmental disruption and jeopardizes the we-
ak economy and the well-being of the country.

Appropriate monitoring is an important step
to determine how much forest resources should
be harvested versus what should be conserved.
Remote sensing approaches for assessing and
monitoring forest resources provide a cost-ef-
fective means by which forest inventories and
land use monitoring can be achieved. Various
methods may be used to map vegetation pat-
terns on the landscape, the appropriate method
depending on the scale and scope of the pro-
ject (DeFries et al., 2004). Projects focusing
on smaller regions, such as national parks, may
rely on aerial photo interpretation. Mapping
vegetation over larger regions has commonly
been done using digital imagery obtained from
satellites, and may be referred to as land cover
mapping.

In 1995 the country of Honduras produced
a land cover map with the help of the German
government (COHDEFOR, 1996). This forest
resources map contained 8 land cover classes
(dense conifer forest, sparse conifer forest,
mangrove forest, broadleaf forest, mixed fo-
rest, water bodies, neighboring country, non-
forestlands) and was produced using a visual
interpretation method of Landsat imagery. The
methodology to produce the map was time-con-
suming and not easily replicable, thus making
it a useful product at a single moment in time,
but not useful for monitoring purposes. Cu-
rrently it is outdated.

Some other attempts have been done in the
last decade. Two land cover maps were deve-
loped. In 2001, a land cover map was develo-
ped by a World Bank sponsored initiative
(PMDN) and another one by the Tropical Agri-
cultural Centre for Higher Education and Re-
search, CATIE (Ordonez and House, 2002).
None of them had a transparent and replicable
methodology and the government was still un-
certain about how much area is covered by fo-
rest or other lands. In 2005, a forest inventory
was conducted throughout the country. Around
300 sampling plots were established systema-
tically all over the country. Due to the lack of
funding the inventory was not complemented
with the remote sensing assessment and rapidly
became obsolete (AFE-COHDEFOR, 2006).

Our proposal is to produce a similar land co-
ver map with the same 8 land cover classes (and
possibly more) using contemporary MODIS sa-
tellite imagery in a fashion that can be done re-
latively rapidly and over time-specifically for
long term monitoring purposes. This was not
possible in 1995, and is indeed feasible today
because of advancements in image processing
technology since 1995 and the availability of
MODIS imagery since 2000.

Utah State University, located in Logan,
Utah had the responsibility of coordinating the
development of field data collection protocols,
mapping methodologies, and coordinating land
cover mapping for the region. ESNACIFOR
was responsible for field data collection, ima-
ge and ancillary data preparation, and land co-
ver modeling. The development and refinement
of the legend was coordinated by ESNACIFOR
with input from managers, government off i-
cials and investigators in Honduras. This paper
presents an overview of the methodology used
to create the national land cover dataset, and
highlights several of the issues associated with
achieving this product through a coordinated
process between the two locations-countries.

The goal of this project was to develop and
transfer a methodology (protocol) using MO-
DIS (Moderate Resolution Imaging Spectro-
meter) imagery to create a national-level land
cover map. Other products, such as a national-
level ecosystems map —not described on this
paper—, were derived from the land cover map.
It should be emphasized that developing the
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map was not the sole goal of the project. In ad-
dition, the other goal of the project was to train
Honduran scientists in the development of this
map, so that they can continue monitoring na-
tional resources in the future.

Objectives

Specific objectives for this project were:
1) Develop an image classif ication me-

thodology using MODIS imagery to create a
national-level land cover map for the country
of Honduras.

2) Train Honduran scientists in funda-
mental knowledge of remote sensing techno-
logies, and remote sensing-based mapping.

3) Provide training to the scientists on the
GIS methodologies (protocol) developed by
USU for creating the national land cover map.

4) Demonstrate how the protocol can be
used for future land resource monitoring as
well as assessment of land cover change bet-
ween 2009 and the future.

Project organization

Project study area

Honduras is located in the center of the Cen-
tral American isthmus, between 13° and 16° la-

titude North and 83° and 89.5° longitude West
(Fig. 1). It has an area of 112,088 square kilo-
meters. It is a rich country in terms of natural
resources and has the highest percentage of fo-
rest lands among the other Central American
nations (AFE-COHDEFOR, 2006). Approxi-
mately 50% of the country is still covered by
undisturbed forests (Richards, 1996) which in-
clude humid tropical forests, arid or deciduous
tropical forests, cloud forests, mangrove we-
tlands, and pine forests. Forests in Honduras
are being depleted at an accelerated rate. The
deforestation rate is currently 80,000 hectares
per year, which is one of the highest defores-
tation rates in the hemisphere (Stonich, 1993).

