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Abstract. Several new and improved results about positive integral
powers of hermitian elements, and square roots of positive elements, in
a Banach algebra are proved constructively.

1 Introduction

The purpose of this article is to extend our earlier constructive1 work on hermi-
tian and positive elements of a separable complex Banach algebraB with identity
e [6,5,9]. In particular, we provide conditions—one of which was, unfortunately,
lacking in Theorem 4.2 of [6] and the corresponding result in [9]—under which
we can prove constructively that positive integral powers of a hermitian element
are hermitian; also, we substantially generalise, by a relatively elementary proof,
the result in [5] that yields the existence and uniqueness of the square root of a
positive element of B.

Although we shall refer to the [6] for much of the background material needed
for this paper, for the reader’s convenience we here re-present some important
notions. First, let B′ denote the dual of B. In general, we cannot prove that every
f ∈ B is normed in the sense that ‖f‖ ≡ sup {|f(x)| : x ∈ B, ‖x‖ � 1} exists.
However, even when f need not be normed, we adopt the shorthand ‖f‖ � c to
signify that |f(x)| � c for all x ∈ B with ‖x‖ � 1. An element f of B′ is nonzero
if |f(x)| > 0 for some x ∈ B. For each dense sequence (xn)n�1 in B we introduce

the corresponding double norm on B′, defined by |||f ||| ≡ ∑∞
n=1 2

−n |f(xn)|.
The topology induced by this norm on the unit ball B′

1 ≡ {f ∈ B′ : ‖f‖ � 1}
of B′ is independent of the dense sequence relative to which the double norm is
defined, and is, in fact, the weak∗ topology on B′

1.
Now, we may not be able to prove constructively that the state space VB =

{f ∈ B′ : f(e) = 1 = ‖f‖} of B is inhabited (that is, contains an element), let
alone weak∗ compact as it is classically. For this reason we introduce, for each
t > 0, the approximation

1 We work entirely within the framework of Bishop-style constructive analysis
(BISH—for more on which, see [2,7,8]).
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V t
B = {f ∈ B′ : ‖f‖ � 1, |1− f(e)| � t}

to VB . The constructive Hahn-Banach theorem ([8], Theorem 5.3.3) is strong
enough for us to prove that V t

B is inhabited; moreover, it is weak∗ compact for
all but countably many t > 0. We say that t > 0 is admissible if V t

B is weak∗

compact. We describe VB as firm if (i) it is weak∗compact and (ii) for each
ε > 0, there exists an admissible t > 0 such that for each f ∈ V t

B , there exists
g ∈ VB with |||f − g||| < ε. The following result is proved in [6] (Proposition
2.4).

Proposition 1. If B has firm state space, then so does each Banach subalgebra
of B.

We call an element x of B hermitian if for each ε > 0, there exists t > 0 such
that |Im f(x)| < ε for all f ∈ V t

B ; and positive—when we write x � 0—if for
each ε > 0, there exists t > 0 such that Re f(x) � −ε and |Im f(x)| < ε for all
f ∈ V t

B. These definitions of hermitian and positive are classically equivalent to
the standard classical ones found in [3], which are constructively too weak to be
of much use. The following appears as Lemma 4.1 of [6].

Lemma 1. Suppose that VB is firm. Then a ∈ B is hermitian if and only if
f(a) ∈ R for each f ∈ VB , and a � 0 if and only if f(a) � 0 for each f ∈ VB .

By a character of B we mean a nonzero multiplicative linear functional u :
B → C; such a mapping satisfies u(e) = 1 and is normed, with ‖u‖ = 1. The
character space ΣB of B comprises all characters of B and is a subset of the
unit ball of B′. We cannot prove constructively that the character space of every
commutative Banach algebra B is inhabited, let alone that, as classically, it is
weak∗ compact; see page 452 of [2]. However, as we shall see in Proposition 4,
we can construct elements of ΣB under certain conditions on B.

