

Small Developing Island Renewable Energy Knowledge and Technology Transfer Network

Tonga Renewable Energy and TERM Workshop

11-13 April 2012 USP Tonga Campus, Nuku'alofa, Tonga

Deciding to Go Renewable - A Basic Awareness Kit

Dr. Anirudh Singh School of Engineering and Physics USP, Laucala Bay, Suva, Fiji

Part A: Basic Facts

1.	Facts	What you need to know
	 1. Why we need energy We need energy for: Domestic needs industrial needs transportation power generation 	Primary energy and end-use energy: • Energy is often transformed into another form before it is used. For example, coal, diesel or biomass is burnt to produce electricity in power plants.
	(also for making war, going to outer space, discovering the origin of the universe)	The original energy is called Primary energy, and the final form (e.g. electricity) is the end-use or final energy.

Basic Facts ...

2. Fact	What you need to know
 2. What forms of energy do we use? Common forms of energy: Oil, Coal, Natural gas solar energy hydro energy wind energy biomass energy geothermal energy ocean energy nuclear energy. 	 All energy, except nuclear and geothermal energy, come from the sun. Energy can be divided into renewable energy and non-renewable energy

Basic facts...

3.	Fact	What you need to know
	 3. What is renewable energy (RE) and why is it important? Renewable energy is energy derived from a source that will not run out 	Although geothermal energy will run out, it is classified as renewable energy
	 Examples are solar energy, wind energy, hydro energy, biomass energy, ocean energy If the source will run out, it is called 	Non- renewable Oil, petrol, diesel Oil, potrol, hydro
	Non-Renewable energyRE can be available from indigenous	LPG, LNG Biomass and biofuel Coal Ocean (tidal,
	resources, is usually clean and can be more economical than fossil fuel energy.	wave, OTEC) Nuclear Geothermal *

4.	Fact	What you ne	ed to know
	3. What are the necessary requirements for the use of RE?	Towns	F1-
	i) RE resources must exist in sufficient quantity, and must be spread out over time. E.g. to use wind energy, you must have wind available throughout the year.	Type of resource	Example
		Continuous resource	Hydro
		Periodic resource	Solar
		Intermittent resource	wind

Basic Facts...

5.	Fact	What you need to know
	3 (cont.) ii) The Panayahla Energy Technology (PET) must be	Some RE stakeholders
	ii) The Renewable Energy Technology (RET) must be mature, ie must have been tried, tested and be available in market-ready (i.e. off-the-shelf) form.	(including businesses and academics) will try and hard-sell their favourite
	Market-ready technologies: Wind, solar, hydro, biomass	technologies to you – beware!
	 Non-market ready technologies: Ocean energy (wave, OTEC), fuel cells 	

Basic facts ...

6.	Fact	What you need to know
	4. What are the other requirements needed to facilitate RE in your country?Human capacity	• human capacity = scientific and technical, administrative, entrepreneurial
	 institutional capacity Policy and legislation 	 not all PICs have the necessary policies and legislations in place to enable the introduction of all forms of RE technology Capacity building in energy is an essential criterion for the success of energy projects in the PICs

Basic Facts...

7.	Fact	What you need to know
	5. Using Solar Energy	1. Resource availability
	• Two common types: Solar Thermal and Solar Photo-Voltaic (Solar PV)	(number of sun-hours/day, number of no-sun days) must be ascertained first
	 Solar thermal system: solar energy → heat energy Solar PV system: solar energy → 	before you install your PV system.
	electrical energy	2. Stand-alone and grid-connected PV systems.
	 Solar energy is available everywhere on globe Solar energy varies with latitude and season 	3. Batteries cost a lot and have a short life-time (5-6 years) only as compared to the panel lifetime (~25 years).

Using solar energy – availability of solar resources

Solar resources

- Measured in kWh/m2/day or sunhours/day
- Varies with latitude and seasons

Source: NASA

Basic facts...

8.	Fact	What you need to know
	6. Using Wind Energy i) the technology Power in wind	wind energy supply is intermittent
	$P_r \sim u^3$ (u = wind speed) Max power that can be utilized =59%	
	Cut-in speed ~ 2m/s, cut-out speed ~ 30m/s	
	ii) resource availability must be ascertained over at least a year	

Wind energy technology

Wind turbines convert the kinetic energy of wind to electrical energy

Wind turbines cont

Wind Turbines cont. – how electricity is generated

Picture source: google

Basic Facts...