Tropical forests are typically associated with
coastal mountains receiving high amounts of
precipitation while pine forests are located in
the headwaters of rivers in the mountains of
central Honduras. In Honduras, two major ri-
ver systems drain the central highlands to both
the Caribbean Sea (eight river basins) and the
Pacif ic Ocean (two river basins) (Gutiérrez,
1992; Laboranti, 1982). The average precipi-
tation rate is 2,000 mm per year and this rain-
fall produces significant runoff from waters-
heds (Hargreaves, 1992).

The country is composed of extremely fra-
gile ecosystems. Since it is a narrow strip of
land, rivers run from the continental divide
(2,000 meters above sea level) to the lowlands
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Figure 1. Location of Honduras, Central America. Siguatepeque is the town where ESNACIFOR is located.



in the Pacif ic and Caribbean coasts in very
short distances. As a result, rivers are typically
steep, enclosed in v-shaped valleys, and exhi-
bit dendritic drainage patterns. Greater than
half of Honduras might experience 300 mm of
rain in 24 hours (Hargreaves, 1992). Soils are
formed from metamorphic, volcanic, and se-
dimentary parent materials. As a result, eight
of the ten world soil orders exist in Honduras.
These soils are classified with a high to very
high erosion risk. In addition, the terrain in
Honduras is characteristically steep with 75%
of the territory having slopes greater than 30%
(Hargreaves, 1992). Forest cover removal pro-
duces an enormous environmental disruption. 

Division of responsibilities

Overall project tracking and management
was conducted by the RS/GIS Lab at Utah Sta-
te University. The lab was responsible for de-
veloping the methodology and providing trai-
ning to ESNACIFOR personnel in the use of
the aforementioned methodology. ESNACI-
FOR provided the appropriate funding for the
project, including salaries, fees, and travel ex-
penses for all project participants of both par-
ties. ESNACIFOR was also be responsible for
providing access to possible field data from fo-
rest management plans from ICF: the Hondu-
ran Forest Service.

Project coordination and timeframe

Training workshop and the assessment of the
ESNACIFOR’s GIS lab capability were con-
ducted in spring of 2008. Initial field data co-
llection protocols were established by the lab
at Utah State University. Google sampling da-
ta collection primarily occurred at the end of
2008 in Honduras. MODIS image processing
and classification workshop dedicated to en-
sure consistent mapping methods was conduc-
ted during the winter of 2009 at Utah State Uni-
versity lab. Periodic meetings, teleconferences
and field visits (in Honduras) were conducted
in the summer of 2009 to ensure the collabo-
rative mapping process. Additional field data
to improve the model and for validation was

collected from May through September of
2009. Mapping efforts were completed by the
end of 2009. Last training session and com-
pletion of final products was held at Utah Sta-
te University lab in April of 2010. The land co-
ver map was completed and delivered to the
public in May 2010.

Methods

Image selection and preparation

An important part of this project involved
determining the best image classification ap-
proach for the monitoring protocol. The MO-
DIS sensor provides an ideal remotely sensed
platform for developing a national-level land
cover/resource monitoring program (Mucho-
ney et al., 2000; Loveland et al., 2000; Brown
et al., 2007). With 500 meter pixel resolution
it is considered a moderate resolution imaging
sensor and cannot be used for highly detailed
land cover mapping (by comparison the Land-
sat sensor offers 30 meter pixel resolution). Ho-
wever, MODIS had several key advantages that
made it highly suitable for this project. With 7
spectral bands, MODIS provides adequate
spectral resolution to map vegetation. These 7
bands approximate the 6 spectral bands offe-
red by the Landsat sensor.

1) The MODIS sensor orbits the earth each
day (Vermote, 2008). The daily capture of MO-
DIS imagery means MODIS can provide daily
images of the Earth’s surface, making it ideal
for monitoring purposes.

2) In addition to the daily MODIS surfa-
ce reflectance product, MODIS provides a sui-
te of derived products. One of these products
is the Daily Surface Reflectance Quality Pro-
duct which is an 8-day composite of images in-
tended to provide the best image pixels for an
8-day period (Vermote, 2008). This is helpful
in Honduras where cloud cover presents a sig-
nif icant challenge for remote sensing-based
mapping, as the best cloud free pixels are used
in the composite image (Vermote, 2008).

3) The MODIS image scene encompasses
the entire country of Honduras with a single
swath. This is important because other sensors,
such as Landsat, would require mosaicking
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multiple image scenes (approximately 12
Landsat scenes are required to cover the
country of Honduras) from several swaths, im-
posing considerable technical challenges.

4) Imagery and products derived from
MODIS are offered without cost from the Uni-
ted States Geological Survey (USGS) and 
be downloaded from the World Wide Web
(www.glovis.gov).

