
 

 

   

 

 

 

 

 

 

 

 

 

INTRODUCTION 
 

 Handling of feature vector is quite unmanageable when 

its dimensionality is very large. It then becomes important 

to transform these high dimensional feature vectors to 

reduced feature space for the ease of management. One 

popular technique for this purpose is linear discriminant 

analysis (LDA). The LDA technique uses a linear transform 

to project the feature vectors to a subspace in such a way 

that the overlapping between different classes (state of the 

nature) is minimum. However, there may be some finite 

overlapping which result in finite amount of classification 

error. This classification error is inevitable for the LDA 

technique. 

 

 Recently rotational LDA technique
[1]

 is presented 

which minimizes this limitation of LDA technique. In order 

to minimize the overlaps, it utilizes two transforms: 

rotational transform θ and orientation W. The rotational 

transform θ rotates the original feature space in such a way 

that thereafter the utilization of orientation W produces a 

reduced feature space which is most discriminative for 

different classes. The computation of θ is an iterative 

process which requires some components to be evaluated 

including the regions in the subspace belonging to classes. 

The boundaries of these regions are computed using 

minimum distance classification method. Therefore the 

boundaries of regions are dependent on the type of the 

classifier used. Thus the choice of classifier becomes 

crucial for separating regions in the reduced feature space 

which influences the overall classification performance. In 

this paper we have utilized Bayes decision theorem with 

Gaussian density function for this purpose. The utilization 

of Bayesian rule seems to improve the performance in 

terms of getting lesser classification error which is 

empirically demonstrated. Also an adaptive approach is 

adopted to compute within-class scatter matrix WS for the 

computation of orientation W. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTATIONS AND DESCRIPTIONS 
 

 In the remaining discussions χ denotes the d-

dimensional set of n training samples (feature vectors) in a 

c-class problem, },...,2,1:{ cii   be the finite set of c 

states of nature or class labels where ωi denotes the i
th

 class 

label. The set χ can be subdivided into c subsets  χ
1
, χ

2
,…, 

χ
c
 where each subset χ

i
 belongs to ωi and consists of ni 

number of samples such that: 
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The samples or patterns of set χ can be written as: 

 

χ { x1, x2,  , xn } where d
j Rx  (d-dimensional 

hyperplane)  

χ
i
 χ  and  χ

1
 χ

2
… χ

c
 = χ  

 

Let jY  be h-dimensional transformed samples from χ
j
ωj 

using rotational LDA technique where dh  , then the 

samples of reduced dimensional set or transformed sample 

set Y can be depicted as: 

 

{Y y1, y2,  , yn }  where 
h

j Ry  (h-dimensional 

hyperplane) 

YY j  and YYYY c  ...21  where jY is derived from  

χ
j
  

 

For convenience, the notations used in the rest of the paper 

are elaborated as follows: 

 

WS  within-class scatter matrix 

BS  between class scatter matrix 

Rotational Linear Discriminant Analysis Using Bayes Rule for 

Dimensionality Reduction  

Alok Sharma
1,2

, Kuldip K. Paliwal
1
  

1
Signal Processing Lab, Brisbane, Australia; 

2
University of the South Pacific, Fiji 

 

Abstract: Linear discriminant analysis (LDA) finds an orientation that projects high dimensional feature vectors to 

reduced dimensional feature space in such a way that the overlapping between the classes in this feature space is 

minimum. This overlapping is usually finite and produces finite classification error which is further minimized by 

rotational LDA technique. This rotational LDA technique rotates the classes individually in the original feature 

space in a manner that enables further reduction of error. In this paper we present an extension of the rotational 

LDA technique by utilizing Bayes decision theory for class separation which improves the classification 

performance even further. 

 

Keywords: Rotational LDA, classification error, Bayes decision theory 

 



W hd  transformation matrix (orientation) 

θ  dd  transformation matrix (rotational) 

jxμ  center of χ
j
ωj  

jyμ  center of jY ωj 

jR  j
th

 region in the reduced dimensional space ( h
R ) 

which belongs to ωj 

jy  covariance of jY  

 

A REVIEW: ROTATIONAL LINEAR 

DISCRIMINANT ANALYSIS 
 

 Rotational linear discriminant analysis (LDA)
[1]

 rotates 

the individual classes in the original d-dimensional feature 

space such that the overlapping of samples of classes in the 

reduced h-dimensional reduced feature space is minimum 

(where dh  ). The technique finds transformation W and 

θ of sizes hd  and dd  respectively. The transformation 

or orientation W is a set of h, d-dimensional column vectors 

which represent the most discriminative directions in the 

reduced feature space. The orientation W is obtained by the 

eigenvalue decomposition of scatter matrices
[2]

  

 

iiiBW SS ww λ1       (1) 

 

where iw is the i
th

 column vector of W. The within-class 

scatter matrix WS and between class scatter matrix bS can 

be evaluated as: 
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The rotational transform θ consists of d-dimensional 

orthonormal vectors i.e. dd IT
θθ . The rotational 

transform θ enables rotation of samples of classes in the 

original feature space prior to the application of orientation 

W.  

