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Abstract: In this paper we present QR based principal component analysis (PCA) 

method. Similar to the singular value decomposition (SVD) based PCA method this 

method is numerically stable. We have carried out analytical comparison as well as 

numerical comparison (on Matlab software) to investigate the performance (in terms of 

computational complexity) of our method. The computational complexity of SVD based 

PCA is around 14𝑑𝑛2 flops (where 𝑑 is the dimensionality of feature space and 𝑛 is 

the number of training feature vectors); whereas the computational complexity of QR 

based PCA is around 2𝑑𝑛2 + 2𝑑𝑡ℎ flops (where 𝑡 is the rank of data covariance 

matrix and ℎ is the dimensionality of reduced feature space). It is observed that the QR 

based PCA is more efficient in terms of computational complexity. 
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1 Introduction: Principal component analysis (PCA) is an important technique used 

for dimensionality reduction and has been applied in pattern classification and data 

representation areas. It works on training data 𝐗 = [𝐱1, 𝐱2, … , 𝐱𝑛] ∈ ℝ
𝑑×𝑛  in a 

non-supervised manner, where 𝑑 is the dimensionality of the data. It does not require 

class labels for individual feature vectors 𝐱𝑗 . In conventional PCA procedure, a 

covariance matrix 𝚺𝐱 = 𝐇𝐇
T  (where 𝐇 =

1

√𝑛
[𝐱1 − 𝛍, 𝐱2 − 𝛍,… , 𝐱𝑛 − 𝛍]  and 

𝛍 =
1

n
∑ 𝐱𝑗
𝑛
𝑗=1  is the centroid of training data) is formed and its eigenvalue 

decomposition (EVD) is done to extract ℎ ≤ 𝑡 (where 𝑡 = 𝑟𝑎𝑛𝑘(𝐇)) eigenvectors 

corresponding to ℎ  leading eigenvalues (i.e., those eigenvectors with the largest 

associated eigenvalues of  𝚺𝐱  or 𝐇). The value of ℎ  is between [1, 𝑡] which is 

representing the dimensionality of the reduced dimensional space. 

 

In many applications occurring in face recognition and biometrics areas, the 

dimensionality 𝑑 is larger than the number of training samples 𝑛; these come under 

the commonly used title, ‘the small sample size problem’ [2],[7],[9],[13],[16]-[19],[21], 

[22]. In such a problem, the covariance matrix 𝚺𝐱 will be of size 𝑑 × 𝑑 and it will be 

a slow procedure (much computer power needed) to compute EVD of this matrix. 

However, a fast procedure to carry out EVD is given in Fukunaga [5] and has been 
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extensively applied in pattern recognition literature. Some other procedures which are 

fast but limited in accuracy for obtaining the eigenvectors are also used in some 

applications [3],[4],[10]-[12],[14],[15]. As explained in Fukunaga [5], EVD of 𝐇T𝐇 is 

carried out to find the eigenvalues and eigenvectors of 𝚺𝐱 = 𝐇𝐇
T. However, this 

method has a problem that it can be numerically unstable. This is because the formation 

of 𝐇T𝐇 matrix may lose precision (as shown in [6] (pg. 239)); since the hardware has 

a fixed arithmetic, it is possible that when the square matrix 𝐇T𝐇 is formed a small 

decimal value in the rectangular matrix 𝐇 becomes squared thereby its value will be 

below the precision limit of the hardware. This has an implication that the formation of 

the matrix will lose a rank or otherwise the information. Due to the above two reasons 

(computational complexity and precision), the eigenvalue analysis of a large size 

covariance matrix 𝚺𝐱 = 𝐇𝐇
T is not done, instead singular value decomposition (SVD) 

is directly applied on rectangular matrix 𝐇 [20]. The computational complexity of this 

SVD based method is, however, still high (approximately 14𝑑𝑛2  flops). In the 

chemometrics literature, a faster way of computing PCA has been proposed, however, 

with limited accuracy. For example postponed basis matrix multiplication(PBM)-PCA 

method has been proposed [1][8]. This strategy does not handle the data matrix 𝐗 

directly, however, it assumes that data matrix 𝐗 is first decomposed into three matrices: 
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C, 𝐁𝟏  and 𝐁𝟐 , where 𝐗 ≈ 𝐁𝟏𝐂𝐁𝟐
𝐓 . Matrices 𝐁𝟏  and 𝐁𝟐  are B-spline basis sets. 