Generally, land cover mapping is accom-
plished by segmenting the landscape into are-
as of relative homogeneity that correspond to
land cover classes from an adopted or develo-
ped land cover legend. Technical methods to
partition the landscape using digital imagery-
based methods vary. Unsupervised approaches
involve computer-assisted delineation of ho-
mogeneity in the imagery and ancillary data,
followed by the analyst assigning land cover
labels to the homogenous clusters of pixels. Su-
pervised approaches utilize representative sam-
ples of each land cover class to partition the
imagery and ancillary data into clusters of pi-
xels representing each land cover class. An im-
portant part of mapping involved the use of
training data for image classification, whether
a supervised or unsupervised approached was
used. Sampling can be a time consuming and
costly part of any remote sensing-based land
cover mapping project. We determined the best
approach to collecting sampling data through
the course of the project. Possible options in-
cluded using existing forest plot sampling si-
tes (AFE-CODHDEFOR, 2006), collecting ad-
ditional sampling plots, and most likely, a
combination of both.

Land use classification system

Utah State University conducted some pre-
liminary tests using MODIS imagery to crea-
te a national-level map of Honduras. These pre-
liminary results were presented to the
government authorities in spring of 2008. The
preliminary results were developed through a
lattice of points that were used to train the clas-
sification tree algorithm. These training points
were labeled by drilling them through the 1995
forest resources map. The training samples we-
re then imported to the classification tree al-

gorithm and rules were generated to derive the
resulting land cover map. The classes that we-
re best mapped were: broadleaf forest, man-
grove forest, and pine forest.

We decided to use a modified land use clas-
sification system used by the International Ge-
osphere-Biosphere Programme (IGBP) (Jen-
sen 2005). This classif ication system was
selected because it has been used by the Hon-
duran government authorities. This classifica-
tion system has also been largely used by other
projects either globally (Friedl et al., 2002; Lo-
veland et al., 2000) or in the Central and South
American Regions (Muchoney et al., 2000; La-
tifovica et al., 2000; Brown et al., 2007), due
to its capacity to fit the MODIS resolution.

In the final land use and cover map, 13 clas-
ses were delineated (Table 1). Initially eight
classes were assumed to be mapped (Dense and
sparse pine forest, broadleaf forest, mixed fo-
rest, urban, mangrove forest, water bodies and
agriculture farms/pasture), however, through
the whole process of Google-Earth sampling
plus the field visits, five more classes were ad-
ded to the classification (Commercial agricul-
ture, shrublands, dry forest, savannas, and
shrimp farms).

High resolution imagery sampling

Image interpretation was conducted using
Landsat ETM with ArcGIS© and high resolu-
tion orthophotography using Google Earth™.
Table 1 identifies which classes (10 classes in-
itially) that we anticipated that were going to
be identifiable with each method (UNESCO,
1983). Training data were obtained from three
sources: Existing data, Image Interpretation of
Landsat ETM and Orthophotography, and field
samples. Existing data were available form two
sources: Forest management plans, and point
data collected by the FAO (AFE-COHDEFOR,
2006). These data were carefully checked to
make sure that they were reliable, and then they
were formatted in preparation for digital ima-
ge classification. Formatting was done within
a spread-sheet (e.g. Excel).

The sampling approach can be described as
a systematic-selective hybrid sampling design.
The image interpretation of Landsat ETM in-
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Tabla 1. Legend used in the land cover mapping of Honduras

Label Symbol Classification System (adapted from IGBP Jensen, 2005

Dense Evergreen Needleleaf
forest

Sparse Evergreen Needleleaf
forest

Broadleaf Forest

Mixed Forest

Shrublands

Mangrove

Water Bodies

Agriculture and Pasture

Commercial Agriculture

Urban

Woody Savannas

Dry Forest

Shrimp Farms

BCD

BCR

BLF

BMX

MAT

BMG

LYL

AGP

AGC

URB

SAB

BSE

CAM

Lands dominated by trees with a percent canopy cover >60%
and height exceeding 2 meters. Almost all trees remain green
all year. Canopy is never without green foliage.

Lands dominated by trees with a percent canopy cover betwe-
en 30-60% and height exceeding 2 meters. Almost all trees re-
main green all year. Canopy is never without green foliage. 

Lands dominated by trees with a percent canopy cover > 60%
and height exceeding 2 meters. Almost all trees remain green
all year. Canopy is never without green foliage. 

Lands dominated by trees with a percent canopy cover > 60% and
height exceeding 2 meters. Consists of tree communities with in-
terspersed mixtures or mosaics of the other four forest cover
types. None of the forest types exceeds 60% of landscape.

Lands with woody vegetation less than 2 meters tall and with
shrub canopy cover is > 60%. The shrub foliage can be either
evergreen or deciduous.

