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A top-r Feature Selection Algorithm for 
Microarray Gene Expression Data 

Alok Sharma, Seiya Imoto, and Satoru Miyano 

Abstract—Most of the conventional feature selection algorithms have a drawback whereby a weakly ranked gene that could 

perform well in terms of classification accuracy with an appropriate subset of genes will be left out of the selection. Considering 

this shortcoming, we propose a feature selection algorithm in gene expression data analysis of sample classifications. The 

proposed algorithm first divides genes into subsets, the sizes of which are relatively small (roughly of size h ), then selects 

informative smaller subsets of genes (of size hr   ) from a subset and merges the chosen genes with another gene subset (of 

size r ) to update the gene subset. We repeat this process until all subsets are merged into one informative subset. We 

illustrate the effectiveness of the proposed algorithm by analyzing three distinct gene expression datasets. Our method shows 

promising classification accuracy for all the test datasets. We also show the relevance of the selected genes in terms of their 

biological functions. 

Index Terms— Feature selection, classification accuracy, top-r features, DNA microarray gene expression data.  

——————————      —————————— 

1 INTRODUCTION

ranscriptome data, which consists of several thou-
sands of gene expression profiles obtained from mul-
tiple tissue samples, have been used to find sets of 

important genes for separating tissue samples into several 
groups with relevant biological or clinical properties. Par-
ticularly in cancer research, these kinds of methods (i.e., 
supervised classification) play an important role in un-
derstanding the gene regulation mechanisms of cancer 
heterogeneity. In the cancer classification problem, not all 
gene expression profiles contribute, but it is thought that 
several sets of genes or pathways with multiple genomic 
mutations determine biological or clinical properties. 
Therefore, for cancer classification with transcriptome 
data, it is crucial to discard the genes that are not im-
portant and retain the informative genes through efficient 
computational data analysis techniques.  

Several feature selection algorithms have been devel-
oped to identify important genes [1]-[20]. Some of the 
methods, such as weighted naïve Bayes [6], assume fea-
ture independency. However, the features may have de-
pendencies among themselves; genes essentially form 
pathways, and the expression profiles of these genes are 
highly correlated. Thus, this assumption of feature inde-
pendency could degrade the classification performance. 
The feature selection methods described by Ben-Bassat [2], 
Golub et al. [4], Pavlidis et al. [7], Pan [10], and Mak and 
Kung [15] are independent of the classifier. These meth-
ods are mainly based on an individual ranking scheme; 

therefore, it is possible that some of the selected features 
are mutually redundant. This scheme is most effective for 
statistically independent features. Because these methods 
ignore the interaction with the classifier, the classification 
performance will not be very high. Yu and Liu [11] have 
proposed a classifier-independent method. However, it 
uses a pairwise scheme, in that the features are selected 
based on feature correlation. Some selection methods 
[1],[21] utilize a forward selection scheme. In this scheme, 
the best feature is selected first, and a subsequent feature 
is included in the subset such that the included feature 
improves the performance (e.g., in terms of classification) 
of the feature subset. The above-mentioned strategies for 
acquiring feature subsets could be biased towards the 
highest-ranking feature, as the feature with the highest 
performance will be selected first in the subset (or will be 
given highest priority). However, low-rank features, if 
selected in an appropriate subset, could provide better 
classification performance. The classifier-dependent 
method, reported by Inza et al. [5], could exhibit high 
classification performance but applies a random search, 
which can become computationally intensive. Ramaswa-
my et al. [8] have shown that the support vector machine 
(SVM)-based method can achieve high classification accu-
racy; however, large number of genes (or features) is re-
quired in a feature subset for this purpose. Therefore, no 
single feature selection algorithm can have superiority in 
all aspects. Nonetheless, most of the methods attempt to 
achieve high classification accuracy using a subset of 
genes or features.  

The purpose of this paper is to design a method to find 
a small subset of important genes that could provide high 
classification accuracy. Additionally, the observed genes 
should have biological relevance. The proposed method 
should be able to identify a relatively small gene subset. 
Due to the small number of genes in the subset, research-
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ers can conduct biological experiments for investigating 
biomarkers in a time-efficient and cost-effective manner. 
The information retrieved from these economical biologi-
cal experiments can then be translated to pharmacology, 
which could help in the timely diagnosis of cancers. Fur-
thermore, the combination of genes in a small subset can 
be easily, reliably and precisely interpreted for cancer 
efficacy. In the proposed method, the selected top- r  fea-
tures (or genes) provide promising classification accuracy. 
This approach for finding features is different from con-
ventional approaches. Here, we consider finding features 
of low importance that could perform well, in terms of 
classification accuracy, if selected in an appropriate fea-
ture subset. To do this, we investigate the feature subset 
in the following manner.  

In the proposed approach, we first partition the fea-
tures into smaller blocks of size h . This block partitioning 
is introduced to reduce the search space. In a given block, 
a feature is discarded that is not performing well in terms 
of classification; that is, an irrelevant feature from a sub-
set is removed at an iteration time point in the approach 
that causes minimum loss of information for the subset. 
This elimination of features from a subset is performed 
until all the features are ranked in a given block. This 
process is then performed for all the remaining blocks. 
Once the top- r  features (where hr 1 ) from each of 
the blocks are obtained, they are compared among them-
selves to obtain the best feature subset. The partitioning 
of features into smaller blocks helps in memory manage-
ment and improves computational complexity; the full 
search for top- r features in a block ensures the retention 
of the important subset of features. The proposed algo-
rithm can also be applied to multi-class cases.  