We say that an element x of B is strongly hermitian (resp. strongly pos-
itive) if it is hermitian (resp., positive) and the state space of the closed sub-
algebra A of B generated by {e, x} is the closed convex hull of ΣA. Classically,
the latter condition always holds (see [3], page 206, Lemma 3), so every hermi-
tian (resp. positive) x is strongly hermitian (resp. strongly positive). The main
results of this paper are the following.

Theorem 1. Let B be have firm state space, and let a be a strongly hermi-
tian element of B. Then an is hermitian, and a2n is positive, for each positive
integer n.

Theorem 2. Let B be have firm state space. Let a be a strongly positive element
of B, and A the Banach algebra generated by {e, a}. Then there exists a unique
positive element x of A such that x2 = a.

The first of these is a corrected version of [6] (Theorem 4.2), in which we should
have had a hypothesis ensuring that the product of two positive elements of
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A is positive. Theorem 2 replaces the restrictive requirement that B be semi-
simple, used in [5] (Theorem 3), by the more widely applicable strong positivity
hypothesis on a.

2 Products of Hermitian/Positive Elements

When is the product of two hermitian/positive elements of a Banach algebra
hermitian/positive?

Proposition 2. Let B be commutative, with firm state space, and suppose that
VB is the weak∗-closed convex hull of ΣB.Then the product of two hermitian
elements of B is hermitian, and the product of two positive elements is positive.

Proof. Let x and y be hermitian elements of B. Given f ∈ VB and ε > 0, pick
elements uk (1 � k � m) of ΣB, and corresponding nonnegative numbers λk,
such that

∑m
k=1 λk = 1 and |f(xy)−∑m

k=1 λkuk (xy)| < ε. Since ΣB ⊂ VB , we
have uk(x), uk(y) ∈ R, by Lemma 1; whence

|Im f (xy)| �
∣
∣
∣
∣
∣

m∑

k=1

λk Imuk(xy)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
f(xy)−

m∑

k=1

λkuk (xy)

∣
∣
∣
∣
∣
< 0 + ε = ε.

But ε > 0 is arbitrary, so Im f(xy) = 0 and therefore f(xy) ∈ R. Moreover, if
x � 0 and y � 0, then

Re f(xy) �
m∑

k=1

λk Re (uk(x)uk(y))−
∣
∣
∣
∣
∣
f(xy)−

m∑

k=1

λkuk (xy)

∣
∣
∣
∣
∣
> 0− ε = −ε.

Since ε > 0 is arbitrary, it follows from Lemma 1 that, when x, y are hermitian,
f(xy) ∈ R, and when they are positive, f(xy) � 0.

We are now prepared for the Proof of Theorem 1. Under its hypotheses, let
A be the closed subalgebra of B generated by {e, a}. By Proposition 1, VA is
firm; since a is strongly hermitian, the hypotheses of Proposition 2 are satisfied,
and the desired conclusions follow almost immediately. �
By a positive linear functional on B we mean an element f of B′ such that
f(x) � 0 for each positive element of B; we write f � 0 to signify that f is
positive. Every element of the state space VB is positive (see Section 3 of [6]).

Consider a convex subset K of B′
1. We say that f ∈ K is a classical extreme

point of K if
∀g,h∈K

(
f = 1

2 (g + h) ⇒ g = h = f
)
,

and an extreme point of K if

∀ε>0 ∃δ>0∀g,h∈K

(∣
∣
∣
∣
∣
∣f − 1

2 (g + h)
∣
∣
∣
∣
∣
∣ < δ ⇒ |||g − h||| < ε

)
.

An extreme point is a classical extreme point, and the converse holds classi-
cally if K is also weak∗ compact. If f is an extreme point of K relative to
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one double norm on B′, then it is an extreme point relative to any other dou-
ble norm on B′. Proposition 3.1 of [6] states that if the state space VB is
firm, then every extreme point of VB is an extreme point of the convex set
K0 = {f ∈ B′ : f � 0, f(e) � 1}.

We omit the proof of our next result, which is very close to that on page 38
of [10].

Lemma 2. Suppose that B is commutative and that the product of two positive
elements of B is positive. Let f be a classical extreme point of K0. Then f(xy) =
f(x)f(y) for all x ∈ B and all positive y ∈ B.