Lands with a permanent mixture of water and herbaceous or
woody vegetation that cover extensive areas. The vegetation can
be present in either salt, brackish, or fresh water.

Oceans, seas, lakes, reservoirs, and rivers. Can be either fresh
or salt water bodies

Lands covered with temporary crops followed by harvest and a
bare soil period (e.g., single and multiple cropping systems. It
also includes natural or planted pasture for livestock.

Land covered by perennial crops such as bananas, pineapple,
and oil palm.

Land covered by buildings and other man-made structures. No-
te that this class will not be mapped from the AVHRR imagery
but will be developed from the populated places layer that is
part of the Digital Chart of the World.

S Lands with herbaceous and other understory systems, and
with forest canopy cover between 30-60%.The forest cover
height exceeds 2 meters.

Lands dominated by trees with a percent canopy cover > 60%
and height exceeding 2 meters. Consists of seasonal broadleaf
tree communities with an annual cycle of leaf-on and leaf-off
periods.
Dominant species are: Simarouba glauca, Switenia humilis, Ca-
sia grandis, Mimosa sp., Albizia guachepele, Sterculia apéta-
la, Enterolobium cyclocarpum, Karwinskia calderonii, Cre-
centia alata, Bursera simaoruba, Leucaena salvadorensis,
Tabebuia rosea, Gliricidia sepium, Lysiloma sp., Bombacopsis
quinata and Cedrela odorata. 

Formerly covered by Mangrove forest and now they are ponds-
water bodies dedicated to shrimp production. All sites are lo-
cated in the Pacific coast at an elevation below 200 meters abo-
ve sea level.



volved the assigning label attribute to each
point location on a systematic grid of site are-
as. There were 311 site areas on a grid cove-
ring the entire country (Fig. 2). Each site area
represents an area of about 80 km2 (10 km dia-
meter). Within each site area the image analyst
chose the best point location representative of
the land cover classes in the site area. Betwe-
en 10 and 15 point location samples were cho-
sen for each site area, and samples were at le-
ast 1 sample point apart. The analyst tried to
get samples for as many different land cover
classes seen in the site area polygon.

Google-Earth™ data collection
protocol

Google Earth as a scientif ic and environ-
mental visualization tool has been increasingly
used since its launch in 2005 (Sheppard and
Cizek, 2009). We basically used the same pro-
cedure that was used with the interpretation of
Orthophotography in Google Earth™. The si-
te area and point location feature classes had
to be converted to .kml format and were used
with Google Earth™ to interpret higher reso-
lution imagery (though perhaps not as up-to-
date as the ETM imagery). The best way to use
Google Earth™ was to add the site area and
point location .kml f iles to Google Earth™,

and use them as a point of reference. The
analyst had the option to place the road net-
work or other layers in Google Earth© for re-
ference. With ArcMap© open on one screen and
Google Earth™ open on another screen, the
analyst used Google Earth™ to interpret the
imagery, but as added the label in ArcMap©.
Some 5,616 samples were collected to build
the training data set.

Ground truth data collection

Training and map validation data were co-
llected through ground-based f ield work to
supplement the existing f ield and Google
Earth™ collected data (5,616 data points). The
ground-based field samples were 240 samples,
collected by traversing navigable roads in three
different a mapping zones (North coast, South
and Western part of the country) and opportu-
nistically selecting plots that met criteria of ap-
propriate size (500 by 500 mts or 25-hectare
minimum) and composition (stand homoge-
neity). Field data were collected using ocular
estimates of biotic and abiotic land cover com-
ponents, including percent cover of dominant
classes. Laptop computers, Landsat imagery,
digital orthophotoquads, and GPS devices we-
re used for navigation and plot identification
whenever possible. Each plot was identif ied
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Figure 2. Site areas within which point locations were opportunistically chosen to be used as training data. The-
se are 311 locations containing more than 5,000 points that were photo interpreted in Google Earth images.
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with a UTM coordinate using a GPS. Field da-
ta were recorded onto paper f ield forms and
subsequently entered into a database.

Predictor layers

Utah State University has considerable ex-
perience using a wide variety of image classi-
f ication approaches. Most recently we com-
pleted a five year project mapping land cover
over a large portion of the southwestern Uni-
ted States (Lowry et al., 2007) using a classi-
fication tree algorithm. Several predicting la-
yers were used in the primary classif ication.
Spatial data layers used to map land cover in-
cluded image-derived and ancillary datasets.
Core image-derived datasets included indivi-
dual seven bands of MODIS images from 2007
and 2008, the Enhanced Vegetation Index
(EVI). Ancillary datasets were derived from 30
meter digital elevation models (DEM) obtai-
ned from the NASA’s STRM (Shuttle Radar To-
pography Mission)
(http://www2.jpl.nasa.gov/srtm/).

