
A Strategy of finding the optimal number of 
features on gene expression data 

 

Alok Sharma, Chuan Hock Koh, Seiya Imoto, Satoru Miyano 

 

Feature selection is considered to be an important step in the analysis of 

transcriptomes or gene expression data. Carrying out feature selection reduces 

the curse of dimensionality problem and improves the interpretability of the 

problem. Numerous feature selection methods have been proposed in literature 

and these methods rank the genes in order of their relative importance. 

However, most of these methods determine the number of genes to be used in 

an arbitrarily or heuristically fashion. In this Letter, we propose a theoretical way 

to determine the optimal number of genes to be selected for a given task. We 

applied this proposed strategy on a number of gene expression datasets and 

obtained promising results. 

  

Introduction: Dimensionality reduction techniques are applied to high 

dimensional problems for reducing computational complexity and improving 

generalization performance. Various dimensionality reduction techniques can be 

grouped into two categories, namely, feature extraction and feature selection. In 

feature extraction, feature vectors are transformed into a parsimonious data 

space using linear or non-linear combination of feature vectors; and, in feature 

selection, only some important features or attributes are retained and the 

remaining features are discarded. Feature selection methods play a crucial role 



in the identification of important genes responsible for characterizing 

heterogeneity of human cancers. 

 

Numerous feature selection methods have been proposed in the literature 

[1],[2],[3],[4]. A comprehensive study can be found in Ref. [5]. These methods 

explore the significance of genes and rank them based on a certain feature 

score. Then, top ℎ genes are selected for downstream application such as 

classification or clustering. Typically, the value of ℎ is selected arbitrarily which 

could lead to suboptimal performance. It has also been observed in many 

situations where the chosen ℎ is too large and a much lower ℎ would achieve 

similar or even better performance. In this paper, we propose a theoretically 

founded strategy to select the optimal ℎ that ensures minimum error rate with 

currently available training data.  Using several publicly available gene 

expression datasets, we demonstrate the utility and performance of this strategy. 

 

Proposed strategy: The mathematical notations used in this Letter are defined 

as follows. Let χ= {𝐱1, 𝐱2, … , 𝐱𝑛} be a set of n training vectors in a d-dimensional 

feature space. Let Ω = {𝜔𝑖: 𝑖 = 1,2, … , 𝑐} be the finite set of 𝑐 classes. Let χi 

∈ 𝜔𝑖  be the 𝑖 th class set having 𝑛𝑖  number of training samples and χ1 ∪ 

χ2…χc-1 ∪ χc = χ. If the set χ is processed through a feature selection method 

𝑓(. ) then it will give feature subset 𝜒̂ = 𝑓(𝜒), where 𝜒̂ is in a ℎ-dimensional 

feature space (ℎ < 𝑑). To get the optimum value of ℎ let us consider a two-

class case illustrated in Fig. 1. In the figure the two oval shapes denote the 



training sets χ1 and χ2. A classifier is used to separate the feature space into two 

regions namely R1  and R2 . The probability of samples correctly labeled is 

denoted by 𝑃𝑟1 and 𝑃𝑟2. The probability of samples given a class is denoted by 

𝑃𝑥1 and 𝑃𝑥2. The error of misclassification is denoted by 𝜀. The probabilities 

𝑃𝑟1, 𝑃𝑟2, 𝑃𝑥1 and 𝑃𝑥2 can be given as 

 P𝑟1 = ∫ 𝑝(𝐱|𝜔1)𝑃(𝜔1)𝑑𝐱
R1

,  P𝑟2 = ∫ 𝑝(𝐱|𝜔2)𝑃(𝜔2)𝑑𝐱
R2

 

and P𝑥1 = ∫ 𝑝(𝐱|𝜔1)𝑃(𝜔1)𝑑𝐱
χ1

,  P𝑥2 = ∫ 𝑝(𝐱|𝜔2)𝑃(𝜔2)𝑑𝐱
χ2

 

where 𝑝(𝐱|𝜔𝑖) is the class-conditional probability density function and 𝑃(𝜔𝑖) is 

the a priori probability. The error 𝜀 can be evaluated by 

 𝜀 = 𝑃𝑥1 + 𝑃𝑥2 − (𝑃𝑟1 + 𝑃𝑟2). 

It is obvious that error in different dimensional feature space would be different. 