Proposition 3. Suppose that B is generated by commuting positive elements,
and that the product of two positive elements of B is positive. Then every classical
extreme point of K0 is a multiplicative linear functional on B.

Proof. Clearly, B is commutative. Let f be a classical extreme point of K0,
and consider first the case where f is nonzero. A simple induction based on
Lemma 2 shows that

f(xyn) = f(x)f(y)n (x ∈ B, y ∈ B, y � 0) . (1)

Given any x, y ∈ B and ε > 0, pick positive elements a1, . . . , an and a com-
plex polynomial p(ζ1, . . . , ζn) such that ‖y − z‖ < ε, where z ≡ p(a1, . . . , an).
Since finite products of positive elements of B are positive, we see from (1) that
f(xz) = f(x)f(z); whence

|f(xy)− f(x)f(y)| � |f(xy − xz)|+ |f(x)f(z)− f(x)f(y)|
� ‖x (y − z)‖+ |f(x)| |f(z − y)|
� 2 ‖x‖ ‖y − z‖ � 2 ‖x‖ ε.

Since ε > 0 is arbitrary, we conclude that f(xy) = f(x)f(y). Finally, to remove
the condition that f be nonzero, let x, y ∈ B and suppose that f(xy) 
= f(x)f(y).
Then, by the foregoing, f cannot be nonzero; so f = 0 and therefore f(xy) =
0 = f(x)f(y), a contradiction. Thus we have ¬ (f(xy) 
= f(x)f(y)) and therefore
f(xy) = f(x)f(y).

Proposition 4. Suppose that B is generated by commuting positive elements
and has firm state space, and that the product of two positive elements of B is
positive. Let A be a unital Banach subalgebra of B. Then ΣA is inhabited, and
VA is the double-norm-closed convex hull of ΣA.

Proof. By Proposition 1, VA is firm and hence compact. Since VA is also convex,
it follows from the Krein-Milman theorem ([2], page 363, Theorem (7.5)) that
it has extreme points and is the double-norm-closed convex hull of the set of
those extreme points. By Proposition 3.1 of [6], every extreme point of VA is an
extreme point, and hence a classical extreme point, of K0. Since the elements of
VA are nonzero, the result now follows from Proposition 3.
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Proposition 4 readily yields a partial converse of Proposition 2:

Corollary 1. Let a be an element of B all of whose positive integer powers are
positive, and let A be the closed subalgebra of B generated by {e, a}. Then ΣA

is inhabited, and VA is the double-norm-closed convex hull of ΣA.

When—as in the Banach algebra C(X), where X is a compact metric space—is
a hermitian element expressible as a difference of positive elements? To answer
this, we need to say more about approximations to the character space.

For any dense sequence (xn)n�1 in B, we can find a strictly decreasing se-
quence (tn)n�1 of positive numbers converging to 0 such that for each n the
set

Σtn
B ≡ {u ∈ B′

1 : |u (xjxk)− u(xj)u(xk)| � tn (1 � j, k � n)

∧ |1− u(e)| � tn}
is (inhabited and ) weak∗ compact ([2], page 460, Proposition (2.7)). The inter-
section of these sets is the character space ΣB. For each x ∈ B we define

‖x‖Σtn
B

≡ sup
{|u(x)| : u ∈ Σtn

b

}
,

which exists since the function x � |u(x)| is uniformly continuous on the double-
norm compact set Σtn

b .
We recall two important result from constructive Banach algebra theory.

Proposition 5. Sinclair’s theorem: If x is a hermitian element of the Ba-

nach algebra B, then ‖xn‖1/n = ‖x‖ for each positive integer n ([4], pages 293–
303).

Proposition 6. Let B be commutative, and let (tn)n�1 be a decreasing sequence

of positive numbers converging to 0 such that Σtn is compact for each n. Then

the sequences
(
‖xn‖1/n

)

n�1
and (‖x‖Σtn )n�1 are equiconvergent: that is, for

each term am of one sequence and each ε > 0, there exists N such that bn �
am + ε whenever bn is a term of the other sequence with n � N ([2], Chapter 9,
Proposition (2.9)).