Modeling approaches and procedure

The USU-ESNACIFOR team investigated
several avenues for image classif ication. In
particular we experimented with methods si-
milar to those used in previous large landsca-
pe mapping efforts such as the 1995 Utah GAP
land cover project (Homer et al., 1997). The
cluster-busting method was the first modeling
approach that we used. In this method we vi-
sually determined an appropriate number of
clusters. Then we ran an initial map with iso-
data, to create a cluster map with maximum li-
kelihood classifier using the signature file from
isodata. Then we used this output to subsequent
steps.

The next method was the use of decision tree
classifiers that are well suited for land cover
mapping. Classification and regression trees
(CART) were developed by Breiman et al.
(1984) and were quickly recognized as a va-
luable tool for discriminating complex rela-
tionships among environmental variables
(Friedl et al., 2002). Decision trees readily ac-

cept a variety of measurement scales in addi-
tion to categorical variables, and have de-
monstrated improved accuracies over the use
of traditional classifiers (Hansen et al., 1996;
Pal and Mather, 2003). Finally, decision tree
software is readily available, computationally
efficient, and by using a hierarchical approach
to define decision rules, is intuitive to a variety
of users.

For our project we incorporated the decision
tree software See5 (RuleQuest Research, 2004)
with ERDAS Imagine®. The tool, developed for
the National Land-Cover Dataset 2001 (Homer
et al., 2004) project (hereafter «NLCD map-
ping tool») provided the ideal solution to our
need for an efficient integration of the decision
tree software within a spatially explicit mode-
ling environment.

Using the NLCD mapping tool, decision tree
models were generated in See5 (RuleQuest Re-
search, 2004) with the boosting option, and
then spatially applied in ERDAS Imagine®.
Modeling was iterative and subsequent itera-
tions tested using different combinations of
predictor datasets, or additional samples in an
attempt to improve the model. An iterative pro-
cess of adding/subtracting predictive layers
from the model produced, finally, a more refi-
ned map.

Map validation using Google Earth™

Sample polygons were generated from the
final land cover map. First, the raster version
of the map was converted to a vector polygon
dataset. The size of land cover polygons, for all
classes, in the final land cover map was hea-
vily skewed toward many small polygons and
a few large polygons (i.e. a Poisson distribu-
tion). Randomly selecting a set of polygons
from such a distribution results in many small
polygons and very few large polygons (by sim-
ple probability given such a distribution). For
our selection process we wanted to randomly
select polygons that were large enough that an
assessment of their accuracy could tell us so-
mething about the map at the stand level. We
also wanted to select polygons that were wi-
thin the high resolution portion of Google
Earth™ Images. In other words, we wanted to
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identify polygons where land cover could be
interpreted from higher resolution imagery, and
which were not too small.

To begin, we recognized that all the land co-
ver classes do not have the same spatial pattern;
which is often a result of their unique ecologi-
cal characteristics and abundance on the lands-
cape. Some classes may be considered «matrix»
communities and are spatially represented by
large contiguous areas. Other classes are best
described as «patch» communities that are im-
bedded within the broader matrix. Based on the
notion of matrix and patch communities (Poia-
ni et al., 2000) we divided the mosaic of land
cover classes into two groups based on their
proportional abundance on the landscape. Fi-
gure 3 shows the division between matrix and
patch classes. Examples of large matrix classes
include Broadleaf Forest, Dense Pine Forest,
and Sparse Pine Forest while examples of patch
classes are Mixed Broadleaf-Pine Forest, Dry
Forest, and Urban Areas.

Candidate polygons for accuracy assessment
were first selected based on whether they we-
re within the high resolution portion of Goo-
gle Earth™ Imagery (Fig. 4). Then they were
selected based on size. Matrix classes were se-
lected as potential sample polygons if they we-
re between 1,000 hectares and 2,000,000 hec-
tares in size. Patch classes were selected if they
were larger than 100 hectares, the minimum
mapping unit for the map. Following these two
selecting rules up to 60 polygons were ran-

domly selected for each land cover class. Ta-
ble 1 identifies the number of randomly selec-
ted polygons for each class, the total area sam-
pled (sum of sample polygons) and the percent
of the total map the sampled portion represents.
A total of 685 polygons were chosen as sam-
ple polygons to be used for accuracy assess-
ment. Figure 4 shows the selected polygons
(Table 2). The process basically consisted on
the analyst using numeric codes for label as-
signment. The Google™ file (.kml) was later
converted to ArcGIS© file (shapefile).