 

The rotational LDA technique, transforms a feature vector 
d

Rx to h
Ry by using the relation 

 

]μ)μ(x[θWy xx jj
 TT

   (4) 

 

It can be observed from equation 4 that when there is no 

rotation (i.e. dd Iθ ) then it turns to be the basic LDA 

method. The optimum value of θ is computed by 

minimizing the overlapping of samples in the reduced 

dimensional plane. The solution for θ can be obtained from 

the following iterative procedure
[1]

 : 

 







c

j
R

n

jj
jj

j
E

1

F 
2

)],μW,θ,(x,[θ yx
)x(y|| y

  (5) 

21T /
θ)θ(θθ

      (6) 

 

where T

2

1F )μ)(xμ)[(xexp()Σ,μW,θ,(x, xxyx jjjj
u   

]W)ΣθW(Σ yy
TT11  

jj
 and ][E is the expectation of 

)F( with respect to x. The correspondence relation 

)x(y jR  in equation 5 depicts that only those vectors of 

x χ
j
 are taken which correspond to jj YR y . The 

inverse of θθ
T in equation 6 is computed using eigenvalue 

decomposition. There are iterative methods for 

orthonormalization that avoid the matrix inverse and 

eigendecomposition. In that case the rotation matrix θ  can 

be orthonormalized by using symmetric orthonormalization 

procedure starting from a non-orthogonal matrix and 

continuing the iterative process until dd IT
θθ

[3]
 .  

 

The region jR for feature vector y is investigated by 

utilizing the minimum distance classification method on the 

training feature vector x χ in the following manner: 

 

 

Step1. Transform feature vector x using orientation W as 

 

xWy
T  

 

Step2. Find distance j using (for example) Euclidean 

norm 

 

| |μy|| y jj   for cj 1  

 

Step3. Associate feature vector y to the closest region 

 

j

c

j
k 

1
 minarg  

kkR y   

 

Once the region jR is defined for y, the overlapping error 

(Perror) of samples between classes can be obtained as 
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SEPARATION OF REDUCED FEATURE 

SPACE INTO c REGIONS USING BAYES 

DECISION THEORY 
 

The Bayes decision theorem has been incorporated to 

separate the reduced feature space into c disjoint regions 

( jR ). Bayesian rule produces improved performance for 

rotational LDA technique in terms of getting lesser 

classification error when compared with the rotational LDA 

technique while using minimum distance classification 

method. The Bayes rule can be given as 
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where )|(y jp  is probability density function, )( jP  is a 

priori probability, (y)p is probability of occurrence and 

y)|( jP  is a posteriori probability. It can be observed 

from equation 8 that probability of occurrence is 

independent of the state of nature j and therefore when 

investigating the membership of feature vector y 

(corresponding x χ), (y)p can be discarded. Thus the 

decision rule is given as 
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The Gaussian normal density is taken for )|(y jp  . This 

yields the following algorithm (table 1) for investigating the 

membership of feature vector x χ: 

 

Table 1: An approach to find the membership of feature 

vector using Bayes rule.  

 

 

Step1. Transform feature vector x using orientation W as 

xWy
T  

Step2. Find the probability  
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Note the log function can be used without affecting the 

decision. 

Step3. Associate feature vector y to the closest region 

j

c

j
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ADAPTIVE WITHIN-CLASS SCATTER 

MATRIX FOR ITERATIVE ROTATIONAL 

LDA PROCESS 
 

 The rotation LDA technique computes rotational 

transform θ iteratively until the probability of error (Perror) 

is minimized. The computation of θ requires to compute 

orientation W (equation 5) in each of its iterative step. This 

means that the evaluation of within-class scatter matrix 

WS for every single change in the value of θ . On the other 

hand, the between class scatter matrix bS does not require 

to be evaluated iteratively since it depends on the class 

centers and total mean vector
[2]

 which remains invariant 

during the rotation process. It is suggested in Ref.
[1]

 to 

adaptively update WS that could be economical in 

computation which was, however, not discussed in detail. 

