Small Developing Island Renewable Energy Knowledge and Technology Transfer Network Renewable Energy Capacity Building Workshop for North Pacific 7th to 9th September, 2011 The University of the South Pacific Republic of the Marshall Islands # Basic awareness in Renewable Energy for Decision-makers Dr Anirudh Singh USP Laucala Campus, Suva ### Outline #### Session 1 - 1. Overview of Renewable Energy (RE) - 2. Basic requirements for RE - (Exercise 1 Know your energy problem-solving kit) #### Session 2 - 3. Learning about the technology: efficacy and economics - 4. Prospects and opportunities (Exercise 2 – RE requirements for the North Pacific – assessment by participants) (Exercise 3 – A North Pacific RE Decision Matrix) #### Session 1 ### 1. Overview of Renewable Energy (RE) Why RE is needed in the PICs - Energy needed to sustain and develop economy - PICs generally do not have fossil fuel resources high costs of importation, supply chain issues - RE seems to be the natural alternative. # Types of RE - Main types of RE in use today - Hydro - Wind - Solar - Geothermal - biomass, biofuels - ocean energy (tidal, wave, OTEC). - But MUST consider maturity and market-readiness of the technology ## Types of tech (cont) - Solar Photovoltaic (PV) Solar PV or solar thermal Solar PV panels built up from solar cells ### Types of tech (cont) Hydro – range of large to nano-hydro technologies, from Gigawatts to ~100W. All using turbines to convert potential energy stored in water to electrical energy The 3 Gorges dam – source: Encyclopedia of the Earth Nanohydro dam at Tiko's farm, Savu village, Fiji # Types of tech (cont) – Wind energy Wind turbines convert kinetic energy of wind to electrical energy ### Wind turbines (cont.) - Geothermal energy stored underground to electrical energy - Supplies 13% of NZ electrical power demand Source: geothermal.marin.org #### Types of tech (cont) Biomass and biofuels #### Biomass - use directly in thermal power plants as fuelwood - convert to liquid biofuels and use in transportation and powergen #### Gasification power plants - convert biomass to syngas (mixture of CO and H₂) in gasifiers, then use this fuel to drive gas turbines - Waste to energy plants are essentially incineration plants or gasification plants # Types of tech (cont) - biogasification Biogasification system; Source: Energy Summit -Samoa presentation # Types of tech (cont) - Biofuels - Vegetable oils, biodiesel, ethanol, blends, hybrid fuels - Vegetable oils can be used to drive diesel engines but harmful to unmodified engines - Biodiesel through trans-esterification of vegetable oils has superior fuel properties - Ethanol through fermentation - Also methanol and butanol # Types of tech (cont) - Biogas - Biogas is mixture of methane (CH4) and carbon dioxide (CO2) only CH4 is energy-rich - Biogas produced through anaerobic digestion of biomass, in biodigesters, landfills, sewage systems etc - Biodigesters used for cooking fuel for farms, schools etc - Landfill gas potential for electricity generation Fixed-Dome Biogas Digester # Types of tech (cont) Ocean Energy - Wave, tidal, OTEC (Ocean thermal energy conversion) - Tidal energy at Rance River, France, but few other places - Various technologies for wave energy, mostly still under development or pilot project stage. - OTEC has problems ### 2. Basic requirements for the use of RE (what we need before we can use it) - RE resources - RET must be tested and market-ready - Human resources technical and scientific, business expertise, policy and legal expertise - Institutional mechanisms enabling legislations and regulations, standards, research and business infrastructure ### a) RE Resources #### Solar resources - Measured in kWh/m²/day or suns - Varies with latitude - Seasonal variations Source: NASA ### Resources (cont) #### Wind resources #### Wind speed Rated maximum power given by $$P_r = \frac{1}{2} C_p A \rho u^3$$ where A = area swept by rotor, ρ = density of air, u = wind speed C_p = the power coefficient - The power coefficient has a theoretical maximum value of 16/29 = 0.59, and actual values usually much smaller - Cut-in speed of ~ 3 m/s - Wind regimes # RE Resources (cont) Hydropower - Hydropower technology the most mature technology - Power(kW) = 10QH central equation for resource assessment and design Q = flow rate $$(m^3/s)$$, H = head (m) # RE Resources (cont) #### Geothermal - Not really a renewable resource - Pre-requisite volcanic geology - Available in PNG - Potential in Fiji, Vanuatu etc # RE Resources (cont) Biomass and biofuel #### **Biomass** - Fuelwood forests - Forestry/timber-milling residues, MSW #### **Biofuels** - Vegetable oils as biofuels or biofuel feedstock - Coconut, palm oil, soy, peanut, rape seed, castor, pongamia, jatropha (inedible) - Land and water resources needed for feedstock production # Survey of RE resources in the PICs | Country | Geog | Solar | Wind | Hydro | Biomass/fuel | Geothermal | Ocean | | |----------|-------------|---------------|-------------------|---------------------|---------------------|-----------------|-------|--| | | | (kWh/ m²/day) | | | | | | | | Nauru | 21 km² | Yes (5.8) | ? | No | No | No | No | | | Kiribati | 32 atolls | Yes (5.7) | No – atolls | No | CNO