Results

Land cover map

The most important and identifiable mapped
classes were Broadleaf forest and pine forest
(sparse and dense) that cover more than half of
the country (58.1%) (Table 3, Fig. 5). These fo-
rest types are located following the mountain
chains that go from west to east and north to
south in the central part of the country. They are
distributed along this rough topography in
which 70% of the territory is located over 30%
slopes. The broadleaf forest is located along the
north coast and in a corridor that goes from the
middle to the north-western part of the country,
following areas of higher precipitation. Pine fo-
rests are located in drier areas in smaller pat-
ches scattered all over the central and western
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part of the country. In between these patches,
subsistence agriculture and pasture lands areas
are found, forming a mosaic of agricultural and
forest patches. In bigger patches, agro-com-
mercial activities are located in the intermoun-
tain larger valleys. These areas are dedicated to

high yield crops such as: bananas, cantaloupes,
oil palms, citrics, sugar cane, and pineapples.
Mangrove forest was found only in the pacific
coast where most of this coastal ecosystem is
located. Significant areas of mangrove forest
have been cut and inundated to establish shrimp
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Figure 4. Randomly selected polygons for accuracy assessment and map validation.
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Tabla 2. Randomly selected polygons to be used as reference data for the map validation procedure

Class name Code
Numeric

Type Count
Sampled area Total area Percent area

code (ha) (ha) sampled

Ag. Farm/Pasture AGP 2 Matrix 60 416,250 3,192,275 13.04
Dense Pine Forest BPD 3 Matrix 60 437,375 1,448,275 30.20
Sparse Pine Forest BPR 4 Matrix 60 227,600 1,273,625 17.87
Broadleaf Forest BLF 5 Matrix 48 475,625 4,226,675 11.25
Shrubland MAT 9 Matrix 60 202,375 1,088,825 18.59
Ag. Commercial AGC 1 Patch 60 210,275 478,050 43.99
Mangrove Forest BMG 6 Patch 60 147,100 192,875 76.27
Mixed Conf.-Broadleaf BMX 7 Patch 60 16,475 136,775 12.05
Lakes & Lagoons LYL 8 Patch 60 39,875 77,425 51.50
Urban Areas URB 10 Patch 23 23,425 25,925 90.36
Savannah SAB 11 Patch 41 95,550 218,500 43.73
Dry Forest BSC 12 Patch 60 24,575 56,425 43.55
Shrimp Farms CAM 13 Patch 10 2,325 3,600 64.58

662 2,318,825 12,419,250 18.67



farm ponds. We were able to identity these lar-
ge areas. Dry forest was located in the southern
portion of the country and in small areas in the
central and northern regions where it is known

that precipitation is limited in amount and pe-
riod of occurrence, meaning less than 1,000
mm/year distributed in 3-4 months. Shrublands
were also located mostly in the western and cen-
tral regions and are often seen as areas of tran-
sitions where the forest has been cleared and/or
burned and most of the cleared areas have re-
mained untouched to produce a secondary fo-
rest. This is true for most of the cleared and/or
burned areas for either pine or broadleaf forest.
The urban class identified only when urban set-
tlements were larger than 200,000 people. Sma-
ller urban centers were hardly captured given
the spatial resolution and spectral of the MO-
DIS signal. The mixed forest was detected in
the transitional zones between the pine forest
and broadleaf forest. Due to its foliar compo-
sition, its detection was not very accurate. An
explanation to this is discussed later in this pa-
per. Honduras has only 2 important lakes: one
is natural and the other is a man-made water
body. They both are located in the central part
of the country and were accurately mapped. The
last class detected by the MODIS sensor was
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Figure 5. The MODIS imagery-derived map of land use and cover of Honduras, Central America.
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Tabla 3. Areas of land use and cover as a result of
the land cover mapping of Honduras

Legend (name-code)
Area in 2009

km2 %

Commercial agriculture-AGC 4,042 3.63
Agriculture pasture-AGP 28,961 25.98
Dense pine forest-BPD 13,859 12.43
Sparse pine forest-BPR 11,919 10.69
Broadleaf forest-BLF 39,037 35.02
Mangrove forest-BMG 1,067 0.96
Mixed forest-BMX 673 0.60
Waters bodies-LYL 689 0.62
Shrublands-MAT 8,592 7.71
Urban-URB 204 0.18
Woody savanna-SAB 2,121 1.90
Dry forest-BSC 212 0.19
Shrimp farms-CAM 93 0.08

Total 111,468 100.00



the woody savanna. A peculiar ecosystem lo-
cated in the northern and eastern portion of the
country, close to the Caribbean coast. This is
typically composed by grass and shrub vegeta-
tion accompanied by sparse pine trees. These
areas are for high precipitation (between 3-4
meters per year), giving as a result highly lea-
ched soils, and sparse taller vegetation.