Figure 1 demonstrates the selection of informative 
genes from the gene subsets by the proposed algorithm. 
Two gene subsets are illustrated, with each containing 
three genes ( 3h ). The genes in subset #1 and subset #2 
are A, B, C and D, E, F, respectively. The elliptical area in 
the figure corresponds to the information )(GI , pertain-
ing to a gene or gene subset G . It can then be seen from 
the figure that )()()( CIBIAI   and )()()( FIEIDI  . 
Then, the problem is to select two genes )( 2r from the 
given gene subsets. First, the search algorithm finds two 
genes each from the subsets that have the highest infor-
mation in combination. It can be seen from the figure that 
though gene A (in gene subset #1) has the highest infor-
mation, it significantly overlaps with its neighboring 
genes. Because )()( BAICBI  and )()( CAICBI  , 
removing gene A from the subset sacrifices the least 
amount of information. This yields a new gene subset #1a. 
Most of the forward selection and individual ranking 
schemes would select gene A, as it pertains to the highest 
information. However, the proposed scheme discards 
gene A because it is a redundant gene in combination 
with other genes. In gene subset #2, gene F does not over-
lap with any other genes. However, because 

)()( FDIEDI   and )()( FEIEDI  , gene F will 
be discarded, as it contains minimal information. In this 
case, most of the forward selection and individual rank-
ing schemes would follow suit. This elimination proce-

dure yields gene subset #2a. Finally, the merger of the 
two gene subsets (#1a and #2a) yields gene subset #3. In 
this subset, two genes with the highest amounts of infor-
mation will be retained. Because )( DBI  is the maxi-
mum, the output gene subset contains genes B and D. The 
following can be observed from this illustration: the pro-
posed algorithm eliminates redundant features; it re-
moves features with minimal information; and the best 
gene subset is produced by evaluating all the possible 
combinations in a given gene subset. 

 
Fig. 1: An illustration of the process of gene selection using the pro-

posed feature selection algorithm. 

 
Three DNA microarray gene expression datasets 

namely, SRBCT, Prostate Tumor and MLL are used for 
experimentation purposes. Their performance in terms of 
classification accuracy using only the top-4 features is 
very promising. 

The paper is organized as follows. Section 2 describes 
the proposed feature selection algorithm. Section 3 pro-
vides an illustration of the datasets used in this work. 
Section 4 discusses the experimentation. Section 5 dis-
cusses the sensitivity analysis of the algorithm. Section 6 
describes the redundancy analysis. Section 7 concludes 
the paper. 

2 PROPOSED FEATURE SELECTION ALGORITHM 

In this section, we describe the proposed feature selection 
algorithm. The two main aspects of the algorithm namely, 
the successive feature selection and block reduction are 
discussed in Sections 2.1 and 2.2, respectively. The algo-
rithm is summarized in Table 1.1, and the computational 
considerations are given in Section 2.3. 

2.1 Successive Feature Selection 

The successive feature selection (SFS) procedure has been 
illustrated in Figure 2. In the SFS procedure, a set of 

10h features is processed one at a time (this value of h  
is taken due to memory constraints; it is experimentally 
found that the suitable value of h  is equal to or lower 
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than10 ). The output is the rank of features. In the succes-
sive levels, a feature is dropped one at a time, and a sub-
set of features is obtained. Then, the classification accura-
cy using a classifier is evaluated, and the best subset of 
features is processed to the next level. There could be 
more than one best subset of features in a given level. For 
example, in Figure 2, a feature is dropped in level 1 that 
gives four different subsets of features. The best set in 
level 1 is },,{ 421 xxx which is selected for level 2. In a sim-
ilar way, a feature is dropped from the best set of features 
of level 1 into level 2, which gives 3 different subsets of 
features. The best sets in level 2 are },{ 42 xx and },{ 21 xx  
(supposing that their classification accuracies are the 
same and are higher than those of other subsets), and the 
best set in level 3 is }{ 2x . This process is terminated when 
all the features are ranked. In the figure, two ranked sets 
are obtained: namely, },,,{ 31421 xxxxR   and 

},,,{ 34122 xxxxR  , which indicate that 2x is the top-
ranked feature and that 3x  is the bottom-ranked or least 
important feature. If we want to select the three top-
ranked features, then the result will be },,{ 1421 xxxF   
and },,{ 4121 xxxF  . If the order of features is not im-
portant, then instead of writing two sets,  1F  and 2F , we 
can select a set of common top-3 ranked features: i.e., 

},,{ 42121 xxxFFFk  .  
The SFS procedure can be applied by partitioning the 

training data into a training set and a validation set. The 
training set is used to estimate the model parameters of 
the classifier, and the validation set is used to evaluate the 
classification accuracy of the feature subsets at each of the 
levels.  

 
Fig. 2: Successive feature selection: an illustration. 

 

2.2 Block Reduction 

The block reduction procedure has been briefly described 
in Figure 3. A d -dimensional feature vector has been 
partitioned into m roughly equal blocks, jS , for 

mj 1  of size 10h . Each block has at least r features. 
All the blocks have been processed through the SFS pro-
cedure one at a time, which yields top- r feature sets, jF , 
for qj 1 . Then, the unique features of two consecu-
tive feature sets, 1F  and 2F , are used to find the best top-

r  feature set, bF . Next, the unique features of bF and 3F  
are used to obtain the best set. This process is continued 
for all the q sets. The obtained best top- r feature set, bF , 
from the block reduction procedure is stored for further 
pruning. The details of the block reduction procedure 
have been described in Table 1.1. 

 
Fig. 3: Block reduction procedure to find the top-r features. 

 
TABLE 1.1 

Block Reduction Procedure 

 

1. Select the r  number of features to be investigated, where 

hr 1 , and select the block size h , where 10h .  

2. Decompose the training samples randomly into a training set 

( Tr ) and a validation set (V ) using a proportionality ratio p 1. 

3. Partition the features of the sets ( Tr  and V ) into m  roughly 

equal blocks, jS , for mj 1 . 