Therefore, prior computation is required to obtain these matrices. Secondly, 𝐁𝟏𝐂𝐁𝟐
𝐓 is 

just the approximation of actual data matrix 𝐗 and thus it is not very accurate
1
. In the 

present paper, our objective is to derive computationally efficient as well as numerically 

stable PCA method. In order to make it computationally stable we use matrix 𝐇; and to 

make it computationally efficient, we use QR decomposition. The QR based PCA 

method approximately requires only 2𝑑𝑛2 + 2𝑑ℎ2 flops. Thus, the proposed method is 

numerically stable and furthermore, it is more efficient (in terms of computational 

complexity) than the SVD based PCA method. 

 

2 Principal component analysis: The PCA transform 𝚽 ∈ ℝ𝑑×ℎ  is used in 

transforming 𝑑-dimensional feature vectors to ℎ-dimensional feature vectors, where 

ℎ < 𝑑. It can also be used to reconstruct 𝑑-dimensional feature vectors back from 

ℎ-dimensional feature vectors with some finite error known as the reconstruction error. 

In PCA, this reconstruction error is minimum in the mean square error (MSE) sense. 

The transformation matrix 𝚽 that minimizes the MSE satisfies 𝚺𝐱𝛟𝑖 = 𝜆𝑖𝛟𝑖, where 

𝚺𝐱 ∈ ℝ
𝑑×𝑑  is the covariance matrix, 𝜆𝑖  are the eigenvalues and 𝛟𝑖 ∈ ℝ

𝑑×1  are 

                                                   
1 To deal with higher order matrices, other variants of PCA have been proposed in the 

literature. See the following references for details [23]-[27]. 
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eigenvectors corresponding to 𝜆𝑖 (for 𝑖 = 1…ℎ). The column vectors of 𝚽 are the 

leading eigenvectors 𝛟𝑖; i.e., these eigenvectors correspond to the largest eigenvalues.   

 

The covariance matrix 𝚺𝐱 is a symmetric matrix which can be expressed as 𝚺𝐱 = 𝐇𝐇
T. 

If the dimensionality is extremely large (𝑑 ≫ 𝑛), then the computation of EVD of 

𝚺𝐱 = 𝐇𝐇
T becomes a slow procedure. In this case an economical way would be to 

compute EVD of 𝐇T𝐇 instead of 𝐇𝐇T. However, the formation of 𝐇T𝐇 could lead 

to a loss of information [6]. The more accurate and reliable way would be to use SVD of 

𝐇 which will give eigenvectors and square root eigenvalues of 𝚺𝐱 . This requires 

around 14𝑑𝑛2 − 2𝑛3 flops. In many applications, a faster yet accurate implementation 

is desired. In the next section, the QR decomposition based PCA is described which can 

extract eigenvectors and square root eigenvalues of 𝚺𝐱 in a numerically stable manner, 

similar to the SVD based PCA method. However, its computational complexity is much 

lower than the SVD based PCA method.  