Of particular importance for us is the following:

Corollary 2. Let B be commutative, and let (tn)n�1 be a decreasing sequence

of positive numbers converging to 0 such that Σtn
B is compact for each n. Let h

be a hermitian element of B. Then limn→∞ ‖h‖Σtn
B

= ‖h‖ .

Proof. By Sinclair’s theorem, ‖hn‖1/n = ‖h‖ for each positive integer n. It fol-
lows from Proposition 6 that for each ε > 0, there exists N such that ‖h‖Σtn

B
<

‖h‖ + ε for all n � N . By that same proposition, for each n � N , there exists

m such that ‖h‖ = ‖hm‖1/m � ‖h‖Σtn
B

+ ε. Hence
∣
∣
∣‖h‖ − ‖h‖Σtn

B

∣
∣
∣ < ε for all

n � N .



Square Roots and Powers in Constructive Banach Algebra Theory 73

Lemma 3. If x, y are commuting hermitian elements of B, then

max {‖x‖ , ‖y‖} � ‖x+ iy‖ .
Proof. Replacing B by the closed subalgebra generated by {e, x, y}, let (tn)n�1

be a decreasing sequence of positive numbers converging to 0 such that Σtn is
compact for each n. Since Σtn

B ⊂ V tn
B and x, y are hermitian, there exists N such

that min {|Imu(x)| , |Imu(y)|} < ε for each n � N and each u ∈ Σtn
B . For such

u we have

|u(x+ iy)| � |Reu(x+ iy)| = |Reu(x)− Imu(y)| > |Reu(x)| − ε

and therefore |Reu(x)| < |u(x+ iy)|+ ε � ‖x+ iy‖+ ε. But

|u(x)|2 = (Reu(x))
2
+ (Imu(x))

2
< |Reu(x)|2 + ε2,

so |u(x)|2 � (‖x+ iy‖+ ε)
2
+ ε2. Since u ∈ ∑tn

B is arbitrary, we conclude that

‖x‖2Σtn
B

� (‖x+ iy‖+ ε)2 + ε2. Now, x is hermitian, so by Sinclair’s theorem,

‖xn‖1/n = ‖x‖ for each positive integer n. It follows from Corollary 2 that

‖x‖2 = limn→∞ ‖x‖2Σtn
B

� ‖x+ iy‖2, and hence that ‖x‖ � ‖x+ iy‖. Finally,
replacing x, y by −y, x in the foregoing, we obtain ‖y‖ � ‖−y + ix‖ = ‖x+ iy‖.
Proposition 7. Suppose that B is generated by commuting positive elements,
and that the product of two positive elements of B is positive. Then for each
hermitian element x of B and each ε > 0, there exist positive a, b ∈ B with
‖x− (a− b)‖ < ε.

Proof. There exist commuting positive elements z1, . . . , zm ofB with each ‖zk‖ �
1, and a polynomial p (ζ1, . . . , ζm) over C, such that

‖x− p (z1, . . . , zm)‖ < ε.

Write

p (ζ1, . . . , ζm) ≡
n∑

i1,...,im=1

α(i1, . . . , im)ζi11 · · · ζimm

where each α (i1, . . . , im) ∈ C. Note that each term zi11 · · · zimm is positive. Per-
turbing each coefficient α (i1, . . . , im) by a sufficiently small amount, we can
arrange that Re α (i1, . . . , im) 
= 0 and Im α (i1, . . . , im) 
= 0 for each tuple
(i1, . . . , im). Let

P ≡ {(i1, . . . , im) : Reα(i1, . . . , im) > 0} ,
Q ≡ {(i1, . . . , im) : Reα(i1, . . . , im) < 0} ,
a ≡

∑

(i1,...,im)∈P

Reα(i1, . . . , im)zi11 · · · zimm ,

b ≡ −
∑

(i1,...,im)∈Q

Reα(i1, . . . , im)zi11 · · · zimm .
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Then a � 0 and b � 0. Moreover,

ε > ‖x− p (z1, . . . , zm)‖

=

∥
∥
∥
∥
∥
∥
x− (a− b)− i

⎛

⎝
n∑

i1,...,im=1

(Imα(i1, . . . , im)) zi11 · · · zimm

⎞

⎠

∥
∥
∥
∥
∥
∥

where both x − (a− b) and
∑n

i1,...,im=1 (Imα(i1, . . . , im)) zi11 · · · zimm are hermi-
tian; whence ‖x− (a− b)‖ < ε, by the preceding lemma.

