

Small Developing Island Renewable Energy Knowledge and Technology Transfer Network

Renewable Energy Capacity Building Workshop for North Pacific 7th to 9th September, 2011

The University of the South Pacific Republic of the Marshall Islands

Basic awareness in Renewable Energy for Decision-makers

Dr Anirudh Singh

USP Laucala Campus, Suva

Outline

Session 1

- 1. Overview of Renewable Energy (RE)
- 2. Basic requirements for RE
- (Exercise 1 Know your energy problem-solving kit)

Session 2

- 3. Learning about the technology: efficacy and economics
- 4. Prospects and opportunities

(Exercise 2 – RE requirements for the North Pacific – assessment by participants)

(Exercise 3 – A North Pacific RE Decision Matrix)

Session 1

1. Overview of Renewable Energy (RE)

Why RE is needed in the PICs

- Energy needed to sustain and develop economy
- PICs generally do not have fossil fuel resources high costs of importation, supply chain issues
- RE seems to be the natural alternative.

Types of RE

- Main types of RE in use today
 - Hydro
 - Wind
 - Solar
 - Geothermal
 - biomass, biofuels
 - ocean energy (tidal, wave, OTEC).
- But MUST consider maturity and market-readiness of the technology

Types of tech (cont) - Solar Photovoltaic (PV)

Solar PV or solar thermal

Solar PV panels built up from solar cells

Types of tech (cont)

Hydro – range of large to nano-hydro technologies, from Gigawatts to ~100W. All using turbines to convert potential energy stored in water to electrical energy

The 3 Gorges dam – source: Encyclopedia of the Earth

Nanohydro dam at Tiko's farm, Savu village, Fiji

Types of tech (cont) – Wind energy

Wind turbines convert kinetic energy of wind to electrical energy

Wind turbines (cont.)

- Geothermal energy stored underground to electrical energy
- Supplies 13% of NZ electrical power demand

Source: geothermal.marin.org

Types of tech (cont) Biomass and biofuels

Biomass

- use directly in thermal power plants as fuelwood
- convert to liquid biofuels and use in transportation and powergen

Gasification power plants

- convert biomass to syngas (mixture of CO and H₂) in gasifiers, then use this fuel to drive gas turbines
- Waste to energy plants are essentially incineration plants or gasification plants

Types of tech (cont) - biogasification

Biogasification system; Source: Energy Summit -Samoa presentation

Types of tech (cont) - Biofuels

- Vegetable oils, biodiesel, ethanol, blends, hybrid fuels
- Vegetable oils can be used to drive diesel engines but harmful to unmodified engines
- Biodiesel through trans-esterification of vegetable oils has superior fuel properties
- Ethanol through fermentation
- Also methanol and butanol

Types of tech (cont) - Biogas

- Biogas is mixture of methane (CH4) and carbon dioxide (CO2) only CH4 is energy-rich
- Biogas produced through anaerobic digestion of biomass, in biodigesters, landfills, sewage systems etc
- Biodigesters used for cooking fuel for farms, schools etc
- Landfill gas potential for electricity generation

Fixed-Dome Biogas Digester

Types of tech (cont) Ocean Energy

- Wave, tidal, OTEC (Ocean thermal energy conversion)
- Tidal energy at Rance River, France, but few other places
- Various technologies for wave energy, mostly still under development or pilot project stage.
- OTEC has problems

2. Basic requirements for the use of RE (what we need before we can use it)

- RE resources
- RET must be tested and market-ready
- Human resources technical and scientific, business expertise, policy and legal expertise
- Institutional mechanisms enabling legislations and regulations, standards, research and business infrastructure

a) RE Resources

Solar resources

- Measured in kWh/m²/day or suns
- Varies with latitude
- Seasonal variations

Source: NASA

Resources (cont)

Wind resources

Wind speed

Rated maximum power given by

$$P_r = \frac{1}{2} C_p A \rho u^3$$

where

A = area swept by rotor, ρ = density of air, u = wind speed

 C_p = the power coefficient

- The power coefficient has a theoretical maximum value of 16/29 = 0.59, and actual values usually much smaller
- Cut-in speed of ~ 3 m/s
- Wind regimes

RE Resources (cont) Hydropower

- Hydropower technology the most mature technology
- Power(kW) = 10QH central equation for resource assessment and design

Q = flow rate
$$(m^3/s)$$
, H = head (m)

RE Resources (cont)

Geothermal

- Not really a renewable resource
- Pre-requisite volcanic geology
- Available in PNG
- Potential in Fiji, Vanuatu etc

RE Resources (cont) Biomass and biofuel

Biomass

- Fuelwood forests
- Forestry/timber-milling residues, MSW

Biofuels

- Vegetable oils as biofuels or biofuel feedstock
- Coconut, palm oil, soy, peanut, rape seed, castor, pongamia, jatropha (inedible)
- Land and water resources needed for feedstock production