Let the error is represented in ℎ-dimensional feature space and let extending it 

for a 𝑐 class case, we get 

 𝜀ℎ = ∑ ∫ 𝑝(𝐱̂|𝜔𝑖)𝑃(𝜔𝑖)𝑑𝐱̂
χ𝑖

𝑐
𝑖=1 − ∑ ∫ 𝑝(𝐱̂|𝜔𝑖)𝑃(𝜔𝑖)𝑑𝐱̂

R𝑖

𝑐
𝑖=1   (1) 

where 𝑥̂ ∈ 𝜒̂. If the features are ranked using the feature selection method 𝑓(. ) 

then top ℎ  features can be used for which 𝜀ℎ  is minimum. For gene 

expression profile we can approximate equation 1 as  

 𝜀ℎ = ∑ ∑ 𝑝(𝐱̂|𝜔𝑖)𝑃(𝜔𝑖)χ𝑖

𝑐
𝑖=1 − ∑ ∑ 𝑝(𝐱̂|𝜔𝑖)𝑃(𝜔𝑖)R𝑖

𝑐
𝑖=1    (2) 

When 𝜀ℎ = 0 at ℎ, there will be no overlapping between samples of different 

classes. In situations where the computation of class-conditional probability 

density function is extremely tedious or not possible, a simpler error function 

could be applied, 

 𝜀ℎ́ = 𝑛 − ∑ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑅𝑖  𝑔𝑖𝑣𝑒𝑛 𝜔𝑖
𝑐
𝑖=1 .   (3) 



Results: Three DNA microarray gene expression datasets are used. The 

datasets are described in Table 1. We have used nearest centroid classifier 

(NCC) to find the regions R𝑖. The proposed strategy has been applied on two 

feature ranking methods namely information gain (InfoGain) and SVM to rank 

the genes. The choosing of value ℎ is illustrated in Figure 2 on SRBCT dataset. 

Here, the range for minimum and stable error is between 37 and 63. Therefore, 

we selected ℎ = 37. The classification accuracy of several methods has been 

compared in Table 2, 3 and 4 for SRBCT dataset, MLL Leukemia dataset and 

Lung Cancer dataset respectively. In all datasets, the proposed strategy is able 

to achieve a test error rate at least equivalent if not better than current state of 

the art methods. It is noteworthy that in one case the proposed strategy 

achieves this good performance with up to 500 times less features than other 

method. Having a smaller subset of genes would give biologists a better chance 

in finding and/or understanding pathways that are important in the disease. 

Conclusion: In this paper, we have presented a strategy for finding the minimum 

number of genes from gene expression dataset to achieve the high 

classification accuracy. This strategy has strong theoretical basis and displays 

promising results empirically. 
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Figure captions: 
 
Figure 1 An illustration using two-class case. 
 

Figure 2 Selection process for the optimum value ℎ. 
 
 
Table captions: 
 
Table 1 DNA microarray gene expression datasets  
 
Table 2 Comparison of strategies on SRBCT dataset 
 
Table 3 Comparison of strategies on MLL Leukemia dataset 
 
Table 4 Comparison of strategies on Lung Cancer dataset 
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Table 1 
 

Datasets Class Number of 

features 

Number of training 

samples  

Number of testing 

samples 

SRBCT [6] 4 2308 63 20 

MLL Leukemia [7] 3 12582 57 15 

Lung Cancer [8] 2 12533 32 149 

 
 
Table 2 
 

Methods 
(Feature Selection + 
Classification) 

# 
selected 
genes 

SRBCT 
(Classification 

accuracy on 
test data) 

InfoGain + SVM 1 vs all [5] 150 95% 

One-dimensional SVM + SVM 
Naïve Bayes [5] 

150 63% 

One-dimensional SVM + SVM 
random [5] 

150 91% 

One-dimensional SVM + SVM 
exhaustive [5] 

150 95% 

Proposed strategy + InfoGain + 
nearest centroid classifier 

37 100% 

Proposed strategy + InfoGain + 
nearest neighbor classifier 

37 100% 

Proposed strategy + SVM + nearest 
centroid classifier 

10 90% 

Proposed strategy + SVM + nearest 
neighbor classifier 

10 90% 

 
 
 
 
 
  



Table 3 
 

Methods 
(Feature Selection + 
Classification) 

# 
selected 
genes 

MLL 
Leukemia 

(Classification 
accuracy on 

test data) 

SVM + SVM random [5] 150 100% 

InfoGain + Naïve Bayes [5] 150 54% 

One-dimensional SVM + SVM 
random [5] 

150 100% 

One-dimensional SVM + SVM 
exhaustive [5] 

150 100% 

Proposed strategy + InfoGain + 
nearest centroid classifier 

46 93.3% 

Proposed strategy + InfoGain + 
nearest neighbor classifier 

46 86.7% 

Proposed strategy + SVM + nearest 
centroid classifier 

37 93.3% 

Proposed strategy + SVM + nearest 
neighbor classifier 

37 100% 

 
 
Table 4 
 

Methods 
(Feature Selection + 
Classification) 

# 
selected 

genes 

Lung Cancer 
(Classification 

accuracy on 
test data) 

Discretization + decision trees [9]  5365 93% 

Boosting [10] unknown 81% 

Bagging [10] unknown 88% 

RCBT [11] 10-40 98% 

Proposed strategy + InfoGain + 
nearest centroid classifier 

10 99.3% 

Proposed strategy + InfoGain + 
nearest neighbor classifier 

10 99.3% 

Proposed strategy + SVM + nearest 
centroid classifier 

12 98.7% 

Proposed strategy + SVM + nearest 
neighbor classifier 

12 100% 

 
 