The approximation of hermitian elements by differences of two positive elements,
as in the preceding proposition, is related to classical work on V -algebras and
the Vidav-Palmer theorem (see, in particular, Lemma 8 in §38 of [3]). We intend
exploring that further in a future paper.

3 The Path to Theorem 2

Our proof of Theorem 2 requires yet more preliminaries, beginning with an
estimate that will lead to the continuity of positive square root extraction.

Lemma 4. Let p be a positive element of the Banach algebra B such that ‖p‖ �
1, and let A be the Banach algebra generated by {e, p}. Let 0 < δ1, δ2 � 1, and
suppose that there exist positive elements b1, b2 of A such that b21 = e− δ1p and
b22 = e − δ2p. Then

‖b1 − b2‖2 � 68

3
|δ1 − δ2| (1 + ‖p‖) .

Proof. Given ε > 0, let

α =

√
1

3
(|δ1 − δ2| (1 + ‖p‖) + 2ε2).

Pick t0 > 0 such that: V t0
A and Σt0

A are compact,
∣
∣u(b21)− u(b1)

2
∣
∣ < α2 and

∣
∣u(b22)− u(b2)

2
∣
∣ < α2 for each u ∈ Σt0

A , and

min {Re f(b1),Re f(b2)} � −α and max {Im f(b1), f(b2)} � α for each f ∈ V t0
A

For each u ∈ Σt0
A we have

|u (b1 − b2)| |u (b1 + b2)| =
∣
∣
∣u (b1)

2 − u (b2)
2
∣
∣
∣

�
∣
∣u

(
b21 − b22

)∣
∣+

∣
∣u(b21)− u(b1)

2
∣
∣+

∣
∣u(b22)− u(b2)

2
∣
∣

<
∥
∥b21 − b22

∥
∥+ 2ε2 = |δ1 − δ2| (1 + ‖p‖) + 2ε2 = 3α2.

Either |u (b1 − b2)| < 2α or |u (b1 − b2)| > α. In the latter case,

|Reu(b1) + Reu(b2)| � |u(b1 + b2)| < 3α.
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Suppose that Reu(b1) > 4α. Then Reu(b2) < 3α−Reu(b1) < −α, which, since
u ∈ V t0

A , contradicts our choice of t0. Hence −α � Reu(b1) � 4α and therefore
|Reu(b1)| � 4α; so

∣
∣u(b1)

2
∣
∣ = (Reu(b1))

2 + (Imu(b1))
2 � 17α2

and therefore |u(b1)| �
√
17α. Likewise, |u(b2)| �

√
17α, so |u(b1 − b2)| �

2
√
17α, an inequality that also holds in the case |u (b1 − b2)| < 2α. Since u ∈ Σt0

A

is arbitrary, we now see that ‖b1 − b2‖2Σt0
A

< 68α2. But b1 − b2 is hermitian, so,

by Corollary 2,

‖b1 − b2‖2 � ‖b1 − b2‖2Σt0
A

<
68

3

(|δ1 − δ2| (1 + ‖p‖) + 2ε2
)
.

Since ε > 0 is arbitrary, we now obtain the desired conclusion.

Proposition 8. Let B have firm state space, let a be a strongly positive element
of B such that ‖a‖ < 1, and let A be the Banach algebra generated by {e, a}.
Then there exists a positive element s of A such that s2 = e− a.

