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Abstract 

 

There is a growing interest in utilizing tidal currents for power generation which has led to 

extensive research on this source of renewable energy. The amount of energy that can be 

extracted from tidal currents has been a topic of considerable interest to researchers for many 

years; still, there is no consensus on the extent to which this resource can be exploited. A turbine 

generates no power if it presents no resistance to the flow or if it presents so much resistance that 

there is no flow through it. At the same time, the estimation of exploitable resource should take 

into consideration the environmental, economic and social constraints. In view of these, the 

design of efficient turbines driven by bi-directional tidal currents has been a challenge to 

researchers for some time. There appears to be a general agreement among researchers that a 

number of turbines spread over the width of the channel can extract more energy compared to an 

isolated turbine. The present work is aimed at quantifying the improvement in the performance 

of a given type of turbine by utilizing a larger area of the channel. Numerical experiments were 

performed using the commercial CFD code ANSYS-CFX to study the performance of a bi-

directional cross-flow turbine by simulating two cases of i) a single turbine and ii) a number of 

equally spaced turbines. It was found that the Coefficient of Power can be increased significantly 

by employing a larger area of the channel. 
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Nomenclature   

A inlet area of augmentation channel, m
2
 

CP Power Coefficient 

H1 length of augmentation channel from inlet to the axis of the turbine, m 

P rotor Power, W 

Po power output of turbine, W 

Pw water power upstream of a given turbine, W 

R blade radius, m 

TSR tip speed ratio        

V1 height of augmentation channel at inlet, m 

Vaci mean velocity at augmentation channel inlet, m/s 

Vri mean velocity at rotor inlet, m/s 

ρ  density of sea water, kg/m
3
 

Ω  angular velocity, rad/s 

Uo  freestream velocity, m/s 

 

 

1. Introduction 

Many countries surrounded by the oceans have rich marine energy resources, hence significant 

amount of electric power can be generated from the oceans. Marine currents offer a regular and 

predictable source of renewable energy [1]. Marine currents have only recently been looked at 

seriously for large-scale power generation. A marine current turbine utilizes the kinetic energy of 

marine currents and converts it to mechanical energy. Researchers have tried unsuccessfully to 

employ conventional hydro-turbines for extracting energy from marine currents, because the 

available head is too small. The main difference between high-head and free flow turbines is that 

that the latter need large flow openings to capture as much water mass as possible with low 

velocities and pressure. Conventional turbines, in contrast, are designed for high pressure and 

relatively small water ducts where all the water is made to pass through the turbine. These 

turbines have efficiencies as high as 90%. This is simply not possible for free flow turbines. 

Even the Betz limit of 59.3% is considered unachievable [2] especially by propeller-type turbines 

because the assumption in the Betz model is that the fluid flow remains rectilinear when passing 
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through the turbine and maintains a uniform distribution of its pressure on the turbine. Such a 

uniformly distributed load leads to an overestimation of the force acting on the turbine and, as a 

result, an overestimation of the turbine‟s output and efficiency. In reality, the fluid streams are 

deflected from the rectilinear direction near the barrier, changing their motion to curvilinear 

trajectories and reducing their pressure on the turbine [2]. 

 

A tidal current turbine has to extract energy from the bi-directional flow of water. There is a 

growing interest in utilizing tidal currents for power generation and as a result, a surge in 

research efforts directed at this renewable energy resource [3-11]. Garrett and Cummins [3] did a 

theoretical analysis of an isolated turbine and an array of turbines in a channel. A turbine 

generates no power if it presents no resistance to the flow or if it presents so much resistance that 

there is no flow through it. They opined that an isolated turbine will inevitably have a current 

through it with a speed lower than the ambient current, with a consequent reduction in power 

generation below the metric of 30.5 oU per unit cross-section. They also concluded that an array 

of turbines in the entrance to a bay plant will be most effective if it is spread across the width of 