4. Apply the successive feature selection (SFS) procedure on each 

of jS to get the top- r  ranked feature set,  jF , and its corre-

sponding classification accuracy, j , for qj 1 , where 

mq   and ljFF lj  . 

5. Initialize 1i  and 2j . 

6. Find the best feature set ),(_ jib FFbestSetfindF   . (see Table 

1.2). 

7. Terminate the process if qj  , or else update bi  and 

1 jj , and go to Step 6. 

8. If more than one set of bF is obtained, then perform cross-

validation to get one best set (for cross-validation, decompose 

training samples randomly n  times2 into training sets and val-

idation sets using the proportionality ratio p and compute the 

average classification accuracy for all sets in bF ; select a set of 

bF  for which the average classification accuracy is the highest). 

9. Repeat Steps 2-8 for another random decomposition of training 

samples. Let the new training set and validation set be defined 

as Tr and V . This will give a best set 
bF . 

10. Find the best set and its corresponding average classification 

accuracy ( b ) using bF  and 
bF ; i.e.,  

),(_],[
 bbbb FFalphasetfindF  &  (see Table 1.3). 

11. Repeat Steps 9-10 until b  does not show any improvement. 

 
 

 

1 In our experiments, we use 60.p ; i.e., 0.6 of training 
samples are used as a training set, and the remaining train-
ing samples are used as a validation set. 

2 In our experiments, we use 20n . 
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TABLE 1.2 

Find Best Feature Set 

),(_ jib FFbestSetfindF    
 

1. Find a set of unique features from the consecutive feature 

blocks: i.e., jiij FFF  . 

2. Apply the SFS procedure on ijF  as follows: 

)(],[ ijkk FSFSR   , where kR  is the ranked set of all the fea-

tures of ijF and k is the classification accuracy of the top- r  

features of kR . If 1n  ranked feature sets }ˆ,ˆ,ˆ{
121 nk RRRR   

are discovered, then there will be 1n  classification accuracies, 

}ˆ,ˆ,ˆ{
121 nk   , and 1n  top- r  feature sets, kF . Because 

k  represents the classification accuracy of the top- r  features, 

all the 1n  values in k  will be identical. If there are any dupli-

cate sets in kF  then removing them will yield )( 12 nn  unique 

}ˆ,ˆ,ˆ{
221 nk FFFF  sets. Note that all the sets in kF  will have 

the same classification accuracy. 

3. Define },,{ kji FFFF  and their corresponding classification 

accuracies, },,{ kji   . Find )max( b . 

If only one b  is obtained, then: 

 select FFb  

If more than one b  is obtained, then: 

 select FFtmp   for which tb   , where b  is 

the highest classification accuracy and ),( tb can be 

),,( kji  but tb  . 

 perform cross-validation by decomposing the 

training samples randomly n  times into training 

sets and validation sets using the proportionality 

ratio p  and computing the average classification 

accuracy for all the sets in tmpF . 

 select tmpb FF  for which the average classifica-

tion accuracy is highest3; store the corresponding 

 b . 

If 100b (maximum accuracy), then: 

 store bF  in an optimum set optF . 

   bb , where  is a small positive number, 

e.g., 50. (such that the other feature set can al-

so be compared to, in the remaining sFj ). 

4. Return },{ optbb FFF  . 

 
TABLE 1.3 

Find the Best Feature Set and Average Classification Ac-

curacy 

),(_ jib FFalphasetfindF  &  

 

1. Find a set of unique features from the two best feature sets: i.e., 
 bbbb

FFF * . 

2. Find the top- r  ranked feature set, kF , using the SFS proce-

dure on *bb
F . 

3. Define },,{ kbb FFFF  ; decompose the training samples ran-

domly n  times into training sets and validation sets by using 

the proportionality ratio p , and compute the average classifi-

cation accuracy for all the sets in F . 

4. If the highest average classification accuracy is b  and the 

corresponding set is bF  then return ],[ bbF  . 

 

3 If more than one bF  is obtained from the cross-validation 
procedure, then increase the value of n  to obtain only one 

bF . Alternatively, select the first best set that may sacrifice 
the classification performance. 

2.3 Computational Considerations 

The computational cost of the method depends upon sev-
eral factors, such as the cross-validation process, the value 
of the parameter h and the type of classifier used. The 
processing time of the SFS procedure could be slow if a 
large value of h  is considered or if several gene subsets in 
a given level have the same classification accuracy. The 
block reduction helps in memory management and com-
putational complexity by limiting the value of h ; that is, 
by using the SFS procedure on smaller blocks of features.  

Feature selection methods based on the individual 
ranking scheme [4],[7],[10],[15] are the most economical 
for computation. The methods with a pairwise scheme 
(e.g., Yu and Liu [11]) require around )(

2dO computa-
tions, where d is the dimensionality of the feature space. 
The pairwise scheme is slower to process than the indi-
vidual ranking scheme. In the backward elimination 
scheme, a full-feature search space is used. If the dimen-
sionality of the feature space is very large, then the search 
will be computationally very expensive. In the proposed 
feature selection method, the block reduction procedure 
is used to partition the d -dimensional feature set into 
roughly equal hd /  blocks of size h  and the SFS proce-
dure is used to find the feature subset that requires be-
tween 2

1Ch and 12 h search combinations, where the 
term q

pC is the q -combination of p elements. The total 
number of search combinations for the method would be 
between hdCh

/2
1  and hdh

/)( 12  . 