 

3 QR based PCA method: In this section, QR based PCA method is introduced. This 

method uses the rectangular matrix 𝐇 ∈ ℝ𝑑×𝑛 (where 𝑑 ≫ 𝑛) to carry out EVD of 

𝚺𝐱 = 𝐇𝐇
T in a numerically stable manner. Let the rank of 𝚺𝐱 ∈ ℝ

𝑑×𝑑 be 𝑡, where 
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1 ≤ 𝑡 < 𝑛 . The rectangular matrix 𝐇 can be decomposed into orthogonal matrix 

𝐐1 ∈ ℝ
𝑑×𝑡 and upper triangular matrix 𝐑1 ∈ ℝ

𝑡×𝑛 using economic QR decomposition 

as 

 𝐇 = 𝐐1𝐑1     (1) 

Substituting equation 1 in 𝚺𝐱 = 𝐇𝐇
T, we get 

 𝚺𝐱 = 𝐐1𝐑1𝐑1
T 𝐐1

T    (2) 

The matrix 𝐑1
T can be factored by SVD as 

 𝐑1
T = 𝐔1𝐃1𝐕

T     (3) 

where 𝐔1 ∈ ℝ
𝑛×𝑡  and 𝐕 ∈ ℝ𝑡×𝑡  are orthogonal matrices and 𝐃1 ∈ ℝ

𝑡×𝑡  is a 

diagonal matrix. Substituting equation 3 in equation 2, we get 

 𝚺𝐱 = 𝐐1𝐕𝐃1𝐔1
T𝐔1𝐃1𝐕

T 𝐐1
T  

or 𝚺𝐱 = 𝐐1𝐕𝐃1
2𝐕T 𝐐1

T  

or 𝚺𝐱 = 𝐐1𝐕𝚲𝐕
T 𝐐1

T 

where 𝚲 = 𝐃1
2. Since (𝐐1𝐕)

T(𝐐1𝐕) = 𝐕
T𝐐1

T𝐐1𝐕 = 𝐕
T(𝐈)𝐕 = 𝐈, the transform 𝐐1𝐕 

is an orthogonal matrix. This orthogonal transform also diagonalizes matrix 𝚺𝐱; i.e., 

transform 𝐐1𝐕 is indeed an eigenvector matrix and 𝚲 is an eigenvalue matrix of 𝚺𝐱.  

 

Let 𝐕ℎ ∈ ℝ
𝑡×ℎ (where, 1 ≤ ℎ ≤ 𝑡) be a matrix containing ℎ column vectors of 𝐕 
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corresponding to the largest ℎ diagonal entries of 𝐃1, then the PCA transform would 

be 𝚽 = 𝐐1𝐕ℎ ∈ ℝ
𝑑×ℎ. The QR based PCA method is summarized in Table 1. 

 

Table 1: QR based PCA method Algorithm. 

Step 1. Compute 𝐐1 ∈ ℝ
𝑑×𝑡 and 𝐑1 ∈ ℝ

𝑡×𝑛 using economic QR decomposition of 

matrix 𝐇 ∈ ℝ𝑑×𝑛, where 𝑛 is the number of samples, 𝑑 is the dimension and 

𝑡 = 𝑟𝑎𝑛𝑘(𝐇) with 1 ≤ 𝑡 < 𝑛 . 

Step 2. Using economic SVD of 𝐑1
T matrix, compute diagonal matrix 𝐃1 ∈ ℝ

𝑡×𝑡 and 

orthogonal matrix 𝐕 ∈ ℝt×t (Note that economic SVD of 𝐑1 can also be used to 

give the orthogonal matrix 𝐔̂1 ∈ ℝ
𝑡×𝑡 (which can be used in place of 𝐕) and 

diagonal matrix 𝐃1 ∈ ℝ
𝑡×𝑡). 

Step 3. Find 𝐕ℎ ∈ ℝ
𝑡×ℎ, the ℎ column vectors of 𝐕 that correspond to the ℎ largest 

diagonal entries of 𝐃1. 

Step 4. Compute PCA transform 𝚽 = 𝐐1𝐕ℎ. 

 

The computational complexity of QR based PCA method can be described as follows. 