the entrance in order to minimize free flow past the turbines. They also felt that too many 

turbines may choke the flow and reduce the power. Atwater and Lawrence [4] also did a 

theoretical analysis to estimate the power generation potential in a channel. They argued that it is 

inappropriate to use the free kinetic energy flux as the available resource because it does not 

account for the reduction in flow as a result of increased resistance. For the determination of the 

ideal turbine resistance, they suggested that a relation between friction and velocity needs to be 

established; normally, the variation in the head loss with velocity is linear to quadratic. If the 

relationship is quadratic, a maximum of 38% of the fluid power of a channel may be extracted, 

and if the relationship is linear, the maximum drops to 25%. They also concluded that the flow 

will reduce to 57% for the quadratic case and 50% for the linear case. Bryden and Couch [5] 

studied the possible energy extraction from a simplified channel model and concluded that the 

undisturbed kinetic flux density is a useful indicator of achievable resource. They suggested that 

if higher levels of flow alteration are acceptable, then substantial fraction (called Significant 

Impact Factor) of the energy may be available for extraction. In another paper, Garrett and 

Cummins [6] performed a theoretical analysis for the cases of an isolated turbine and a tidal 

fence occupying different fractions of a channel cross-section. They concluded that the 
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maximum efficiency factor 16/27 for a turbine in an infinite medium is increased in a channel. 

They also concluded that the actual, rather than fractional power will increase if the ratio of 

turbine area to channel area is increased. Sutherland et al. [7] found that at maximum power 

extraction, the volume flux drops to 58% of that in the natural state and 2/3 of the original head 

along the whole channel gets transferred to the turbine array. Blunden and Bahaj [8] performed a 

review of the current understanding of tidal energy resources. The exploitable tidal current 

resources and some analytical models of energy extraction were reviewed. They questioned the 

lower achievable efficiency suggested by Gorban et al. [2] in view of the fact that some full-scale 

prototype tidal current turbines achieved a power coefficient of 0.4 and above.  

 

Sun et al. [9] suggested that estimation of the exploitable resource should not only take into 

consideration the environmental, economic and social constraints, but also the hydrodynamic 

resilience of the site in question and the fact that different technologies may give different 

returns, depending on the nature of the site and the appropriateness of the technology. Their CFD 

work focused on the impact of tidal current energy extraction on the local flow conditions. Their 

model simulated the operational conditions for tidal energy extraction, where the flow is 

constrained in the channel. A wake region is formed behind the tidal energy converter, which is 

characterized by reduced velocity due to energy loss. Since the mean velocity in the wake is 

lower than the free-stream velocity, the velocity outside the wake in a closed channel must be 

higher than the free stream in order to maintain continuity of volume flow rate. Because of this 

blockage effect, the flow is accelerated around the tidal current turbine. Their CFD results 

demonstrated that the interaction of the tidal turbine with the flow is a complicated 3D problem. 

The distortion of the free water surface will distort the wake and further influence the 

performance of the turbine [9]. Kirke [10] in a research paper opined that the marine current 

energy conversion technology still requires lot of research because it differs considerably from 

the wind turbine technology. Significant amount of power can be obtained from tidal currents 

and the researchers are still investigating different types of turbines and till now, none has 

emerged as a clear winner. He reviewed some of the turbines that were being evaluated. It was 

also felt by him and Blunden and Bahaj [8] that the ducted turbine, that was not found to be 

economically advantageous for wind energy extraction, may be an attractive option for tidal 
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current energy extraction. Kirke [10] obtained a higher power coefficient, Cp, for the ducted 

turbine compared to the open one. 