Survey of RE resources in the PICs

Country	Geog	Solar	Wind	Hydro	Biomass/fuel	Geothermal	Ocean	
		(kWh/ m²/day)						
Nauru	21 km²	Yes (5.8)	?	No	No	No	No	
Kiribati	32 atolls	Yes (5.7)	No – atolls	No	CNO (5500Mton)	No	No	
PNG	mountaneous	Yes (6)	Yes – 19 sites	Yes (1400MW)	Timber, palm oil	Yes (1 station)	No	
S.I.	6 volc.Is	Yes	No data	Yes (JICA 330MW)	CNO	Maybe	No	
Samoa	2 volc is	Yes (6)	~ 3m/s	Yes (issues)	5%CNO blend	No	No	
Fiji	2 volc	Yes	Yes - Butoni	yes	Timber, CNO	?	?	

Source: JICA study

b) Mature technology and other requirements

- Mature technology is one that has been tested, proven and is market ready- not all RE technologies are mature
- Example: Small Pacific Island state needs to reduce its import bill and promote development through RE
- Country is made up of one volcanic island and many small low-lying coral atolls and scattered over a vast region.
- Which technology to use?
- Which resources exist?
- What are the other requirements?

Mature technology (cont)

Type of RE	Is the technology		
	mature	availability in the	other resources
		country	
Solar	yes	yes	?
Wind	yes	yes	?
Hydro	yes	no	?
geothermal	yes	no	?
biomass	yes	yes	?
Biofuel	Yes?	?	?
Tidal	?	?	?
wave	?	?	?
OTEC	???	?	?

Learning clinic

Exercise 1 – Know your energy – problem-solving kit

Session 2

3. Learning about the technology: efficacy and economics

- How viable is it to use a renewable energy technology (RET)?
- What factors must we consider to ensure we have made a wise choice?
- Performance:
- Rated capacity, efficiency, capacity factor
- Rated capacity = maximum capacity, all things being well
- Efficiency = Output energy of the RE system /Input energy to the system
- OR
- Efficiency= Output power of the system/Input power to the system
- Capacity Factor = Actual Energy produced by the system/Energy expected from the rated capacity

Efficacy and economics (cont)

- Economics:
- Lifetime, payback period, cost of energy
- Lifetime = expected length of time system will remain productive
- Payback period (simple payback period) = number of years it will take to pay back for the capital and operation and maintenance costs of the system from the savings made by using this technology.
- Cost of energy = total cost/power rating
- = the cost incurred per kW of power produced.

Comparison of technologies

RET	Technology efficiency	Capacity Factor	Lifetime	Cost/kW	Payback period	Commercia l availability
Wind	~40%	10-25%	> 25 yrs maintena nce reqd	~\$10,000	<25 yrs	Yes
PV	12-15%	~50%	20-25 yrs	~\$25,000	25-35 yrs	Yes
Micro- Hydro	90%	~100 %	>25 yrs low maintena nce	\$2000- 5000	5-10 yrs	Yes
Biomass	< 60%	Biomass availability	~25 yrs	-	< 25 yrs	Yes
Biofuel	< 60%	Biofuel availability	~25 yrs	-	< 25 yrs	Yes/No

Load-Efficiency considerations

- We usually use our power sources without thinking about the efficiencies involved.
- A little thought can show us how we can use a power supply such as a diesel genset more wisely, and be more environmentally friendly.

Load-efficiency case study

Effect of load on efficiency for 'CCO/Ethanol/Octanol' (CCO-E-O) hybrid fuel.

Table of load v efficiency for genset

Load (Wat ts)	200	400	600	800	1000	1200	1400	1600
Efficien cy (%)	6.5	12.5	17	21.5	23.5	25	25.5	26.0

Cost of using the diesel genset

Load (Watts)	Energy output/ hour (MJ)	Efficiency (%)	Input energy (MJ)	Volume of fuel (litres)	Total cost at \$2.00/li tre)
200	0.72	6.5	11.1	0.29	0.58
400	1.44	12.5	11.52	0.30	0.60
800	2.88	21.5	13.40	0.35	0.70
1600	5.76	26.0	22.15	0.58	1.17

Economics of using the genset

- If one family uses 400W for one hour, it costs \$0.60
- If two families use 400W for one hour each, it costs them a total of 2 x \$0.60 = \$1.20
- But if the two families share 800W supply, it will cost them a total of \$0.70, or \$0.35 each!
- Also, they will be producing less CO₂ emissions!

4. Prospects and opportunities

- Biofuels, waste to energy and fuelwood gasification plants, ocean energy what are the possibilities for the North?
- resource requirements (land availability for feedstock plantation edible and non-edible vege oils, copra)

(Exercise 2 – RE requirements for the North Pacific – assessment by participants)

(Exercise 3 – A North Pacific RE Decision Matrix)