3 DATASETS USED IN THE EXPERIMENTAL SETUP 

Three DNA microarray gene expression datasets are uti-
lized in this work to show the effectiveness of the pro-
posed method. The descriptions of the datasets are given 
as follows: 

SRBCT dataset [22]: the small round blue-cell tumor 
dataset consists of 83 samples, each containing 2308 genes. 
This is a 4-class classification problem. The tumors are 
Burkitt’s lymphoma (BL), the Ewing family of tumors 
(EWS), neuroblastoma (NB) and rhabdomyosarcoma 
(RMS). There are 63 samples for training and 20 samples 
for testing. The training set consists of 8, 23, 12 and 20 
samples of BL, EWS, NB and RMS, respectively. The test 
set consists of 3, 6, 6 and 5 samples of BL, EWS, NB and 
RMS, respectively. 

MLL dataset [23]: this dataset contains 3 classes of leu-
kemia, namely acute lymphoblastic leukemia (ALL), mye-
loid/lymphoid leukemia (MLL) and acute myeloid leu-
kemia (AML). The training set contains 57 leukemia sam-
ples (20 ALL, 17 MLL and 20 AML), whereas the test set 
contains 15 samples (4 ALL, 3 MLL and 8 AML). The di-
mension of the MLL dataset is 12582. 

Prostate Tumor dataset [24]: this is a 2-class problem 
addressing tumor class versus normal class. It contains 52 
prostate tumor samples and 50 non-tumor (or normal) 
samples. Each sample is described by 12600 genes. A sep-
arate test set contains 25 tumor and 9 normal samples. 

The summary of datasets is given in Table 2. 
 

 



SHARMA ET AL.:  A TOP- r  FEATURE SELECTION ALGORITHM FOR MICROARRAY GENE EXPRESSION DATA 5 

 

TABLE 2 
Summary of the Datasets used in the Experimentation 

4 APPLICATION TO TRANSCRIPTOME DATA 

We select the best r  genes for each of the datasets. These 
genes are selected using the training samples only. For 
classification purposes, three classifiers, namely, the line-
ar discriminant analysis (LDA) technique with nearest 
centroid classifier (NCC), the Bayes classifier and the 
nearest neighbor classifier (NNC) are used. To select the 
best features from the training samples, we apply a cross-
validation procedure by randomly decomposing the 
training samples into two sets. The first set contains 
roughly 60% of the training samples, and the second set 
contains the remaining training samples. The first set is 
used as a training set, and the second set is used as a vali-
dation set. The cross-validation procedure has been ap-
plied at different steps in the proposed feature selection 
algorithm (we use 20n , see Table 1). From the first it-
eration of the algorithm, a set of top- r  genes, bF , is ob-
tained. The iteration continues until no improvement in 
the classification accuracy of the selected top- r genes is 
observed. To find the value of r , we apply a strategy 
used by Tao et al. [25]. According to this strategy, a set of 
experiments are first conducted on a dataset (here, 
SRBCT) by varying the number of genes selected to find 
the best classification accuracy using LDA with the NCC, 
the Bayes classifier and the NNC. It is observed that 4r  
gives a favorable performance in terms of classification 
accuracy (see Appendix-I). Therefore, for the other da-
tasets, the top-4 genes are used. The gene expression data 
analysis (Tables 3-10 and Figure 4) is reported in this pa-
per for LDA with the NCC. However, the classification 
accuracies with the Bayes classifier and the NNC are also 
reported for comparison purposes in Tables 4-6.  

We have conducted two phases of the test. In the first 
phase, the original order of genes (usually ranked genes 
from the donors) was used. For this phase, the search for 
the top-4 genes using LDA with the NCC is ended at iter-
ation number 2 for the SRBCT and Prostate Tumor da-
tasets and is ended at iteration number 20 for the MLL 
dataset. The top-4 selected genes for the different datasets 
are depicted in Table 3. 

The performance in terms of classification accuracy of 
the proposed feature selection method has been com-
pared with several other feature selection methods. Ta-
bles 4-6 show comparisons to various methods. In all cas-
es, the performance is measured on the test samples. Ta-
ble 4 shows a comparison of the proposed method with 
several other methods on the SRBCT dataset. Table 5 
shows a comparison of the proposed method with several 
other methods on the MLL dataset. Table 6 shows the 

comparison on the Prostate Tumor dataset. It can be ob-
served from Tables 4-6 that the proposed feature selection 
method yields promising results using only 4 genes. 
 

TABLE 3 

Selected Top-4 Genes 

 

 
In the second phase, we randomly change the order of 

genes 20n  times and apply the algorithm to select the 
genes. This permutation of gene order is done to test the 
sensitivity of the algorithm with respect to the order of 
genes. Then, LDA, with the NCC, is used to compute the 
classification accuracy. In these 20 tests, some of the genes 
repeatedly appear in the top-4 selected genes. For the 
SRBCT dataset, the classification accuracy ranged be-
tween 85% and 100%; for the MLL dataset, the classifica-
tion accuracy ranged between 80% and 100%; and for the 
Prostate Tumor dataset, the classification accuracy ranged 
between 76.47% and 100%. The gene clusters with the best 
classification accuracy (i.e., 100%) are depicted in Table 7. 
The collated genes obtained from the proposed algorithm 
on all the tests are shown in Table 8. The classification 
accuracy by permuting the order is in a reasonable range. 
However, the accuracy can be improved by retuning the 
size of the feature subset. Because we want to provide a 
small number of important genes that can be translated to 
biological experiments (e.g., finding driver mutations), 
we prefer keeping the size of the feature subset small. It is 
therefore a trade-off between the size of the feature subset 
and the sensitivity with respect to gene order. However, 
the range of classification accuracy can be improved in 
the following manner. If N times the permutation and 
selection are conducted, then N gene subsets will be ob-
tained. It is possible to retrieve NM  gene subsets from 
these N subsets that are exhibiting better performances in 
terms of classification accuracy on training data (e.g., us-
ing a k -fold cross validation). These M  gene subsets can 
be used in further computational and biological analyses. 