 

Bahaj et al. [11] performed power and thrust measurements of horizontal axis marine current 

turbines in a cavitation tunnel and a towing tank and studied the effects of tip speed ratio, the 

blade pitch angle, blade tip immersion and yawed inflow. The rotor diameter was 800 mm and 

had higher blockage ratio in the cavitation tunnel compared to the test tank. Since the blades for 

such a turbine generate rotation mainly by lift, tip speed ratio (TSR) values of 5-7 resulted in 

optimum performance. Under yawed conditions, the turbine power reduced significantly. In 

another work on horizontal axis tidal current turbines, Coiro et al. [12] obtained the maximum 

efficiency at TSR values of 3-4. 

 Another type of turbine that is attracting considerable attention nowadays is the cross-flow 

turbine. This type of turbine is suitable even for very small heads. It is essentially an impulse 

turbine. It can handle large quantities of water and also possesses flat efficiency characteristics. 

In this type of turbine, the water passes over the blades twice, resulting in a higher momentum 

transfer [13]. Some of the other advantages of a cross-flow turbine include cost effectiveness, 

ease of construction, no problem of cavitation and independence of its efficiency to variations in 

the flow rate [14,15]. Olgun [15] found a very small change in the maximum efficiency of their 

cross-flow turbine when the head was changed from 8 m to 30 m. 

2. Cross-flow turbine and the augmentation channel 

The cross-flow turbine studied in the present work consisted of a rotor made up of 26 equi-

distant blades. An augmentation channel consisting of a nozzle at the inlet side and a diffuser at 

the exit side surrounded the rotor, as shown in Fig. 1. The flow through the turbine is radial and 

the water passes over the blades twice before exiting the rotor and entering the diffuser. This is a 

bi-directional turbine and the design ensures equal output and efficiency for both the directions 

of the flow. Due to this unique nature of flow - with the flow passage converging during the first 

pass and diverging during the second pass through the blades and a non-uniform distribution of 

flow in different blades, it is never desired to run the rotor full as the rotational force is not 

obtained by reaction as is the case with Francis turbine. Some more of the characteristics of the 

cross-flow turbine are: i) a wide range of rotational speeds can be selected, ii) turbine diameter 
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does not depend on the flow rate, iii) efficiency levels are satisfactory, iv) manufacturing is 

simple and construction can be done at local facilities, and v) the bearings do not come in contact 

with the flow [15]. Cross-flow turbines have been successfully designed and tested for ocean 

energy extraction both experimentally and numerically and some of the works have been 

published [16-18].  

 

The augmentation channel in the present work was designed to generate power bi-directionally 

without the use of additional devices. In all our related works, the turbine and augmentation 

channel designs were similar to the present one; however, the shape of the augmentation channel 

was modified based on the anticipated flow conditions as well as independent research [14]. In 

the present work, since the source is tidal current, the channel shape shown in Fig. 1 was 

employed. 

 

In this research work, a cross-flow turbine which is suitable for low-speed and high flow rate is 

designed and analyzed. Unlike most water turbines, the water passes through the rotor blades 

transversely in a cross-flow turbine. As with a waterwheel, after passing the rotor, it leaves on 

the opposite side. Therefore, the water strikes the blades twice, once at the inlet blades and 

second at the exit blades, thus providing additional energy to the turbine and hence a higher 

efficiency. The water enters the runner at the specific angle and transfers some of its kinetic 

energy to the blades. The nozzle before the rotor causes acceleration of the flow and thus the 

water enters the rotor with increased kinetic energy. The diffuser after the rotor increases the 

pressure at the expense of the kinetic energy. After exiting the augmentation channel, the flow 

mixes with the flow that passes around the augmentation channel which is normally at a higher 

velocity than the freestream velocity. The resulting velocity gradient creates a shear layer with 

high turbulence levels, which causes rapid mixing of the two flows. 

