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Abstract: This discussion presents a new perspective of subspace independent component analysis (ICA). The 

notion of a function of cumulants (kurtosis) is generalized to vector kurtosis. This vector kurtosis is utilized in 

the subspace ICA algorithm to estimate subspace independent components. One of the main advantages of the 

presented approach is its computational simplicity. The experiments have shown promising results in estimating 

subspace independent components. 

1.   Introduction: Independent component analysis is a widely accepted tool in solving blind source separation 

(BSS) problems. In BSS problem a set of observations is given but the underlying source information is hidden. 

The mixing weights of this underlying source information are also not known to the observer. The BSS problem 

is thus to identify the source signals and/or the mixing weights. The assumptions in the basic ICA model include 

the source signals being mutually independent and having nongaussian distributions. In the BSS problem an 

1M vector of observation x is modelled from statistically independent and nongaussian components s of 

size 1M : 

  Asx           (1) 

 

where A is a square and invertible mixing matrix of size MM . The elements of T
M1 ]s,,[s s are linearly 

mixed with the mixing matrix A to give the observation x. The source signals could be obtained up to their 

permutation, sign and amplitude only, that is the order and variances of independent components cannot be 

determined. These indeterminacies are, however, insignificant in most of the applications. 

Some techniques [1,2] have evolved in recent years that relax the assumptions of basic ICA model and 

generalize the problem. These techniques are a generalization of basic ICA model and are known as 

multidimensional ICA (MICA) [2] and subspace ICA [1] model. In MICA or subspace ICA it is not assumed 

that all the source signals are independent, instead it is assumed that some components that usually come in n-

tuples or the elements of subspaces are mutually non-independent. However, the non-independencies among 

different n-tuples or subspaces are not allowed.  
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In this paper we present a new perspective of subspace ICA model. Unlike MICA [2] or subspace ICA [1] 

we have not applied an additive model. However, the multiplicative model as of basic ICA has been utilized 

except that it is partitioned into sub-matrices and sub-vectors. Then we generalize the notion of kurtosis [3] to 

vector kurtosis for our model and show the relationship of the optimized vector kurtosis to the subspace 

independent components. This approach would solve the BSS problem even when not all the components are 

independent i.e. it accounts for a generalized problem. One of the advantages of our subspace ICA algorithm is 

its computational simplicity due to the use of vector (generalized) kurtosis function.  

2.   Evaluation of independent components by maximizing a quantitative measure of nongaussianity: 

Independent components can be estimated by the maximization of nongaussianity. Two quantitative measures of 

nongaussianity readily used in ICA estimation are kurtosis and negentropy [3].  

2.1 Kurtosis: Kurtosis or univariate kurtosis is a fourth order cumulant of a random variable. For zero-mean 

random variable, kurtosis is defined as: 

 224 ])yE[(3]yE[)ykurt(         (2) 

 

Kurtosis value can be any real number. Random variables with 0)ykurt(   are considered supergaussian while 

with 0)ykurt(  are considered subgaussian. For gaussian random variables and a very few nongaussian 

variables 0)kurt(y  . Thus nongaussianity can be measured by the absolute value of kurtosis. If the variance of 

random variables are kept constant (i.e. 1]E[y2  ) then kurtosis can be computed by the fourth moment of 

random variables. The main advantage of using kurtosis is its computational simplicity. One of the drawbacks of 

kurtosis inherited by the fourth order moments is its susceptibility (sensitivity) to outliers [3].  

3.   Subspace ICA and MICA: Cardoso [2] introduced the notion of MICA by generalizing basic ICA model. 

MICA is an additive model which is derived from the multiplicative model. Its components is are vector-valued, 

instead of scalar-valued as of equation 1 and not all the elements of is are assumed to be independent. MICA 

was estimated by maximum likelihood (ML) estimation and illustrated on foetal ECG dataset [4]. The author 

argued that the dataset was well modelled by MICA decomposition into one bi-dimensional component 

(mother) and one mono-dimensional component (foetal).  

Hyvärinen and Hoyer [1] combined the technique of MICA and the principle of invariant-feature 

subspaces
1
 [5] to explain the emergence of phase- and shift-invariant features. The authors call the n elements of 

                                                 
1
 The principle of invariant-feature subspace is that invariant-feature can be considered as a linear subspace in a 

feature space and its value can be computed by taking the norm of the projection on that subspace. 
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is as the subspace spanned by a set of n basis vectors an independent subspace and referred the algorithm as 

independent subspace analysis (ISA) or subspace ICA and estimated subspace independent components by ML 

estimation. Thus different subspaces are mutually independent but the entries of each subspace are not 

independent. The probability density of each subspace is considered to be spherically symmetric, i.e. it depends 

only on the norm of the projection. 