Next, we investigated the biological significance of the 
genes obtained from the experiments. To do this, we col-
lated all the genes obtained from the tests: that is, the top-
4 genes obtained using the original order and the top-4 
genes obtained when randomizing the order 20 times. 
Gene duplicates are removed and processed with FatiGo 
[26] and Ingenuity Pathway Analysis (IPA, 
http://www.Ingenuity.com) to find their functional 
properties. The p -value has been kept lower than 5%, 
and the Gene Ontology (GO) biological process (levels 
from 3 to 9) has been used for all the datasets. Several 
significant GO biological processes have been obtained. 
However, processes with term sizes of less than 100 have 
been provided in the supplementary material at the link 

Dataset Class Dimension 

(number of 

genes) 

Training 

samples 

Test 

samples 

SRBCT 4 2308 63 20 

MLL 3 12582 57 15 

Prostate Tumor 2 12600 102 34 
SRBCT 

Gene symbol/ acces-

sion (numbers) 

MLL 

Gene symbol/ acces-

sion (numbers) 

Prostate Tumor 

Gene symbol/ acces-

sion (numbers) 

CD99 (11) 41462_at (4341) 38322_at (6390) 

SGCA (20) 33699_at (4982) 1513_at (11215) 

WAS (62) 34306_at (7930) 863_g_at (11858) 

SH3BGR (723) 35260_at (8165) 829_s_at (11871) 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_cdi=5111&_issn=01695002&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.ingenuity.com%252F
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{http://bonsai.hgc.jp/~imoto/SuplTCBB11Sharma.pdf}. 
A total of 200 significant terms are obtained for the 
SRBCT dataset using a collection of 36 genes from the 
proposed algorithm. For the MLL dataset, 19 significant 
terms are obtained using 42 genes. For the Prostate Tu-
mor subset, 7 significant terms are obtained using 47 
genes. We use the Prostate Tumor subset as a prototype 
to detail functional properties. Processing the selected 47 
genes of the Prostate Tumor subset gives several high-
level biological functions. The top-5 high-level functions 
are depicted in Figure 4. In the figure, the horizontal axis 
shows the high-level functions, and the vertical axis 
shows the negative logarithm of the p -value. The most 
significant high-level function of attention is the cancer 
function. The cancer function exhibits several sub-
functions. Some of its sub-functions are listed in Table 9. 
In Table 9, the first column depicts the tumor-related 
functions; the second column depicts the corresponding 
p -values; the third column shows the gene symbols; and 

the fourth column defines the number of genes used for 
the corresponding functions. 
 
 
 

TABLE 4 

Comparison of the Methods on the SRBCT Dataset 

 
Methods 

(Feature Selection + Classification) 

Number of 

selected genes 

Classification 

accuracy 

Information gain + Naïve Bayes [25] 150 68% 

Information gain + SVM random [25] 150 95% 

Information gain + SVM exhaustive [25] 150 91% 

Towing rule + Naïve Bayes [25] 150 73% 

Towing rule + SVM random [25] 150 95% 

Towing rule + SVM exhaustive [25] 150 95% 

Sum minority + Naïve Bayes [25] 150 68% 

Sum minority + SVM random [25] 150 95% 

Sum minority + SVM exhaustive [25] 150 91% 

Max minority + Naïve Bayes [25] 150 77% 

Max minority + SVM random [25] 150 91% 

Max minority + SVM exhaustive [25] 150 91% 

Gini index + SVM Naïve Bayes [25] 150 78% 

Gini index + SVM random [25] 150 95% 

Gini index + SVM exhaustive [25] 150 95% 

Sum of variances + SVM Naïve Bayes [25] 150 63% 

Sum of variances + SVM random [25] 150 91% 

Sum of variances + SVM exhaustive [25] 150 95% 

t-statistics + Naïve Bayes [25] 150 63% 

t-statistics + SVM random [25] 150 91% 

t-statistics + SVM exhaustive [25] 150 95% 

One-dimensional SVM + SVM Naïve Bayes [25] 150 63% 

One-dimensional SVM + SVM random [25] 150 91% 

One-dimensional SVM + SVM exhaustive [25] 150 95% 

Information gain + LDA with NCC 4 70% 

Information gain + Bayes classifier 4 45% 

Information gain + NNC 4 60% 

Chi-squared + LDA with NCC 4 55% 

Chi-squared + Bayes classifier 4 50% 

Chi-squared + NNC 4 70% 

Gain Ratio + LDA with NCC 4 75% 

Gain Ratio + Bayes classifier 4 85% 

Gain Ratio + NNC 4 85% 

Proposed feature selection + LDA with NCC 4 100% 

Proposed feature selection + Bayes classifier 4 90% 

Proposed feature selection + NNC 4 95% 

TABLE 5 

Comparison of the Methods on the MLL Dataset 
 

Methods 

(Feature Selection + Classification) 