 

3. Design procedure 

The numerical experiments were performed in a water channel having a length of 87 m and a 

cross-section of 26.1 m x 26.1 m.  The design freestream velocity was chosen as 2.5 m/s in this 

work. The inlet flow was assumed to be uniform across the height and width of the water 

channel. The inlet area of the augmentation channel (A) is 8.7 m  8.7 m and the total length is 
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17.4 m. At the inlet to the turbine, the augmentation channel height reduces to 4.35 m. The 

internal and external diameters of the rotor are 3.85 m and 6.05 m respectively.  The 3D CAD 

tool used was CATIA [19]. Twenty six blades were provided between the inner and outer 

periphery of the rotor. The blades make an angle of 30
o
 with the tangent to the rotor at the outer 

periphery and a right angle with the tangent to the rotor at the inner periphery. Each of the blades 

has an axial length of 8.7 m, a radial length of 1.1196 m and a thickness of 66 mm. The 

augmentation channel, which served as a nozzle at the inlet side and as a diffuser at the exit side, 

is shown in Fig. 2. It was modeled in two halves and placed on either side of the turbine. The 

curved surface of the augmentation channel was designed to be tangential to the blade at both the 

inlet and outlet sides. The clearance of the turbine and housing was 20.6 mm. The geometric 

details of the rotor and the augmentation channel are shown in Table 1. The flatter edge of the 

augmentation channel was curved near the turbine inlet to ensure smooth entry of the flow to the 

blades. The direction of the flow entering the rotor is controlled by the shape of the nozzle, 

indicating the importance of the nozzle shape. The complete blades are shown in Fig. 3. 

 

4. Grid generation 

The commercial code ANSYS-Icem CFD was used for mesh generation. To get a higher 

accuracy, hexahedral grids were generated. About 1 million nodes were provided on the 

augmentation channel. The meshed augmentation channel is shown in Fig. 4. It was found easier 

to generate the grids on one blade and then rotate the whole mesh by 360
o
. About 200,000 nodes 

were provided on each blade; hence the total number of nodes on all the blades was about 5.2 

million. Figure 5 shows the meshed rotor. In the water tunnel, the number of nodes was about 2 

million. Thus, the total number of nodes in the entire domain exceeded 8 million.  

 

 

5. Computational procedure 

The finite volume commercial code ANSYS-CFX was used in the present computations. This 

code was tested for the analysis of a similar turbine [16,17]. A good agreement between 

numerical and experimental results was observed for the flow characteristics through the 

augmentation channel and the rotor. The work also involved studying the effect of non-

dimensional wall distance y+ on the turbine performance; it was found that for y+  50, the 
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accuracy does not get affected [20]. In this study three turbulence models were also „tested‟ for 

the analysis of a cross-flow turbine. The k- SST turbulence model gave good results in the 

simultaneous analysis of both high and low energy areas in a complicated flow field with 

relatively low grid dependence. Hence, the k- SST turbulence model was chosen for turbulence 

modeling. To perform the present CFD analysis, 8-10 parallel computers were employed. The 

inlet velocity was set at 2.5 m/s with its direction normal to the water tunnel inlet face. The 

boundary condition at the outlet was set to zero (atmospheric) pressure. The density of the water 

was taken as 1025 kg/m
3
. The boundary conditions for the augmentation channel were set to 

„wall‟ (no-slip condition). Figure 6 shows the schematic diagram of the water tunnel and a single 

turbine and augmentation channel set-up inside the tunnel (case 1). The other case (case 2) of 

multiple equally spaced turbines was simulated by placing four solid walls, with no slip 

boundary conditions, around a turbine and augmentation channel set-up at a distance of a quarter 

of the augmentation channel inlet width/height, which comes to 2.175 m. Thus, the case of 

multiple turbines (with their augmentation channels) placed side-by-side with a reduced spacing 

between them and thus occupying a greater area of the channel, was simulated. The freestream 

velocity was same as the previous case. The angular velocity (Ω) was varied to get different 

values of TSR. The tip speed ratio was calculated taking the mean velocity at the rotor inlet as 

the reference velocity due to the uniqueness of this study. The water velocity at the entrance to 

the augmentation channel (Vaci), at the entrance to the rotor (Vri), the power output and the 

Coefficient of power (Cp) were computed at these values of TSR. The results for both these 

cases are presented in the following section. 