4 Subspace ICA model: a new perspective: We take the multiplicative model and partition the entries of 

matrix and vectors: 
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where jx  and js of x and s respectively are vectors of dimension d and can be defined as 
Tj

d
j
2

j
1j ]x,...,x,[xx  

and 
Tj

d
j
2

j
1j ]s,...,s,[ss  for M1,...,j  . Partitioned matrix A (equation 3) is of size MdMd  since its entries 

ijA are matrices of size dd . We made the following assumptions for our model: 

Assumption1: Components js are vector-valued, nongaussian, mutually independent and of identity covariance. 

Assumption2: Entries of js are not independent and all are of equal dimension d. 

Assumption3: Sample data is centered and whitened. 

To estimate subspace independent components we take a d-dimensional vector y  which is defined as: 

 y xB
T 




M

1j
j

T
j xB         (4) 

where size of B and jB are dMd and dd respectively. Given equation 4, now the problem is to identify 

and/or estimate subspace independent components from the observation x only. The problem is solved in section 

4.2. 

4.1 Extension of univariate kurtosis to vector kurtosis: Univariate kurtosis or simply kurtosis (section 2.1) is 

utilized when the variable y is a scalar quantity or one-dimensional vector. It does not accommodate for 

multidimensional features. To solve the multidimensional problem we first need to extend the basic kurtosis 

function. The natural generalization of basic kurtosis function for any vector y  can be given as: 

 2T2T ])3(E[-])[(E)(kurt yyyyy         (5) 

 

which is a multidimensional equivalent of equation 2. There is no covariance term in equation 5. This is due to 

one of our assumptions that the sample data is whitened ( dd
T I]E[ yy ). We refer to this generalized kurtosis 
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as vector kurtosis. As of kurtosis function, vector kurtosis is computationally simple but sensitive to the outliers. 

4.2 Relation of optimized vector kurtosis to the subspace independent components: In this section we 

discuss how the subspace independent components are related to the optimization of vector kurtosis. Let us 

consider the subspace independent component (equation 4) again. From equations 3 and 4, the component can 

be written as: 

 



M

1

TTT  
i

ii sQsQAsBy        (6) 

where size of Q and iQ are dMd and dd respectively. Equation 6 is a linear combination of vectors is . To 

show the relationship, consider two observations ( 2M  ) 1s and 2s each of dimension d . This would simplify 

equation 6 as: 

 2
T
21

T
1   sQsQy          (7) 

 

Using the additive property of kurtosis (which can be shown for vector kurtosis as well) we can say: 

 
)kurt()kurt(                 

)kurt()kurt()(
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sQsQ

sQyQ,Q



f
      (8) 

 

where 2TT2TTT )])E[(3])E[()kurt( jjjjjjjjjj sQQs(sQQssQ  . Now we put a constraint g on Q (since 

dd
T IE[ ]yy ): 
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again dI])(E[  )](E[)](E[]E[ dd
TTTT   )(yyyyyyyy tracetracetracetrace  and using equation 7 

  dd2
T
21

T
1

T I ]E[  QQQQyy        (9) 

 

therefore, constraint g can be written as: 

 0dE[E[ d ]E[),( 2
T
22

T
21

T
11

T
1

T
21  ]sQQs]sQQsyyQQg    (10) 

From equation 9 it can be stated that column vectors of rectangular matrix Q are orthonormalized. The 

optimization problem can now be solved by finding 1Q and 2Q that occur at constrained relative-extremum of 

)Q,(Q 21f  (equation 8) under the constrained curve ),( 21 QQg  (equation 10) using the method of Lagrange 

multipliers: 

 )( )( 21)(21)( 2121
Q,QQ,Q Q,QQ,Q gf    where 0     (11) 

 

Solving for the derivatives of functions f and g (partial proof of equations 12 and 13 can be viewed in appendix 
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1), we get 
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and    
2121 Q2

T
22Q1

T
1121)(  ]E[2 ]E[2)( iig ˆQssˆQssQ,QQ,Q       (13) 

substituting equations 12 and 13 in equation 11 and comparing 
1Qî terms, we get: 

 

]2E[ ]]E[E[12)])(E[(4 1
T
111

T
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11

T
11

T
111

T
11

T
1 QssQsssQQsQsssQQs     (14) 

 

It is evident from equation 14 that dd1 0 Q is one of the solutions. The corresponding value of 2Q for this 

value of 1Q can be obtained by substituting dd1 0 Q in constraint curve (equation 10), which yields: 

0d]E[),0 2
T
22

T
22dd  sQQsQ(g  

or d]E[ 2
T
22

T
2 sQQs ; or d2

T
2 )Q(Qtrace     (15) 

Equations 9 and 15 imply that dd2
T
2 I QQ . These values suggest that the norm of y is equal to the norm of one 

of the subspace independent components 2TTTTT2 )()(| | ||s||sssQsQyyy|| iiiiiii   or | || |  | || | isy  .  

