Small Developing Island Renewable Energy Knowledge and Technology Transfer Network #### Tonga Renewable Energy and TERM Workshop 11-13 April 2012 USP Tonga Campus, Nuku'alofa, Tonga Deciding to Go Renewable - A Basic Awareness Kit Dr. Anirudh Singh School of Engineering and Physics USP, Laucala Bay, Suva, Fiji # **Part A: Basic Facts** | 1. | Facts | What you need to know | |----|--|--| | | 1. Why we need energy We need energy for: Domestic needs industrial needs transportation power generation | Primary energy and end-use energy: • Energy is often transformed into another form before it is used. For example, coal, diesel or biomass is burnt to produce electricity in power plants. | | | (also for making war, going to outer space, discovering the origin of the universe) | The original energy is called Primary energy, and the final form (e.g. electricity) is the end-use or final energy. | ### **Basic Facts ...** | 2. Fact | What you need to know | |--|--| | 2. What forms of energy do we use? Common forms of energy: Oil, Coal, Natural gas solar energy hydro energy wind energy biomass energy geothermal energy ocean energy nuclear energy. | All energy, except nuclear and geothermal energy, come from the sun. Energy can be divided into renewable energy and non-renewable energy | ### Basic facts... | 3. | Fact | What you need to know | |----|---|---| | | 3. What is renewable energy (RE) and why is it important? Renewable energy is energy derived from a source that will not run out | Although geothermal energy will run out, it is classified as renewable energy | | | Examples are solar energy, wind energy, hydro energy, biomass energy, ocean energy If the source will run out, it is called | Non- renewable Oil, petrol, diesel Oil, potrol, hydro | | | Non-Renewable energyRE can be available from indigenous | LPG, LNG Biomass and biofuel Coal Ocean (tidal, | | | resources, is usually clean and can be more economical than fossil fuel energy. | wave, OTEC) Nuclear Geothermal * | | 4. | Fact | What you ne | ed to know | |----|---|-----------------------|------------| | | 3. What are the necessary requirements for the use of RE? | Towns | F1- | | | i) RE resources must exist in sufficient quantity, and must be spread out over time. E.g. to use wind energy, you must have wind available throughout the year. | Type of resource | Example | | | | Continuous resource | Hydro | | | | Periodic resource | Solar | | | | Intermittent resource | wind | #### **Basic Facts...** | 5. | Fact | What you need to know | |----|---|---| | | | | | | 3 (cont.) ii) The Panayahla Energy Technology (PET) must be | Some RE stakeholders | | | ii) The Renewable Energy Technology (RET) must be mature, ie must have been tried, tested and be available in market-ready (i.e. off-the-shelf) form. | (including businesses and academics) will try and hard-sell their favourite | | | Market-ready technologies: Wind, solar, hydro, biomass | technologies to you – beware! | | | Non-market ready technologies: Ocean energy
(wave, OTEC), fuel cells | | | | | | | | | | | | | | ### Basic facts ... | 6. | Fact | What you need to know | |----|--|---| | | 4. What are the other requirements needed to facilitate RE in your country?Human capacity | • human capacity = scientific and technical, administrative, entrepreneurial | | | institutional capacity Policy and legislation | not all PICs have the necessary policies and legislations in place to enable the introduction of all forms of RE technology Capacity building in energy is an essential criterion for the success of energy projects in the PICs | ### **Basic Facts...** | 7. | Fact | What you need to know | |----|---|--| | | 5. Using Solar Energy | 1. Resource availability | | | • Two common types: Solar Thermal and Solar Photo-Voltaic (Solar PV) | (number of sun-hours/day,
number of no-sun days)
must be ascertained first | | | Solar thermal system: solar energy → heat energy Solar PV system: solar energy → | before you install your PV system. | | | electrical energy | 2. Stand-alone and grid-connected PV systems. | | | Solar energy is available everywhere on globe Solar energy varies with latitude and season | 3. Batteries cost a lot and have a short life-time (5-6 years) only as compared to the panel lifetime (~25 years). | ### Using solar energy – availability of solar resources #### Solar resources - Measured in kWh/m2/day or sunhours/day - Varies with latitude and seasons Source: NASA # **Basic facts...** | 8. | Fact | What you need to know | |----|--|------------------------------------| | | 6. Using Wind Energy i) the technology Power in wind | wind energy supply is intermittent | | | $P_r \sim u^3$ (u = wind speed)
Max power that can be utilized =59% | | | | Cut-in speed ~ 2m/s, cut-out speed ~ 30m/s | | | | ii) resource availability must be ascertained over at least a year | | # Wind energy technology Wind turbines convert the kinetic energy of wind to electrical energy ### Wind turbines cont ### Wind Turbines cont. – how electricity is generated Picture source: google ### **Basic Facts...** | | Fact | What you need to know | |----|---|--| | 9. | | | | | 7. Using Hydro energy Power in water → Turbine → Generator Large hydro and small hydro: Large hydro –(MW-GW) power for national grids Mini-hydro schemes for villages (Bukuya, viti Levu (100kW) Buca (30kW)) | Global capacity in 2011: 1,010 GW China, Canada, Brazil, US and Russia produced 52% 1kW = 1 kilowatt = 1,000 Watts 1 MW = 1 megawatt = 1,000,000 Watts = 1 million Watts | | | micro/nano hydro – village stream level power, 1 kW or lower Power available at jet is given by P = 10 QH | 1 GW = 1 gigawatt = 1000