 

6. Results and discussion 

6.1. Flow characteristics 

The main focus of the present work was on the performance analysis of the bi-directional cross-

flow turbine for the two cases of a single turbine and multiple, equally spaced, turbines. 

However, as the design of the turbine is unique, the flow characteristics through the nozzle, the 

rotor and the diffuser were studied in detail for both the cases. For both the cases, the flow was 

found to accelerate on the sides outside of the augmentation channel due to the resistance to the 

flow offered by the augmentation channel and the closely-spaced turbine blades, which forces 

the incompressible flow to divert away from the augmentation channel. The tidal current turbine, 
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introduced in to the tidal current, is known to reduce the flow to as much as 50% of the flow in 

the absence of the turbine [4]. However, for this particular area reduction and number of blades, 

the reduction in velocity is larger. Figure 7 shows the velocity vectors for the flow through the 

augmentation channel and the rotor blades for case 1. It can be seen that the velocity at the 

entrance of the augmentation channel is less than 1 m/s. The flow is found to separate on the 

turbine blades as well as in the diffuser. The flow separation is likely to affect the performance of 

the turbine significantly. The blades rotate through the fluid generating the viscous forces at the 

layer near the solid surface and the viscous forces cause flow separation between two blades. The 

flow separation is influenced by the Reynolds number of the local flow. When the adverse 

pressure gradient is reasonably strong, the flow next to the wall reverses direction, resulting in a 

region of backward flow. The reversed flow meets the forward flow at some point at which the 

fluid near the surface is transported out into the mainstream. As a result, the flow separates from 

the wall. At lower Reynolds numbers, the reversed flow downstream of the point of separation 

forms part of a large steady vortex behind the surface. At higher Reynolds numbers, when the 

flow has boundary layer characteristics, the flow downstream of separation is unsteady and 

frequently chaotic [21]. The separation is known to increase the drag, particularly pressure drag 

which is caused by the pressure difference between the front and rear surfaces of an object. For 

this reason much effort and research has gone into the design of aerodynamic and hydrodynamic 

surfaces which delay flow separation and keep the local flow attached for as long as possible. It 

is interesting to observe that the flow separates at the trailing edge of the blades resulting in a 

region of re-circulating flow in the region. The flow through the diffuser section will get affected 

by the pressure in the near-wake of the augmentation channel. The velocity vectors for the flow 

through the augmentation channel and the rotor blades for case 2 are shown in Fig. 8. The 

velocity at the entrance of the augmentation channel is higher than case 1 and more than 1 m/s. 

The rotational speed of the turbine was varied in the present work such that TSR values varied 

from 0.15 to 2.7. Figure 9 shows the variation of the velocity at the entrance to the augmentation 

channel and the rotor with TSR for the two cases. The freestream velocity is constant at 2.5 m/s 

for all the cases studied in the present work. It is interesting to note that the velocity at the 

entrance of the augmentation channel (Vaci) is considerably reduced compared to the freestream 

velocity (Uo) for both the cases; however, for case 2, the mean velocity is nearly twice compared 

to case 1, indicating that if more turbines are placed in a channel close to each other, the kinetic 
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energy available to the turbine will be significantly higher, as the flow is forced to pass through 

the turbine and not go around the augmentation channel. The velocity inside the nozzle increases 

further as the flow approaches the rotor blades. It can be seen from Fig. 7 and Fig. 8 that most of 

the flow enters the blades at the centre of the duct at any instant. For the blades in the first stage 

(when the flow is passing over the blades for the first time), the acceleration of the flow on the 

upper surface (suction) and the deceleration on the lower surface (higher pressure) can be seen 

for both the cases. This shows that some of the power generation takes place due to the pressure 

difference on the two sides of the blades. The water can be seen to accelerate as it exits the first 

stage blades and flows across towards the second stage blades. However, there is a region of 

recirculating flow under the region of accelerated flow. To clearly understand the mode of 

energy transfer from the water to the blades during the second stage, an enlarged view of the 

rotor showing the flow interaction with the blades for case 2 was analyzed. This is shown in Fig. 