Therefore, for any whitened data z (which can be achieved for example by eigenvalue decomposition procedure 

of covariance of sample data x), we search for zW
T (where W is a rectangular matrix of the same size as Q ) 

that maximizes vector kurtosis. We see that WVA
T)(Q   and WWWVAVAWQQ

TTTTT ))((  . It can 

also be observed from equation 9 that dd2
T
21

T
1

T I  QQQQQQ . Thus we maximize zW
T  under the 

constraint dd
T I WW . This W will give first subspace independent component and second subspace IC will 

be mutually orthogonal to the first one. Altogether there are M subspace ICs. The p
th

 subspace IC is orthogonal 

to all the previous 11 p subspace ICs. The same algorithm needs to be run M times to get all the subspace 

ICs. It is therefore rather appropriate to define a square matrix Λ of size MdMd that consists of M 

rectangular matrices W such that ]W[WΛ M1 . Therefore the objective is to find all W to get projection 

zΛ
T . 

4.3 Fixed point algorithm using vector kurtosis: In this section we discuss the fixed-point algorithm [6] for 

finding the projection matrix ΛW  which would enable us to find subspace independent components. Let the 

whitened data z be a set of vectors defined as TT
M

T
1 ],,[ zzz  , where jz is a vector of d dimension and given 

by T
d1 ]z,,[z jj   ( j

iz are scalar quantities). For a projection matrix W of size dMd the gradient of absolute 
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value of vector kurtosis can be computed as (see appendix 1 for the proof) 

 ][]E[3)])(E[())sign(kurt(4
)kurt( TTTTTTT

T

WzzzWWzWzzzWWzzW
W

|zW|
E




 

 

For whitened data z and normalized
2
 W, the fixed-point algorithm for subspace ICA model (see appendix 1) 

would be .d3)])(E[( TTT
WWzzzWWzW   The algorithm will converge when the norm of new and old 

values of W point in the same direction, i.e. ||||||WW|| dd
T I  )( 

  ( where 
W is the new value of W and 

| || | is Frobenius norm). The iterative process can also be terminated when the vector kurtosis stops increasing.  

4.4 Orthonormalization of a rectangular matrix: This procedure used in subspace ICA is briefly explained 

here since it is slightly different from the regular vector orthonormalization procedure.  

4.4.1 Orthonormalization: The orthonormalization of p rectangular matrix ΛW p can be computed by Gram-

Schmidt process: 

 1. 





1

1

T
p

j
pjjpp WWWWW   (orthogonalize W) 

 2. 1/2T )(  pppp WWWW   (normalize W) 

For orthonormalization of pW  check if the following two conditions are satisfied: 

1.   dd
T I pp WW  

2.   jjiijiji WWWW)W(W)W(W
TTT     (from Pythagorean Theorem)   or  dd

TT 0  ijji WWWW  

where pi  and 1 pj for 2p . If the above two conditions are not satisfied then the Gram-Schmidt 

orthonormalization procedure should be repeated until both the conditions are satisfied or the values of 

pp WW
T and ijji WWWW

TT   meet some predefined thresholds. 

5.   Deflationary orthogonalization procedure for subspace ICA: Deflationary orthogonalization procedure 

can be used to estimate subspace independent components one by one. We first estimate p matrices and then 

orthonormalize the obtained matrices prior to running the algorithm for th)1( p matrix. The size of matrix pW  

is dMd . The procedure is illustrated as follows:  

 1.    Center data x. 

 2.    Whiten data x to give z. 

                                                 
2
 The term normalization for W is meant orthonormalization of the column vectors of W. Here we used this term to make 

distinction between the orthonormalization process of one W (say Wj) with another (say Wk) and to that of 

orthonormalization of column vectors within W. 
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3.   Select M, the number of subspace independent components and dimension d for each of the 

subspaces. Set counter 1p . 

4. Select an initial value of identity norm for pW , e.g. randomly. 

5. Let ppppp WWzzzWWzW d3)])(E[( TTT  . 

6. Do orthonormalization for pW (see section 4.4.1). 

7. If pW has not converged, go back to step 5. 

8. Set 1 pp and go to step 4 until Mp . 

For special case, when 1d  (one-dimensional vector or scalar quantity) then the subspace ICA procedure will 

be reduced to the basic ICA procedure. 