Proof. Our proof is based on that of Bonsall and Duncan [3] (page 207, Lemma
7). Those authors use the Gelfand representation theorem and Dini’s theorem,
the latter lying outside the reach of BISH (see [1]). However, we can avoid
those two theorems altogether, as follows. First, we note that, by Lemma 5 of
[6], e − a � 0 and ‖e− a‖ � 1. Consider the special case where ‖a‖ < 1. Let
x0 = 0 and, for each n,

xn+1 =
1

2
(a+ x2

n). (2)

A simple induction shows that xn belongs to A. Noting that x1 = 1
2a, suppose

that ‖xn‖ < ‖a‖; then

‖xn+1‖ � 1

2

(
‖a‖+ ‖xn‖2

)
<

1

2

(
‖a‖+ ‖a‖2

)
=

1 + ‖a‖
2

‖a‖ < ‖a‖ .

Thus ‖xn‖ < ‖a‖ for each n. Next, observe that, by Proposition 1, VA is firm;
it follows from Proposition 2 that the product of two positive elements of A is
positive. Thus if xn � 0, then x2

n � 0, so a + x2
n � 0 and therefore xn+1 � 0;

since x0 � 0, we conclude that xn � 0 for each n. In particular, x1−x0 = x1 � 0.
Now suppose that xn − xn−1 � 0. Then since xn, xn−1,and therefore xn + xn−1

are all positive elements of A,

xn+1 − xn =
1

2

(
x2
n − x2

n−1

)
=

1

2
(xn + xn−1) (xn − xn−1) � 0.

Moreover,

‖xn+1 − xn‖ � 1

2
(‖xn‖+ ‖xn−1‖) ‖xn − xn−1‖ � ‖a‖ ‖xn − xn−1‖ ,
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so, by another induction, ‖xn+1 − xn‖ � ‖a‖n ‖x1‖ = 1
2 ‖a‖n+1. It follows that

if m > n � 1, then

‖xm − xn‖ �
m−1∑

k=n

‖xk+1 − xk‖ �
m−1∑

k=n

1

2
‖a‖k+1

� 1

2
‖a‖n+1

∞∑

k=0

‖a‖k =
‖a‖n+1

2 (1− ‖a‖) → 0 as n → ∞.

Hence (xn)n�1 is a Cauchy sequence in the Banach algebra A and therefore
converges to a limit x ∈ A. Clearly, x is positive, ‖x‖ � ‖a‖ < 1, and x commutes

with a. Letting n → ∞ in (2), we obtain x = 1
2

(
a+ x2

)
. Hence (e− x)

2
=

e−2x+(2x−a) = e−a. Moreover, e−x ∈ A and, by Lemma 5 of [6], e−x � 0.
Thus s ≡ e− x is a positive square root of e− a in A.

Now consider the general case where ‖a‖ � 1. For each integer n � 2 set
rn = 1 − n−1. Then rna � 0 and ‖rna‖ < 1. By the foregoing, there exists a
positive element sn of A with s2n = e − rna. Taking p = e − a, δ1 = 1

m , and
δ2 = 1

n in Lemma 4 now yields

‖sm − sn‖2 � 68

∣
∣
∣
∣
1

m
− 1

n

∣
∣
∣
∣ (1 + ‖a‖) ,

from which we see that (sn)n�1 is a Cauchy sequence in A. Since A is complete,

this sequence has a limit s ∈ A. Clearly, s � 0 and s2 = e − a. Finally, taking
p = e − a and δ1 = δ2 = 1 in Lemma 3, we see that s is the unique positive
square root of e− a in A.

Finally, we have the Proof of Theorem 2. Under the hypotheses of that
theorem, if ‖a‖ � 1, then by Lemma 5 of [5], e − a � 0 and ‖e− a‖ � 1;
whence, by Proposition 8, there exists a unique positive element b of A such that
b2 = e − (e− a) = a. In the general case, compute δ > 0 such that ‖δa‖ � 1.
There exists a unique positive element p of A such that p2 = δa. Then δ−1/2p is

a positive element of A, and
(
δ−1/2p

)2
= a. Moreover, if b is a positive square

root of a, then δ1/2b is a positive square root of δa, so δ1/2b = p and therefore
b = δ−1/2p. This establishes the uniqueness of the positive square root of a. �
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