Number of 

selected genes 

Classification 

accuracy 

BScatter + SVM Linear [27] 5-5000 91.7% - 100% 

BScatter + SVM Polynomial [27] 5-5000 91.7% - 98.6% 

BScatter + SVM Gaussian [27] 5-5000 90.3% - 98.6% 

Chi-squared + SVM Linear [27] 5-5000 90.3% - 97.2% 

Chi-squared + SVM Polynomial [27] 5-5000 91.6% - 97.2% 

Chi-squared + SVM Gaussian [27] 5-5000 80.6% - 97.2% 

Information gain + Naïve Bayes [25] 150 67% 

Information gain + SVM random [25] 150 100% 

Information gain + SVM exhaustive [25] 150 93% 

Towing rule + Naïve Bayes [25] 150 60% 

Towing rule + SVM random [25] 150 100% 

Towing rule + SVM exhaustive [25] 150 93% 

Sum minority + Naïve Bayes [25] 150 67% 

Sum minority + SVM random [25] 150 87% 

Sum minority + SVM exhaustive [25] 150 80% 

Max minority + Naïve Bayes [25] 150 73% 

Max minority + SVM random [25] 150 87% 

Max minority + SVM exhaustive [25] 150 80% 

Gini index + SVM Naïve Bayes [25] 150 60% 

Gini index + SVM random [25] 150 100% 

Gini index + SVM exhaustive [25] 150 93% 

Sum of variances + SVM Naïve Bayes [25] 150 60% 

Sum of variances + SVM random [25] 150 100% 

Sum of variances + SVM exhaustive [25] 150 93% 

t-statistics + Naïve Bayes [25] 150 60% 

t-statistics + SVM random [25] 150 100% 

t-statistics + SVM exhaustive [25] 150 93% 

One-dimensional SVM + SVM Naïve Bayes [25] 150 60% 

One-dimensional SVM + SVM random [25] 150 100% 

One-dimensional SVM + SVM exhaustive [25] 150 93% 

Information gain + LDA with NCC 4 73% 

Information gain + Bayes classifier 4 73% 

Information gain + NNC 4 67% 

Chi-squared + LDA with NCC 4 73% 

Chi-squared + Bayes classifier 4 80% 

Chi-squared + NNC 4 60% 

Gain Ratio + LDA with NCC 4 80% 

Gain Ratio + Bayes classifier 4 80% 

Gain Ratio + NNC 4 93% 

Proposed feature selection + LDA with NCC 4 100% 

Proposed feature selection + Bayes classifier 4 100% 

Proposed feature selection + NNC 4 93% 

 
TABLE 6 

Comparison of the Methods on the Prostate Tumor Dataset 
 

Methods 

(Feature Selection + Classification) 

Number of 

selected genes 

Classification 

accuracy 

PCLs [28] Unknown 97% 

Discretization + decision trees [29] 3071 74% 

RCBT [12] unknown 97% 

SVMs [12] unknown 79% 

Signal to noise ratios + kNN [24] 4 77% 

 -depended degree + decision rule [18] 1 91% 

Information gain + LDA with NCC 4 74% 

Information gain + Bayes classifier 4 74% 

Information gain + NNC 4 74% 

Chi-squared + LDA with NCC 4 74% 

Chi-squared + Bayes classifier 4 74% 

Chi-squared + NNC 4 74% 

Gain Ratio + LDA with NCC 4 85% 

Gain Ratio + Bayes classifier 4 94% 

Gain Ratio + NNC 4 62% 

Proposed feature selection + LDA with NCC 4 100% 

Proposed feature selection + Bayes classifier 4 97% 

Proposed feature selection + NNC 4 97% 
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TABLE 7 

Top-4 Genes with the Best Classification Accuracy 

 
SRBCT 

Gene symbol/accession 

(numbers) 

MLL 

Gene 

symbol/accession 

(numbers) 

Prostate Tumor 

Gene 

symbol/accession 

(numbers) 

{SGCA (20), APCDD1 (51), 

AF1Q (120), CORO1A (48)} 

and 

{SGCA (20), IGF2 (46), GATA3 

(116), HLA-DPA1 (561)} 

{38604_at (3399),  

34306_at (7930), 

34410_s_at (8034), 

39556_at (9586)} 

{41480_at (4377), 

37639_at (6185), 

38322_at (6390), 

40045_g_at (6915)} 

 
TABLE 8 

The Genes Obtained from the Proposed Algorithm on the 

SRBCT, MLL and Prostate Tumor Datasets by Randomly 

Permuting the Gene Orders 

 
SRBCT 

(gene symbols/ 

accessions) 

{CDK6, CAV1, FCGRT, CD99, CD79B, SGCA, 

NCOA1, IGF2, CORO1A, APCDD1, PAPPA, WAS, 

ELF1, RYR1, CCND1, FVT1, TNFAIP6, FNDC5, 

FNDC5, NEB, GATA3, AF1Q, MAPK7, MYO1B, 

ANTXR1, CD79A, PSMB8, ARHE, CBX1, HLA-DPA1, 

SH3BGR, YAP1, KCNAB2, BTK, CSDA, SLC35A1, 

MGC11349} 

 

MLL 

(gene symbols/ 

accessions) 

{AFFX-HUMTFRR/M11507_5_at, 31575_f_at, 

32378_at, 36780_at, 37508_f_at, 38521_at, 38604_at, 

41462_at, 33305_at, 33699_at, 33806_at, 34771_at, 

35161_at, 36553_at, 37539_at, 37933_at, 37944_at, 

38969_at, 39011_at, 39707_at, 40763_at, 40777_at, 

40797_at, 41752_at, 32808_at, 33882_at, 34306_at, 

34410_at, 35260_at, 35340_at, 36986_at, 37346_at, 

37766_s_at, 38046_at, 39556_at, 41523_at, 32543_at, 

1914_at, 1894_f_at, 1752_at, 1008_f_at, 573_at} 

 

Prostate Tumor 

(gene symbols/ 

accessions) 

{31444_s_at, 31959_at, 35116_at, 35119_at, 35430_at, 

35465_at, 35928_at, 39939_at, 41480_at, 41661_at, 

35164_at, 35235_at, 35641_g_at, 36928_at, 37639_at, 

38322_at, 40045_g_at, 40436_g_at, 40839_at, 32815_at, 

34792_at, 34840_at, 34865_at, 36666_at, 37330_at, 

37720_at, 37736_at, 38026_at, 38028_at, 38057_at, 

38098_at, 38125_at, 38406_f_at, 39816_g_at, 

40282_s_at, 41504_s_at, 32598_at, 2041_i_at, 2035_s_at, 

1922_g_at, 1513_at, 914_g_at, 863_g_at, 829_s_at, 

769_s_at, 440_at, 322_at} 

 
 

 
 

Fig. 4: Top-5 high-level biological functions for the Prostate Tumor 

subset using the selected genes. 