The economic QR decomposition on rectangular matrix 𝐇 ∈ ℝ𝑑×𝑛  requires 2𝑑𝑛2 

flops (if modified Gram-Schmidt QR method is used) or 2𝑑𝑛2 − 2𝑛3/3  flops (if fast 

Givens QR method or Householder QR method is used) [6]. The economic SVD of 𝐑1
T 

to find diagonal matrix 𝐃1 ∈ ℝ
𝑡×𝑡  and orthogonal matrix 𝐕 ∈ ℝt×t  requires 

4𝑛𝑡2 + 8𝑡3 flops [6]. Finally the multiplication of 𝐐1 and 𝐕ℎ requires 2𝑑𝑡ℎ flops. 

The summary of the computational complexity of the method is given in Table 2. 
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Table 2: Computation complexity of QR based PCA method 

Significant processing steps of the method Computational complexity 

Economic QR decomposition of 𝐇 ∈ ℝ𝑑×𝑛 

SVD procedure to find 𝐃1 and 𝐕 

Multiplication of 𝐐1 and 𝐕ℎ 

Total estimated 

2𝑑𝑛2 − 2𝑛3/3 

4𝑛𝑡2 + 8𝑡3 

2𝑑𝑡ℎ 

2𝑑𝑛2 + 2𝑑𝑡ℎ + 4𝑛𝑡2 + 8𝑡3 − 2𝑛3/3 

 

From Table 2, it can be observed that if the dimensionality 𝑑 is very large compared to 

the number of samples 𝑛  (i.e., 𝑑 ≫ 𝑛 ), then the total estimated computational 

complexity would be 2𝑑𝑛2 + 2𝑑𝑡ℎ flops. In a special case if only one dominant 

eigenvector is required then computational complexity would be around 2𝑑(𝑛2 + 𝑡). 

 

4 Experimentation: The QR based as well as SVD based PCA methods use 𝐇 to 

compute EVD of 𝚺𝐱 = 𝐇𝐇
T. Thus, they are both numerically stable. In this section, we 

compare these methods in terms of their computational complexities. For this, we 

generate data with 3000 samples and variable dimension from 5,000 to 10,000. The rank 

of the data is set to be 1000. The value of ℎ is set to be 10. Fig. 1a shows the analytical 

comparison of flops between QR based PCA and SVD based PCA methods. Fig. 1b 

shows the numerical comparison of their cpu times when implemented on Matlab 

software. It can be seen from this figure that the proposed method is computationally 

more efficient than the SVD based PCA method both analytically and Matlab-wise. In 
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addition, the ratio of cpu times of SVD based PCA method and QR based PCA method 

is close to the ratio of their theoretical determinations of flops. 

 

(1a) Analytical comparison            (1b) Numerical comparison 

Fig. 1: A comparison of cputime between QR based PCA and SVD based PCA methods. 

 

The computational advantage of the proposed method mainly comes from the utilization 

of QR decomposition of covariance matrix. The QR decomposition procedure 

decomposes rectangular matrix 𝐇 into orthogonal matrix and upper triangular matrix. 

Thereafter, SVD procedure can be applied to the upper triangular matrix to compute 

leading eigenvectors. This is a cost efficient procedure compared to using SVD directly 

on the rectangular matrix 𝐇. The computational effectiveness of the QR based PCA 

method compared with SVD based PCA method would be significant especially for low 

rank rectangular matrix 𝐇.  
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5 Conclusion: A QR based PCA method has been presented in this paper. Like the 

SVD based PCA method, this method uses 𝐇 for EVD of 𝚺𝐱 = 𝐇𝐇
T for numerical 

stability. It is shown in this paper that the proposed method outperforms the SVD based 

PCA method in terms of computational complexity.  

 

Since a computationally efficient way of doing dimensionality reduction is crucial in 

many fields of research, a number of applications of QR based PCA method can be 

envisaged. For instance, it can be applied to face recognition problem [28][29], attribute 

reduction [30], decision tree induction [31][32] and biometrics applications [33][34]. 
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