10. It can be seen from this figure that the accelerated flow does not enter the second stage 

blades tangentially. It strikes the blades at an angle and due to the resulting impulse, a force is 

exerted on the blades. The water transfers some of its momentum to the blades causing them to 

rotate. Figure 11 shows the pressure contours in and around the augmentation channel and in the 

rotor for case 2. The pressure starts to build in front of the augmentation channel as the flow 

decelerates. However, the pressure starts reducing outside of the augmentation channel as the 

flow starts accelerating in the free gap between the augmentation channel and the separating wall 

between two turbines. In the region of minimum area in the gap, a strong suction can be seen. 

The velocity recorded here was slightly more than twice the freestream velocity. Inside the 

augmentation channel, the pressure is higher than atmospheric at every point with a higher 

pressure at the inlet section where the area is maximum. As the area reduces towards the rotor 

inlet, the velocity increases (Fig. 8) and consequently, the pressure reduces a little. As the flow 

enters the blades, the flow possesses both high velocity and higher pressure. It should, however, 

be noted that a direct application of energy balance between the inlet of the augmentation 

channel and the rotor blades will not be appropriate, as the streamlines are curving and most of 

the flow is entering only some of the blades. As the water exits the first stage blades and flows 

towards the second stage blades, it still possesses high pressure and velocity except for the 

recirculating region where the pressure is below atmospheric. At the exit of the rotor, the 
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pressure is lower, which starts to increase as the flow moves towards the exit of the 

augmentation channel (diffuser).  

 

6.2. Power output and power coefficient 

Figure 12 shows the power output for the two cases. The maximum power output of 54 kW in 

case 1, found at a TSR of 0.9 is significantly smaller compared to case 2. The torque for both the 

cases reduced from its maximum at the lowest TSR to the maximum TSR. However, the torque 

and hence the power output increased considerably for case 2, where the flow was forced to take 

place through the augmentation channel and the rotor due to the small gap between one turbine 

set-up and the other. The maximum power output recorded for this case was slightly above 300 

kW at a TSR of nearly 1.3. Accordingly, the Coefficient of power, Cp, was considerably higher 

for case 2 for all the tip speed ratios studied in this work, as shown in Fig. 13. Interestingly, the 

minimum Cp for case 2 was higher than the maximum Cp for case 1, highlighting the importance 

of utilizing a larger area of the channel for higher power extraction. As discussed in the previous 

section, this resulted in a considerably higher flow of water through the turbine which resulted in 

a higher power generation. The maximum Cp recorded for case 2 was 0.51, which is more than 5 

times the maximum Cp for case 1. The reasons for the lower Cp are the high resistance to the 

flow offered by the augmentation channel‟s nozzle and the closely-spaced blades, the flow 

separation between the turbine blades and in the diffuser. It is felt that the large number of blades 

and the narrow spacing between the blades adversely affect the smooth flow of water. Therefore, 

to improve the turbine performance, the number of blades and the clearance should be optimized 

by studying the effect of these parameters on the flow characteristics to reduce the flow 

resistance and to control the separation. The non-streamlined shape of casing also influences the 

whole turbine system flow, therefore the effect of shape should be considered when analyzing the 

whole turbine system. Although a higher Cp was obtained for case 2, it is felt that the 

performance can be improved by designing a nozzle with a slightly larger area at the exit, which 

will also be helpful when the flow takes place in the opposite direction. Utilizing a large area of a 

real tidal flow channel may not always be practical as it will affect the local flow conditions that 

may include undesirable conditions for boats and for marine life. In some cases e.g. when the 

channel is formed between reefs, the effect on the local flow conditions may be undesirable. 