 
We have also conducted experiments to find common 

genes between the proposed algorithm and the three oth-
er feature selection techniques namely information gain, 
Chi-squared and gain ratio. To do this, we first select top-
4 genes from all the four techniques and then the result-
ing genes are compared. The findings are highlighted as 
follows: for SRBCT dataset, gene symbols GATA3 and 
APCDD1 are common; for MLL dataset, 35260_at is 
common; and, for Prostate Tumor dataset, 37639_at is 
common. Though some of the genes are common, the 
resulting gene subsets are different which led to different 
classification performance. 

 
TABLE 9 

Cancer Functions 
 

Function p-value Gene symbols #Genes 

Benign tumor 7.66E-06 ABL1, AHCYL1, C18ORF1, DPT, 

FBLN1, GSTP1, MAF, PIK3R3, 

SERPINE1 

9 

tumor 1.14E-05 ABL1, AHCYL1, ANXA2, 

C18ORF1, DPT, ENO1, ERG, 

FBLN1, GSTP1, HPN, KLK3, 

MAF, P4HB, PIK3R3, PTGDS, 

RECK, RPL13A, SERPINE1 

18 

Neoplasia 2.70E-05 ABL1, AHCYL1, ANXA2, 

C18ORF1, COL4A6, DPT, ENO1, 

ERG, FBLN1, GSTP1, HPN, 

KLK3, MAF, P4HB, PIK3R3, 

PTGDS, RECK, RPL13A, 

RUNX1T1, SERPINB5, SER-

PINE1, WFS1 

22 

Prostatic carcino-

ma 

2.80E-04 ANXA2, ERG, GSTP1, HPN, 

KLK3, PTGDS 

6 

Cancer 2.89E-04 ABL1, AHCYL1, ANXA2, 

C18ORF1, DPT, ENO1, ERG, 

GSTP1, HPN, KLK3, MAF, P4HB, 

PIK3R3, PTGDS, RECK, RPL13A, 

RUNX1T1, SERPINB5, SER-

PINE1, WFS1 

20 

Genital tumor 7.81E-04 ANXA2, ERG, GSTP1, HPN, 

KLK3, PTGDS, RECK 

7 

Prostate cancer 1.60E-03 ABL1, ANXA2, ERG, GSTP1, 

HPN, KLK3, PTGDS 

7 

Prostatic intraepi-

thelial neoplasia 

1.97E-03 ANXA2, KLK3, PTGDS 3 

Digestive organ 

tumor 

4.18E-03 ABL1, ANXA2, GSTP1, P4HB, 

RPL13A, SERPINE1 

6 

Gastrointestinal 

tumor 

8.24E-03 ABL1, GSTP1, P4HB 3 

Colorectal tumor 1.57E-02 ABL1, GSTP1, SERPINE1 3 

Brain tumor 1.61E-02 ABL1, RECK, SERPINE1 3 

Bone tumor 2.00E-02 ABL1, SERPINE1 2 

Prostatic intraepi-

thelial tumor 

2.21E-02 ANXA2, PTGDS 2 

Secondary tumor 2.21E-02 ABL1, SERPINE1 2 
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5 SENSITIVITY ANALYSIS 

We check the sensitivity of the proposed approach by 
adding Gaussian noise to the expression values. We use 
three different levels of Gaussian noise to contaminate the 
data. The generated noise levels are 1%, 5% and 10% of 
the standard deviation of the original expression values. 
The contaminated data are then analyzed again to obtain 
a new set of genes. We repeat the adding of Gaussian 
noise 10 times at each of the levels and show the 8 leading 
genes in Table 10. 

It can be seen from the sensitivity analysis table (Table 
10) that the proposed approach is able to select all the 
genes that were also selected in the original analysis (Ta-
ble 3). 

6 REDUNDANCY ANALYSIS 

We perform redundancy analysis to investigate the re-
dundant biological information in terms of classification 
accuracy on the obtained best gene subsets. To perform 
this analysis, we use the SRBCT dataset and the gene sub-
sets as depicted in Tables 3 and 7. The training set and the 
test set of the SRBCT dataset are merged into one dataset 
to compute the average classification accuracy using a k -
fold cross-validation procedure (where 3k ) on the se-
lected gene subsets. The LDA with the NCC technique is 
utilized as a classifier. One gene from a given subset is 
removed, and the average classification accuracy is eval-
uated to investigate the loss of information. This removal 
of a gene and computation of accuracy are performed 
until all the genes in a given subset are evaluated. The 
results are depicted in Table 11.1 (gene numbers are de-
picted in the table; for corresponding gene symbols, see 
Tables 3 and 7). It can be seen from Table 11.1 that each of 
the genes in a given subset contains unique information. 
None of the genes are redundant. Table 11.2 shows the 
information loss by removing a gene from a given subset. 
It can be observed from Table 11.2 that though gene 
number 20 is common to all three subsets, it contributes a 
different level of information for the different subsets; in 
other words, there are other important genes that con-
tribute to a given subset with respect to classification per-
formance. Therefore, different subsets of genes can be 
used equally well for classification. 