(5500Mton) | No | No | | | PNG | mountaneous | Yes (6) | Yes – 19
sites | Yes (1400MW) | Timber, palm
oil | Yes (1 station) | No | | | S.I. | 6 volc.Is | Yes | No data | Yes (JICA
330MW) | CNO | Maybe | No | | | Samoa | 2 volc is | Yes (6) | ~ 3m/s | Yes (issues) | 5%CNO
blend | No | No | | | Fiji | 2 volc | Yes | Yes -
Butoni | yes | Timber, CNO | ? | ? | | Source: JICA study #### b) Mature technology and other requirements - Mature technology is one that has been tested, proven and is market ready- not all RE technologies are mature - Example: Small Pacific Island state needs to reduce its import bill and promote development through RE - Country is made up of one volcanic island and many small low-lying coral atolls and scattered over a vast region. - Which technology to use? - Which resources exist? - What are the other requirements? ## Mature technology (cont) | Type of RE | Is the technology | | | |------------|-------------------|---------------------|-----------------| | | mature | availability in the | other resources | | | | country | | | Solar | yes | yes | ? | | Wind | yes | yes | ? | | Hydro | yes | no | ? | | geothermal | yes | no | ? | | biomass | yes | yes | ? | | Biofuel | Yes? | ? | ? | | Tidal | ? | ? | ? | | wave | ? | ? | ? | | OTEC | ??? | ? | ? | # Learning clinic Exercise 1 – Know your energy – problem-solving kit ### Session 2 ### 3. Learning about the technology: efficacy and economics - How viable is it to use a renewable energy technology (RET)? - What factors must we consider to ensure we have made a wise choice? - Performance: - Rated capacity, efficiency, capacity factor - Rated capacity = maximum capacity, all things being well - Efficiency = Output energy of the RE system /Input energy to the system - OR - Efficiency= Output power of the system/Input power to the system - Capacity Factor = Actual Energy produced by the system/Energy expected from the rated capacity # Efficacy and economics (cont) - Economics: - Lifetime, payback period, cost of energy - Lifetime = expected length of time system will remain productive - Payback period (simple payback period) = number of years it will take to pay back for the capital and operation and maintenance costs of the system from the savings made by using this technology. - Cost of energy = total cost/power rating - = the cost incurred per kW of power produced. # Comparison of technologies | RET | Technology efficiency | Capacity
Factor | Lifetime | Cost/kW | Payback
period | Commercia l availability | |-----------------|-----------------------|----------------------|-----------------------------------|-----------------|-------------------|--------------------------| | Wind | ~40% | 10-25% | > 25 yrs
maintena
nce reqd | ~\$10,000 | <25 yrs | Yes | | PV | 12-15% | ~50% | 20-25 yrs | ~\$25,000 | 25-35 yrs | Yes | | Micro-
Hydro | 90% | ~100 % | >25 yrs
low
maintena
nce | \$2000-
5000 | 5-10 yrs | Yes | | Biomass | < 60% | Biomass availability | ~25 yrs | - | < 25 yrs | Yes | | Biofuel | < 60% | Biofuel availability | ~25 yrs | - | < 25 yrs | Yes/No | ## Load-Efficiency considerations - We usually use our power sources without thinking about the efficiencies involved. - A little thought can show us how we can use a power supply such as a diesel genset more wisely, and be more environmentally friendly. # Load-efficiency case study Effect of load on efficiency for 'CCO/Ethanol/Octanol' (CCO-E-O) hybrid fuel. # Table of load v efficiency for genset | Load
(Wat
ts) | 200 | 400 | 600 | 800 | 1000 | 1200 | 1400 | 1600 | |---------------------|-----|------|-----|------|------|------|------|------| | Efficien cy (%) | 6.5 | 12.5 | 17 | 21.5 | 23.5 | 25 | 25.5 | 26.0 | # Cost of using the diesel genset | Load
(Watts) | Energy
output/
hour
(MJ) | Efficiency (%) | Input
energy
(MJ) | Volume of
fuel
(litres) | Total cost
at
\$2.00/li
tre) | |-----------------|-----------------------------------|----------------|-------------------------|-------------------------------|---------------------------------------| | 200 | 0.72 | 6.5 | 11.1 | 0.29 | 0.58 | | 400 | 1.44 | 12.5 | 11.52 | 0.30 | 0.60 | | 800 | 2.88 | 21.5 | 13.40 | 0.35 | 0.70 | | 1600 | 5.76 | 26.0 | 22.15 | 0.58 | 1.17 | # Economics of using the genset - If one family uses 400W for one hour, it costs \$0.60 - If two families use 400W for one hour each, it costs them a total of 2 x \$0.60 = \$1.20 - But if the two families share 800W supply, it will cost them a total of \$0.70, or \$0.35 each! - Also, they will be producing less CO₂ emissions! #### 4. Prospects and opportunities - Biofuels, waste to energy and fuelwood gasification plants, ocean energy what are the possibilities for the North? - resource requirements (land availability for feedstock plantation edible and non-edible vege oils, copra) (Exercise 2 – RE requirements for the North Pacific – assessment by participants) (Exercise 3 – A North Pacific RE Decision Matrix)