MW= 1000 million Watts | | | Q = volume flow rate of water H = head (height between water source and turbine) | 1 TW = 1 Terawatt = 1000GW | ### Using hydro cont. – the large and the small in hydro The 22 GW three gorges dam, China Picture Source: Encyclopedia of the Earth A 44W nano-hydro scheme at Tiko's farm, Savu village, Fiji # Using hydro – turbines large and small A Pelton wheel turbine used in large hydro schemes The turbine used at Tiko's nano-hydro system | 10 . | Fact | What you need to know | |-------------|---|-----------------------------------| | | 8. Biomass energy | | | | • Biomass energy = energy in organic matter, captured | Biofuels for transportation: | | | from solar energy through photosynthesis. | | | | • Several forms of biomass: | i) ethanol blends for petrol | | | Solid - wood, forestry and crop residues, | engines: $E10 = 10\%$ ethanol, | | | municipal solid waste | 90% petrol | | | • Liquid – biofuels (ethanol, biodiesel) | | | | • Gas - biogas, landfill gas, syngas | ii) biodiesel for diesel engines: | | | • Uses: cooking, power generation, conversion to | Made from vege and other oils | | | secondary fuels through pyrolysis/gasification. | and fats; | | | Cooking: Wood stove | Biodiesel has better fuel and | | | | emission properties than | | | Power generation: | petroleum diesel, except NOx | | | biomass → heat engine → generator | emission is higher; | | | Heat engine can be a | B5=5% biodiesel, 90 | | | i) steam engine ii) gas turbine iii) reciprocating engine | petroleum diesel. Blends up to | | | (piston engine) | B20 acceptable for normal | | | | engines | | | | | ### **Basic facts...** | 11. | Fact | What you need to know | |-----|---|---| | | 9. Geothermal power Power from geothermal energy - from hot water reservoirs or geothermal gradient underground (hot rock > 40 C/km) Not really renewable Global capacity ~ 11 GW | Geothermal power available in 24 countries USA (3.1GW), Philippines (1.9GW), Indonesia (1.2GW), Italy (0.9GW), NZ 0.8GW, Iceland 0.6GW, Japan 0.5 GW. | | | | In 2011, 26% of electricity in Iceland was from geothermal, 18% in the Philippines, 13% in NZ | # **Geothermal power cont.** Source: geothermal.marin.org | 12. | Fact | What you need to | |-----|---|--| | | | know | | | 10. Ocean energy | • Least mature | | | • Includes Wave, Tidal (barrages and turbines), Osmotic Pressure, and | technology | | | Ocean Thermal Energy Conversion (OTEC). Only 3 tidal installations were operational in 2010 | Only tidal energy reached commercial maturity by end of 2010 | | | Most significant was 240 MW plant on the estuary of the Rance River, near Brittany, France. However recent upsurge in interest | | | | (UK, Portugal) | | # Part B: Assessing Renewable Energy ### 1. Fact and Fiction about Renewable Energy | 13 | Statement | Fact | | | | | |----|---|--|--|--|--|--| | 1. | All Renewable Energy is mature and market-ready technology | | | | | | | 2. | Renewable Energy (e.g. solar PV) can meet the entire energy needs of your home. | and solar PV to provide for the required | | | | | | 3. | Renewable Energy Technology (RET) (e.g. solar PV) is cost effective. | 1 - 1 - 1 - 1 | | | | | # **Assessing RE..** | 14. | Statement | Fact | | | | | |-----|---------------------------------|---|--|--|--|--| | 4. | An RET delivers the power or | This is almost never true. | | | | | | | energy it says it will deliver. | The power or energy delivered depends | | | | | | | | on | | | | | | | For instance, a wind turbine | 85 | | | | | | | with a rated capacity of 10 | | | | | | | | kW will deliver 10 kW of | capacity), and | | | | | | | power when installed. | • the availability of RE resources | | | | | | | | | | | | | | | | Capacity factor = <u>Actual energy produced</u> | | | | | | | | Theoretical energy | | | | | | | | - Actual (average) newer v time | | | | | | | | = <u>Actual (average) power x time</u> Rated power x time | | | | | | | | Rated power x time | | | | | | | | RET Capacity factor | | | | | | | | Hydro ~100% | | | | | | | | Solar PV ~40% | | | | | | | | Wind ~15% | ## **Assessing RE..** # 2. What factors decide whether we have made a wise choice? Performance and Economics #### Performance: efficiency, rated capacity, capacity factor - Efficiency = useful energy output/ total energy input - (Not important as long as RE is free) - Rated capacity = peak power the RET is designed to deliver - Capacity factor = Actual energy output over a period/ Rated energy output over the period ### Assessing RE .. #### Economics: lifetime, payback period, cost per kW - Lifetime = expected length of time system will remain productive - Payback period (simple payback period) = number of years it will take to pay back for the capital and operation and maintenance costs of the system from the savings made by using this technology - Must be significantly shorter than the lifetime. - Cost per kilowatt = total cost/power rating = the cost incurred per kW of power produced. ### **Assessing RE...** #### **Comparison of technologies** (For a \sim 5 kW system) | RET | Technology efficiency | Capacity
Factor | Lifetime | Cost/kW | Payback period | Commer cial availabil ity | |----------------------|-----------------------|-------------------------|--|-----------------|----------------|---------------------------| | Wind | ~40% | 10-25% | > 25 yrs,
maintenanc
e recquired | ~\$10,000 | < 25 yrs | Yes | | PV | 12-15% | ~50% | 20-25 yrs | ~\$25,000 | 15-25 yrs | Yes | | Micro-
hydro | 90% | ~100% | > 25 yrs,
low
maintenanc
e | \$2000-
5000 | 5-10 yrs | Yes | | Biomass | < 60% | Biomass
availability | ~ 25yrs | - | < 25 yrs | Yes | | Biofuel
(Transp.) | < 60 % | Biofuel
availability | ~ 25 yrs | - | < 25 yrs | Yes/no | # Thank you for your attention!