 



 13 

The maximum power output and coefficient were obtained at a TSR of around 1. This shows that 

the cross-flow turbine behaves more like an impulse turbine rather than a lift-driven turbine as is 

the case with horizontal axis tidal turbines.  

The power available in the water upstream of a given turbine (Pw) is given by  

        31  
2 oPw AU                                                          (1) 

In the present case, the quantity Pw is fixed as the freestream velocity and the augmentation 

channel inlet area is fixed. It is seen in the above section that the rotor power output and Cp 

increase as more turbines are placed in the water channel. This is compared with the theoretical 

power generated by a turbine that is placed in a freestream velocity of Uo from ref. [6], given by 

       
2 2

3 4 3 4 3

4 3

( )( )1
 
2 2 o

u u u u u
P A

u u U

 


 
        (2) 

where u3 is the velocity in the wake region and u4 is the accelerated flow velocity in the gap 

between the turbine and the channel walls. The values of u3 and u4 were taken from the results of 

the present work. It is found that the power for case 2 increases about 2.3 times compared to case 

1, which is considerably less than the power increase obtained from our numerical work. The 

theory of ref. [6] estimates the amount of power that can be extracted from the flow; however, 

only a part of that power may be productive in rotating the turbine. The internal losses for case 1 

may be higher compared to case 2.  

 

7. Conclusions 

 

CFD analysis of a cross-flow tidal current turbine equipped with an augmentation channel was 

carried out to study the effect of utilizing a larger channel area on the flow characteristics, the 

power output and the Coefficient of power. It was found that when a larger area of the channel is 

utilized, the flow velocity through the turbine increases as less of the flow bypasses the turbine 

system and flows through the gap between the turbine and the channel or between two turbines. 

In the present study, the flow velocity through the turbine and augmentation channel and the 

rotor almost doubled when the case of multiple equally-spaced turbines was simulated by placing 

solid walls with no-slip boundary conditions around the turbine and augmentation channel set-up 

at a distance of a quarter of the augmentation channel inlet width and height. The maximum 

power output increased from nearly 54 kW to slightly above 300 kW as a result. The Coefficient 
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of power also increased by more than 5 times for this case. 
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Table 1: Geometric details of cross-flow turbine and augmentation channel 

 
Number of blades 26 

Blade angle at outer periphery 30° 

Blade angle at inner periphery 90° 

Axial length of blade 8,700 mm 

External diameter 6,050 mm 

Internal diameter 3,850 mm 

Clearance of turbine & housing 20.6 mm 

Length of blade 1,119.6 mm 

Thickness of blade 66 mm 

Total length of augmentation channel (2 × H1) 17.4 m 
Cross-section of augmentation channel at inlet 
(V1 × width) 8.7 m × 8.7 m 

Cross-section of augmentation channel at outlet 8.7 m × 4.35 m 
 

Table 1



 
 
Fig. 1. Schematic diagram of the rotor and the augmentation channel. 
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Fig. 2. A three-dimensional view of the augmentation channel. 
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Fig. 3. A three-dimensional view of the rotor blades. 
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Fig. 4. The meshed augmentation channel. 
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Fig. 5. The meshed rotor. 

Figure 5



 
 
 
 

 
 
Fig. 6. Schematic diagram of the water channel with the set-up (all dimensions are in mm). 
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Fig. 7. Velocity vectors showing the flow of water through the augmentation channel and the 
rotor for case 1. 
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Fig. 8. Velocity vectors showing the flow of water through the augmentation channel and the 
rotor for case 2. 
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Fig. 9. Inlet velocities at augmentation channel inlet and turbine inlet at different tip speed 
ratios for the two cases. 
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Fig. 10. Velocity vectors showing the flow of water through the rotor. 
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Fig. 11. Iso-pressure contours in the main flow domain. 
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Fig. 12. Power output of the turbine for the two cases. 
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Fig. 13. Coefficient of power for the two cases. 
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