The adaptive method for WS is given as follows
[1]

 : 

 

θ̂θ̂ WW SS T      (9) 

 

where θ̂ is rotation occurred at any arbitrary iteration. The 

computation complexity of WS (in equation 9) for any 

iteration is estimated to be )(
3dO . On the other hand, using 

standard procedure (equation 3) it is estimated to be 

)( ndO 2 . Therefore adaptive method (equation 9) is 

economical only when dn  . If dn  then matrix WS will 

become singular and it will not be possible to find 

orientation W using eigenvalue decomposition method 

(equation 1). In this case some intermediate techniques like 

PCA prior to LDA
[4-7]

 can be used which reduces the 

dimensionality so that the matrix WS becomes full rank 

(non-singular) and orientation W can be found using 

equation 1. This would, however, sacrifice some 

classification performance. There are some direct methods 

also available
[8,9]

 which do not require any intermediate 

techniques and are able to compute the orientation directly. 

 

 

EXTENSION OF ROTATIONAL LDA 

TECHNIQUE 
 

This section describes the extended version of the 

rotational LDA technique. In this extension the regions are 

separated into c distinct classes in the reduced feature space 

by Bayes decision theorem using Gaussian normal density 

function. Also, the within-class scatter matrix is updated 

adaptively which turns to be economical when dn  . The 

modified algorithm is depicted in table 2. 

 

 

TABLE 2: Rotational LDA algorithm using Bayesian rule 

for estimating orientation W and rotationθ . 

 

 



 

1. Find the mean of each class d

j
Rμx   for cj 1 . 

2. Initialize dd Iθ , dd Iθ̂ , %100PerrorP0   

and set counter 0m . 

3. Compute bS and WS using equations 2 and 3 

respectively. 

4. while (true) 

5. Increment counter 1mm . 

6. Update WS  

  θ̂θ̂ WW SS T  

 

7. Find }:{wW hii 1  using equation 1. 

8. Compute transformed samples h
Ry  and 

h

j
Rμy  (where cj 1 ). 

9. Perform classification (to find jR ) from table 1 and 

compute mP (new Perror) using equation 7. 

10. Stop the iterative procedure if mP is not decreasing 

 if ( 1PP  mm ) 

     break 

 end 

11. Store orientation matrix WŴ  and center of each 

class h

j
Rμy  .  

12. Compute covariance 
jyΣ (where cj 1 ). 

13. Update rotation matrix 

 θ̂θθ  
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14. Orthonormalize rotation matrix 
21T /

)θ̂θ̂(θ̂θ̂
  

21T /
θ)θ(θθ

  

15. Update rotation matrix χ
j
 (θ̂

T χ
j
 

jj yy μ)μ   for 

cj 1  

16.  end 

 

 

EXPERIMENTATION 
 

 This section illustrates the performance of the extended 

rotational LDA technique in comparison with basic LDA 

and rotational LDA techniques. To verify the proposed 

extension we performed two experiments, first on artificial 

data and second on real data. 

 

 For the artificial case, a set of 10 classes is generated 

from a 30-dimensional normal distribution with different 

covariance matrices 
jx and known class means, where 

jx is taken randomly (e.g. jrand
j

 ),(x 3030 ). The 

number of feature vectors are equal for all the classes, thus 

the a priori probabilities are equal. The reduced subspace of 

dimensions 1 to 9 is obtained, for which classification error 

is computed. The classification error as a function of 

dimension for all the three methods on artificial data is 

depicted on figure 1a. It can be observed from figure 1a that 

extended rotational LDA is producing better classification 

error when compared with the rotational LDA technique 

and with the basic LDA technique.  

 

 For the real dataset, multiple features (Mfeat) dataset 

for pixel averages
[10,11]

 are used. This is a 10-class corpus 

with 240 dimensions. A sum of 1500 feature vectors is used 

for training the classifier and a separate set of 500 feature 

vectors are used for testing. Three methods are used again 

to verify the performance in terms of classification error. 

Figure 1b illustrates the resulting classification errors as a 

function of dimensions. It can be seen from figure 1b that 

extended rotational LDA is producing better results than 

rotational LDA technique especially at low dimensions (1 

to 3) and approximately same thereafter. It is also evident 

that the extended rotational LDA technique is producing 

better results than the basic LDA technique. 
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Figure 1: Classification error as a function of dimension on 

(a) artificial dataset and on (b) Mfeat-pixel averages 

dataset. 



CONCLUSION 
 

We have presented an extension of the rotational LDA 

technique which is producing lesser classification error 

when compared with the rotational LDA and the basic LDA 

techniques on artificial and on real datasets. The within-

class scatter matrix is computed in an adaptive fashion 

which is economical when the number of training samples 

is higher then the feature dimensions.  
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