Model validation

The model validation has the purpose of me-
asuring, as objectively as possible, the accuracy
of the map. Usually this is given by providing
a quantitative measure of map accuracy (Con-
galton and Green, 1999). The accuracy assess-
ment was run using the Kappa Tool. The results
showed that the Kappa Index was: 0.651258
(Standard error of kappa: 0.0055672, Z-Score
for kappa: 116.981) see Table 4. The Kappa sta-
tistic can be interpreted as follows: Values be-
low 0.40 would suggest the agreement betwe-
en reference data and the mapped data is poor
and could occur by chance. Values between 0.40
and 0.80 represents moderate agreement and
values over 0.80 represents strong agreement
(Congalton and Green, 1999).

The Kappa statistic for the land cover map
was in the «moderate agreement» ranging in-
dicating the results of the error matrix good.
The Z-score for Kappa tells us whether the

agreement between the mapped data and the
reference data could occur by chance. A Z-sco-
re higher than 1.96 suggests that, at a 95% con-
fidence level, the results of the error matrix do
not represent chance agreement. The Z-scores
for both maps are well above 1.96 indicating
that we can have a high level of confidence in
the error matrix and Kappa statistic.

The error matrix is also very useful to vi-
sually and quantitatively see which classes are
highly confused with one another. This is do-
ne by examining the numbers in the off-diago-
nal cells. The error matrix for the land cover
map also tells us that the overall accuracy of
the map was 70%. However, the error matrix is
most useful for telling us something about the
accuracies of the individual land cover classes.
The error matrix provides information on two
types of error: 1) errors of commission, and 2)
errors of omission (Jensen 2005). Errors of
commission represent reference locations that
were incorrectly mapped as other mapped clas-
ses, and are presented as the percentages at the
right of the row totals (Table 4). For example,
there were 415 reference samples that «landed
on» AGC, but only 352 of those were AGC. The
90 samples that were not AGC, but landed on
AGC are considered errors of commission.
Errors of omission represent locations on the
map that were not mapped correctly, and are
presented as the percentages at the bottom of
the column totals. For example, there were a
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Tabla 4. Accuracy assessment results of the land cover mapping of Honduras

Class AGC AGP BPD BPR BLF BMG BMX LYL MAT URB SAB BSC CAM
Row Row
total %

AGC 352 21 0 0 6 1 0 5 21 2 0 0 7 415 85%
AGP 0 662 0 7 7 0 0 0 99 10 0 0 0 785 84%
BPD 0 15 583 193 7 0 6 0 16 0 0 0 0 820 71%
BPR 0 103 31 217 0 0 10 0 24 0 57 0 0 442 49%
BLF 0 66 71 8 627 3 0 0 80 0 31 0 0 886 71%
BMG 1 23 0 3 0 240 0 10 9 2 10 1 0 299 80%
BMX 1 15 13 5 6 2 4 0 13 0 6 0 0 65 6%
LYL 4 19 0 0 2 5 0 67 4 0 3 1 1 106 63%
MAT 3 128 0 22 0 0 56 4 160 0 0 3 0 376 43%
URB 3 0 0 0 0 0 0 3 1 47 0 0 0 54 87%
SAB 0 0 0 5 0 1 1 0 0 0 186 0 0 193 96%
BSC 3 29 0 0 1 0 0 0 35 1 4 6 0 79 8%
CAM 0 0 0 0 0 0 0 5 0 0 0 0 7 12 58%
Column total 367 1,081 698 460 656 252 77 94 462 62 297 11 15 4,532
Accuracy 96% 61% 84% 47% 96% 95% 5% 71% 35% 76% 63% 55% 47% 70%

Kappa: 0.651258. Standard error of kappa: 0.0055672. Z-Score for kappa: 116.9.



total of 367 AGC reference locations, but only
352 (96%) were in locations mapped as AGC.
The remaining 4% were mapped as something
else and are considered errors of omission.

Examining the error matrices for the map we
can see that some land cover classes were map-
ped very well, while others were mapped qui-
te poorly. If we consider any class mapped with
accuracy greater than 80% mapped well, we
note that AGC, BPD, BLF, and BMG are all
mapped very well. Classes mapped moderately
well (50%-80%) are AGP, LYL, URB, and
SAB. Classes mapped poorly (< 50%) are BPR,
BMX, MAT, and CAM. For example in the
map, we noted that 56 BMX reference loca-
tions were erroneously mapped as MAT. We
can say that BMX was «confused» with MAT.

Discussion

About the modeling approach

A primary objective of this land cover map-
ping project was to develop a transparent me-
thodology that was repeatable and could be
consistently and independently applied by the
Honduran scientists. The decision tree classi-
f ier combined with the Google™-sampling
protocol met this objective well. We found the
decision tree classifier considerably more ti-
me-efficient. The decision tree classifiers are
a more powerful tool for discriminating land
cover classes. Our results were very consisted
with other investigations (Lativof ic et al.,
2000; Friedl et al., 2002). They are also a very
interpretable method and explicit method, be-
cause their hierarchical decision rules and
splits can be revealed and explained.