6.   Illustration using foetal ECG: The subspace ICA model is illustrated on foetal ECG dataset [4]. The 

dataset consists of 2500 ECG points sampled at 500 Hz. We considered samples of four electrodes located on 

the abdomen of a pregnant woman. These observed samples are the mixtures of the cardiac rhythms of the 

mother and her foetus. The starting second of signals taken by each electrode are depicted in figure 1. In our 

model we assume two independent observations ( 2M  ) and the dimension of each observation vector to be 

two as well (i.e. each observation vector has 2 non-independent components). From figure 1, row 1 and row 2 

are assumed to be the ‘first-subspace’ and row 3 and row 4 are assumed to be the ‘second-subspace’. Therefore 

row 1 and row 2 are dependent components; similarly row 3 and row 4 are dependent components. But 

dependencies between the two different subspaces are not allowed, i.e. they are considered as mutually 

independent. 

The absolute of vector kurtosis ( |kurt| ) for both ‘first-subspace’ and ‘second-subspace’ attains some finite 

value and converge after a few iterations. The figure of |kurt|  versus iteration counts is not displayed here due 

to space limitations. 

The subspace independent components estimated by subspace ICA method using vector kurtosis are 

depicted in figure 2. The first two rows of the figure show the cardiac rhythms of the mother and the last row 

shows the cardiac rhythms of the foetus. The third row of the figure does not precisely follow any cardiac 

rhythm and is thus considered as noise being emitted from the electrodes. It can be seen that subspace ICA is 

well modelled on ECG dataset and is able to extract hidden cardiac rhythms. 

The subspace ICA model using vector kurtosis has estimated the rhythms in a similar fashion as MICA 

model [2] has on the same foetal ECG database. This proves the validity of our approach. Although some finer 
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points remain unanswered at this stage (which we have included in the ‘conclusion and future work’ section), 

the prime objective of introducing the concept of vector kurtosis for subspace ICA model is achieved. 

 

7.   Conclusion and future work: We have presented a new perspective of subspace ICA algorithm. The 

subspace ICA model is derived by partitioning the multiplicative model of basic ICA. The idea of kurtosis is 

extended to vector kurtosis to solve generalized version of BSS problem, i.e. when dependent components are 

involved. The relationship between the optimization of vector kurtosis and subspace independent components, 

which enabled us to estimate subspace independent components by maximizing vector kurtosis is established. It 

is seen that the approach works well on ECG dataset. Some essential questions are included here under to be 

answered in future: 

 How to appropriately select the value of d? 

 If two or more signals are linearly dependent then it is possible to have reduced rank covariance 

matrix ]E[ T
zz . How to apply the algorithm on reduced rank cases? 

 How to select the value of M if the number of sources is completely unknown to the observer? 

 

Acknowledgement: The authors gratefully acknowledge helpful consultations with Prof. Erkki Oja of Helsinki 

University of Technology, Finland. 

Appendix 1: 

Lemma: Let vector kurtosis 2TT2TTT ])E[3])E[()kurt( zWWz(zWWzzW   be a differentiable function of 

an nm  rectangular matrix W for nm  ; z be any vector of size 1m . The gradient of )kurt( T
zW is defined 

as ]]E[E[12)])(E[(4)kurt( TTTTTTT
WzzzWWzWzzzWWzzWW  . In the case of whitened z and 

normalized W, the second term of the equation will be 12nW. 

Proof: Let the scalar function be defined as )()( TT
zWWzW h . The derivative of h with respect to W will 

then be given as: 

)(
))(( TT

zWWz
WW

W








 h
   or  ))(())((  )( TTTTTT

zWWzzWWzzWWz  tracetrace  

                           )}()( and )()( {since ))((2 TTT
BAABAAWWzz trtrtrtrtrace   

or )2()( T
Wzz'W h         A1 

 

Therefore the derivative of vector kurtosis (from equation A1) can be written as: 

 

 ])'()]E[(E[6])'()(E[2)kurt T
W WWWWz(W hhhh   
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           ]]E[E[12)])(E[(4 TTTTTT
WzzzWWzWzzzWWz    A2 

However, if data z is whitened ( mm I]E[ T
zz ) and rectangular matrix W is normalized ( nn IT

WW ) then 

equation A2 can be rewritten as: 

 WWzzzWWzz(WW n12)])(E[(4)kurt TTTT      A3 

 

 )]E[()](E[]E[ TTTTTT
WzzWzWWzzWWz tracetrace   ntracetrace nn   )(I)( T

WW  

and    WWzzWzz  ]E[]E[ TT  
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Figure 1: Observed ECG from 4 electrodes located on the abdomen of a pregnant woman 

 

Figure 2: The estimated cardiac rhythms of the mother and her foetus using subspace ICA algorithm 
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