7 CONCLUSION 

In this paper, we propose a feature selection algorithm for 
classification problem using transcriptome data. In many 
feature selection algorithms (e.g. individual ranking and 
forward selection schemes), the gene selection is biased 
towards the highest ranking feature. However, low-rank 
genes, if appropriately selected in a subset, can exhibit 
better classification performance. The proposed algorithm 
explores this phenomenon and provides a way to investi-
gate important genes. It is observed that the algorithm 
finds a small gene subset that provides high classification 
accuracy on several DNA microarray gene expression 
datasets. These subsets contain top- r genes. The small 

number of ( r ) genes would help to conduct biological 
experiments for investigating biomarkers in a time-
efficient and cost-effective manner. The information re-
trieved from these economical biological experiments can 
then be translated to pharmacology, which could also 
help in the timely diagnosis of cancers. Furthermore, the 
combination of genes in a small subset can be easily, reli-
ably and precisely interpreted for cancer efficacy. The 
proposed algorithm is also compared to several other 
feature selection methods and promising results are ob-
tained. The biological significance of the obtained gene 
subset was also highlighted by identifying its functional 
properties. Moreover, the sensitivity analysis is conduct-
ed to observe the robustness of the algorithm in a noisy 
environment. For this purpose, the DNA microarray data 
were contaminated by different level of noise and the 
algorithm was carried out to find the genes. It is observed 
that the algorithm was able to select all the genes that 
were also selected in the original noise free environment. 
Furthermore, redundancy analysis is conducted to ex-
plore the importance of individual genes in a given gene 
subset or in other words, redundancy in gene subsets. It is 
observed that the genes are not redundant in a gene sub-
set and therefore, different subsets of genes can be used 
equally well for classification. The following points are 
highlighted which can be addressed for future work: 
 To permute the data N times to obtain NM  gene 

subsets for classification and biological analyses. 
 To investigate the value of selected number of genes, 

r , based on a specific data topology.  
 To develop a ranker for pre-processing data so that 

the order of data has minimal or no effect on the gene 
selection and classification performance. However, 
this could provide gene subsets biased towards the 
ranker used, but could make the processing faster. 

APPENDIX 

In this appendix section, we experimentally compute a 
sufficient value of r  on SRBCT dataset. In order to de-
termine the value of r , we first varied r  between 2 and 5, 
and for each of the value we compute the training classi-
fication accuracy and test classification accuracy using 
three classifiers: LDA with nearest centroid classifier 
(NCC), Bayes classifier and nearest neighbor classifier 
(NNC). The results are depicted in Table A1. It can be 
observed from the table that the variation of performance 
(among classification accuracies obtained by different 
classifiers) is small when 4r . Also at 4r , the aver-
age classification accuracy is highest. Therefore, we select 

4r .  
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TABLE 10 

Sensitivity Analysis: Selection of the Genes After Adding Gaussian Noise on Expression Values for the 

SRBCT Dataset 
 

Std. dev. = 1% Std. dev. = 5% Std. dev. = 10% 

Frequency Gene symbol  
(number) 

Frequency Gene symbol  
(number) 

Frequency Gene symbol  
(number) 

10 
10 
10 
10 

SH3BGR (723)* 
WAS (62)* 
SGCA (20)* 
CD99 (11)* 

10 
8 
8 
8 
2 
1 
1 
1 

SGCA (20)* 
SH3BGR (723)* 
CD99 (11)* 
WAS (62)* 
GATA3 (116) 
CD79A (364) 
SLPI (530) 
MGC11349 (1537) 

9 
7 
5 
3 
3 
2 
2 
2 

SH3BGR (723)* 
CD99 (11)* 
SGCA (20)* 
WAS (62)* 
FCGRT (4) 
PCOLCE (981) 
ALDH7A1 (101) 
ZNF358 (539) 

*Genes were also present in the original analysis. 

 

TABLE 11.1 

Redundancy Analysis by Removing One Gene at a Time from the Selected Three Subsets and Apply-

ing a k -fold Cross-Validation ( 3k ) to Compute the Classification Accuracy on the SRBCT Dataset 

 
Subset #1 % Subset #2 % Subset #3 % 

[11,20,62,723] 100.00 [20,51,120,48] 100.00 [20,46,116,561] 100.00 
[11,20,62] 85.90 [20,51,120] 76.92 [20,46,116] 83.33 

[11,20,723] 71.79 [20,51,48] 88.46 [20,46,561] 82.05 
[11,62,723] 74.36 [20,120,48] 83.33 [20,116,561] 93.59 
[20,62,723] 85.90 [51,120,48] 85.90 [46,116,561] 93.59 

 

TABLE 11.2 
Information Loss in Terms of Classification Accuracy when Removing a Gene from the Subset 

 

Gene in subset #1 % Gene in subset #2 % Gene in subset #3 % 

20 -25.64 20 -14.10 20 -6.41 
62 -28.21 51 -16.67 46 -6.41 

723 -14.10 120 -11.54 116 -17.95 
11 -14.10 48 -23.08 561 -16.67 

 

TABLE A1 
Training Classification Accuracy (TrCA) and Test Classification Accuracy (TeCA) Using Different Values 

of r  on SRBCT Dataset 

 

value r  LDA with NCC Bayes classifier NNC Average 

2 TrCA: 78.2% 
TeCA: 55.0% 

TrCA: 87.2% 
TeCA: 95.0% 

TrCA: 90.7% 
TeCA: 60.0% 

TrCA: 85.4% 
TeCA: 70.0% 

3 TrCA: 95.9% 
TeCA: 100.0% 

TrCA: 89.6% 
TeCA: 80.0% 

TrCA: 99.6% 
TeCA: 95.0% 

TrCA: 95.0% 
TeCA: 91.7% 

4 TrCA: 99.6% 
TeCA: 100.0% 

TrCA: 93.7% 
TeCA: 90.0% 

TrCA: 100.0% 
TeCA: 95.0% 

TrCA: 97.8% 
TeCA: 95.0% 

5 TrCA: 100.0% 
TeCA: 85.0% 

TrCA: 91.1% 
TeCA: 85.0% 

TrCA: 100% 
TeCA: 90%* 

TrCA: 97.0% 
TeCA: 86.7% 

* Eight gene subsets are obtained at 100% TrCA. Their mean TeCA is 90%.  
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