About Google Earth™ sampling 
and validation

Throughout the course of the project we re-
cognized the importance of providing a mea-
sure of map quality to users of the land cover
map. While limitations of time, money and lo-
gistics prohibited a formal accuracy assessment
(i.e. external validation with probability-based
sample design), we believe the methods we em-

ployed provide useful information to map
users. Google Earth™ is a readily available to-
ol that can be accessible to almost anyone in
the world (Sheppard and Cizek ,2009). The no-
velty of this approach allows enormous saving
in time and resources and training. We found
very little references that confirm that this to-
ol has been used to collect training samples in
a land use classification map. We hope it can
be used in the future.

Examining the error matrices for the map we
can see that some land cover classes were map-
ped very well, while others were mapped qui-
te poorly. If we consider any class mapped with
accuracy greater than 80% mapped well, we
note that AGC, BPD, BLF, and BMG are all
mapped very well. Classes mapped moderately
well (50%-80%) are AGP, LYL, URB, and
SAB. Classes mapped poorly (< 50%) are BPR,
BMX, MAT, and CAM. The Google Earth™
validation sampling scheme proved to be a very
cost-effective procedure. No references were
found on the use of this approach for valida-
tion a land map use.

About MODIS Selection

MODIS capability and the classif ication
procedure exceeded the project expected go-
als. Initially, 8 classes were set up in such way
that can potentially be discriminated and map-
ped. As the project progressed, five (5) more
classes were added to the classification algo-
rithm. MODIS imagery proved to be very af-
fordable and successful by identifying and dis-
criminating land use classes at the country
level. The accuracy assessment of the map was
very high particularly for the some classes such
as broadleaf forest, mangrove forest and com-
mercial agriculture.

We also recognize that MODIS data had so-
me limitations, especially at discrimination so-
me classes such as: Sparse Pine Forest (BPR),
Mixed Forest (BMX), and Shrublands (MAT).
This is basically a limitation of the sensor to
identify clearly these classes, which are tran-
sitional classes, at a resolution of 500 meters.
However, these classes are considered a tran-
sition of secondary forest which is constantly
growing to become primary forest or fully
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grown forest. In the case of Shrublands, they
will grow until they become adult trees. Simi-
larly, in the mixed forest, trees will mature un-
til either conifer or broadleaf species become
dominant. Therefore, we believe that the MO-
DIS signal does not work very well at deter-
ming different vegetation stages at this resolu-
tion. Although it does very well differentiating
fully grown or developed vegetation classes
and types. Other researcher found these MO-
DIS limitation in the past (Muchoney et al.,
2000; Latifovic et al., 2000). Similarly Eggen-
McIntosh et al. (1994) found the same obsta-
cles using AVHRR imagery.

Summary

MODIS capability and the classif ication
procedure exceeded the project expected go-
als. Initially, 8 classes were set up in such way
that can potentially be discriminated and map-
ped. As the project progressed, five (5) more
classes were added to the classification algo-
rithm. MODIS imagery proved to be very af-
fordable and successful by identifying and dis-
criminating land use classes at the country
level. The accuracy assessment of the map was
very high particularly for the some classes such
as broadleaf forest, mangrove forest and com-
mercial agriculture.

The Google™ sampling protocol showed a
high confidence as was used to collect the sam-
pling training data. With minor training ses-
sions, analysts were able to operate and collect
samples. Despite the tedious work involved in
the sampling collection, very few mistakes we-
re made when interpreting the images. This
protocol seems very promising as a cost-ef-
fective method to collect training samples wi-
thout needing costly field visits.

The objective of the accuracy assessment was
to quantitatively measure the accuracy of a MO-
DIS derived land cover map product. The ac-
curacy assessment described in this document
outlines a methodology using freely available
imagery through Google Earth™ to interpret
reference polygons that were subsequently used
to generate sample locations used in the accu-
racy assessment. Thirteen land cover classes
were mapped and their agreement assessed with

an error matrix and Kappa statistics. Overall
accuracy was 70% for the generalized map pro-
duct. This is comparable to other large lands-
cape mapping efforts (Laba et al., 2002; Lotsch
et al., 2003). Looking into individual classes
through the error matrix reveals that some clas-
ses were mapped better than others. Fully grown
vegetation classes such as AGC, BPD, BLF, and
BMG are all mapped very well. Transitional ve-
getation classes, such as BMX were very po-
orly mapped and is highly confused with MAT,
BPD, and BPR.
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