	Fact	What you need to know
9.		
	 7. Using Hydro energy Power in water → Turbine → Generator Large hydro and small hydro: Large hydro –(MW-GW) power for national grids Mini-hydro schemes for villages (Bukuya, viti Levu (100kW) Buca (30kW)) 	Global capacity in 2011: 1,010 GW China, Canada, Brazil, US and Russia produced 52% 1kW = 1 kilowatt = 1,000 Watts 1 MW = 1 megawatt = 1,000,000 Watts = 1 million Watts
	 micro/nano hydro – village stream level power, 1 kW or lower Power available at jet is given by P = 10 QH 	1 GW = 1 gigawatt = 1000 MW= 1000 million Watts
	Q = volume flow rate of water H = head (height between water source and turbine)	1 TW = 1 Terawatt = 1000GW

Using hydro cont. – the large and the small in hydro

The 22 GW three gorges dam, China

Picture Source: Encyclopedia of the Earth

A 44W nano-hydro scheme at Tiko's farm, Savu village, Fiji

Using hydro – turbines large and small

A Pelton wheel turbine used in large hydro schemes

The turbine used at Tiko's nano-hydro system

10 .	Fact	What you need to know
	8. Biomass energy	
	• Biomass energy = energy in organic matter, captured	Biofuels for transportation:
	from solar energy through photosynthesis.	
	• Several forms of biomass:	i) ethanol blends for petrol
	Solid - wood, forestry and crop residues,	engines: $E10 = 10\%$ ethanol,
	municipal solid waste	90% petrol
	• Liquid – biofuels (ethanol, biodiesel)	
	• Gas - biogas, landfill gas, syngas	ii) biodiesel for diesel engines:
	• Uses: cooking, power generation, conversion to	Made from vege and other oils
	secondary fuels through pyrolysis/gasification.	and fats;
	Cooking: Wood stove	Biodiesel has better fuel and
		emission properties than
	Power generation:	petroleum diesel, except NOx
	biomass → heat engine → generator	emission is higher;
	Heat engine can be a	B5=5% biodiesel, 90
	i) steam engine ii) gas turbine iii) reciprocating engine	petroleum diesel. Blends up to
	(piston engine)	B20 acceptable for normal
		engines

Basic facts...

11.	Fact	What you need to know
	9. Geothermal power Power from geothermal energy - from hot water reservoirs or geothermal gradient underground (hot rock > 40 C/km) Not really renewable Global capacity ~ 11 GW	Geothermal power available in 24 countries USA (3.1GW), Philippines (1.9GW), Indonesia (1.2GW), Italy (0.9GW), NZ 0.8GW, Iceland 0.6GW, Japan 0.5 GW.
		In 2011, 26% of electricity in Iceland was from geothermal, 18% in the Philippines, 13% in NZ

Geothermal power cont.

Source: geothermal.marin.org

12.	Fact	What you need to
		know
	10. Ocean energy	• Least mature
	• Includes Wave, Tidal (barrages and turbines), Osmotic Pressure, and	technology
	Ocean Thermal Energy Conversion (OTEC). Only 3 tidal installations were operational in 2010	Only tidal energy reached commercial maturity by end of 2010
	 Most significant was 240 MW plant on the estuary of the Rance River, near Brittany, France. However recent upsurge in interest 	
	(UK, Portugal)	

Part B: Assessing Renewable Energy

1. Fact and Fiction about Renewable Energy

13	Statement	Fact				
1.	All Renewable Energy is mature and market-ready technology					
2.	Renewable Energy (e.g. solar PV) can meet the entire energy needs of your home.	and solar PV to provide for the required				
3.	Renewable Energy Technology (RET) (e.g. solar PV) is cost effective.	1 - 1 - 1 - 1				

Assessing RE..

14.	Statement	Fact				
4.	An RET delivers the power or	This is almost never true.				
	energy it says it will deliver.	The power or energy delivered depends				
		on				
	For instance, a wind turbine	85				
	with a rated capacity of 10					
	kW will deliver 10 kW of	capacity), and				
	power when installed.	• the availability of RE resources				
		Capacity factor = <u>Actual energy produced</u>				
		Theoretical energy				
		- Actual (average) newer v time				
		= <u>Actual (average) power x time</u> Rated power x time				
		Rated power x time				
		RET Capacity factor				
		Hydro ~100%				
		Solar PV ~40%				
		Wind ~15%				

Assessing RE..

2. What factors decide whether we have made a wise choice? Performance and Economics

Performance: efficiency, rated capacity, capacity factor

- Efficiency = useful energy output/ total energy input
- (Not important as long as RE is free)
- Rated capacity = peak power the RET is designed to deliver
- Capacity factor = Actual energy output over a period/ Rated energy output over the period

Assessing RE ..

Economics: lifetime, payback period, cost per kW

- Lifetime = expected length of time system will remain productive
- Payback period (simple payback period) = number of years it will take to pay back for the capital and operation and maintenance costs of the system from the savings made by using this technology
- Must be significantly shorter than the lifetime.
- Cost per kilowatt = total cost/power rating
 = the cost incurred per kW of power produced.

Assessing RE...

Comparison of technologies

(For a \sim 5 kW system)

RET	Technology efficiency	Capacity Factor	Lifetime	Cost/kW	Payback period	Commer cial availabil ity
Wind	~40%	10-25%	> 25 yrs, maintenanc e recquired	~\$10,000	< 25 yrs	Yes
PV	12-15%	~50%	20-25 yrs	~\$25,000	15-25 yrs	Yes
Micro- hydro	90%	~100%	> 25 yrs, low maintenanc e	\$2000- 5000	5-10 yrs	Yes
Biomass	< 60%	Biomass availability	~ 25yrs	-	< 25 yrs	Yes
Biofuel (Transp.)	< 60 %	Biofuel availability	~ 25 yrs	-	< 25 yrs	Yes/no

Thank you for your attention!