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Abstract 

 
Small wind turbines operating at low wind speeds regularly face the problem of poor performance due 

to laminar separation and laminar separation bubbles on the blades. This is due to the low Reynolds 

number (Re) resulting from low wind speeds and small rotor size. The use of specially designed low 

Re airfoils permits start up at lower wind speeds, increasing the startup torque and thus improving the 

overall performance of the turbine. A new airfoil was designed and the performance of a 2-bladed 

rotor designed for low Re application fitted to an Air-X marine 400 W wind turbine was tested at a 

wind speed range of 3 – 6 m/s. The low Re rotor incorporated taper and twist to the low Re AF300 

airfoil section. The pitch of the blades was varied over a range of 15°, 18° and 20° to study the 

performance and the startup wind speed. It was found that the turbine performed best at 18° pitch 

angle. On an average, the wind turbine yielded a power coefficient (CP) of 0.255 at a height of 8.22 m 

at a wind speed of 6 m/s at 18° pitch angle. Maximum CP based on 10 sec data at the freestream 

velocity of 6 m/s was 0.291.  The cut-in wind speed based on 10 sec averaged data at the optimum 

pitch angle was 3.24 m/s whereas the instantaneous cut-in wind speed was 2.34 m/s. In comparison 

with the baseline 3-bladed rotor, the new 2-bladed rotor produced more electrical power at the same 

freestream velocity. 
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1. Introduction 
 
1.1 Small wind turbines 

 
Growing awareness of rising levels of greenhouse gases [1], global warming and increasing prices 

of fossil fuels have led to a shift towards investing into low-cost small wind turbines. Simple 

structured, compact in design, portable and low noise [2], the small wind turbines are now vital wind 

power extracting devices in the rural, suburban and even in the populated city areas where installation 

of large scale wind turbines would not be accepted due to space constraints and generation of noise. 

Small wind turbines achieve power coefficients of 0.25 or greater in comparison to large turbines 

which have Cp values around 0.45 [3]. Small wind turbines have been integrated on domestic house 

roof tops, farms, remote communities and boats [4]. In contrast to larger horizontal axis wind turbines 

(HAWTs) that are located in areas dictated by optimum wind conditions, small wind turbines are 

required to produce power without necessarily the best of wind conditions [4-6]. A small wind turbine 

is one that relies on aerodynamic forces to startup and has a tail vane for passive yawing. Small wind 

turbines are categorized as micro (1 kW), mid-range (5 kW) and mini wind turbines (20 kW+) [7]. A 

more detailed description of micro wind turbines is given by Cooper as being rated less than 2.5 kW 

and commercially produces power in the range of 0.4 kW – 1.5 kW at 12.5 m/s wind speed [1, 8].   

 
1.2 Laminar separation bubble 

 
      Small wind turbines operate within 100 m above sea level where the lowest portion of planetary 

boundary layer (PBL) is found. Within the PBL, the laminar airflow is made turbulent and slowed 

down by obstacles and topology [4,5,8]. Due to their small rotor size and low wind speeds; small 

wind turbines operating at low Reynolds numbers suffer from laminar separation bubble [3,9,10]. 

Laminar separation bubble is a phenomenon associated with low Reynolds number where laminar 

flow separates before it can transit to turbulent flow as a result of adverse pressure gradient (APG) 

[11]. The separated laminar flow gets re-energized and reattaches back to the surface as turbulent flow 

forming the so-called separation bubble. The separation bubble leads to an increase in the boundary 

layer thickness above it, causing excessive increase in pressure drag, a loss in aerodynamic lift and 



 

 

noise [7,11,12]. Separation bubble degrades the overall aerodynamic performance of an airfoil 

resulting in the reduction of a turbine’s startup and power coefficient [4]. 

 
1.3 Low Reynolds number airfoils for small wind turbines 
 
      Low Re airfoils operate below Re = 500,000 [10,13,14] where the flow across the upper surface of 

the airfoil is predominantly laminar. Airfoils within this Re range suffer from laminar separation 

bubble and are susceptible to laminar flow separation that occurs when the separated laminar 

boundary layer does not reattach to the surface downstream, resulting in a loss in aerodynamic 

performance. Low Re airfoils suited for small wind turbine applications must be designed to avoid 

high leading edge suction peaks and high adverse pressure gradients that lead to flow separation. A 

small degree of roughness needs to be associated with airfoils operating at low Re conditions as 

explained by Lissaman [15] where introduction of ‘turbulators’ or trip wire devices, promote early 

transition from laminar to turbulent flow to eliminate laminar separation bubbles and delay the 

possible chance of separation from the upper surfaces at higher angles of attack. The use of 

specifically sized trip wires has been employed near the leading edges of high Re airfoils to show this 

effect as studied by Selig and Giguere [10] where the devices ‘trip’ laminar flow into high energy 

turbulent flow able to negotiate the APG. Roughness can easily be introduced to airfoils at low Re as 

it does not appear significant in relation to boundary layer thickness whereas the opposite happens at 

high Re. Since boundary layer thickness is inversely proportional to Re, a small amount of roughness 

would appear noticeable with decreasing boundary layer thickness as Re is increased since the 

physical size of the introduced roughness stays the same [3].   

      Low Re airfoils are designed to be thinner than traditional airfoils that operate at high Re 

[7,10,16]. Thin airfoils are chosen for low Re application to decrease the suction peak near the leading 

edge of the airfoil to decrease the APG on the upper surface [13,15]. A decrease in APG ensures that 

the laminar flow does not separate from the surface. Selig and Giguere [16] discuss the use of thin 

airfoil that consist of SG60XX series of thin airfoil family (SG6040 – SG6043) suited for application 

in small wind turbine blades operating in the Re range of 1 x 105 – 5 x105. Selig and Giguere [10] in 

another paper discuss the applicability of 15 airfoils consisting of mainly thin airfoil, along the span of 



 

 

small wind blades. Other geometric optimization such as the increasing of leading edge nose radius 

and cusping of trailing edge have improved aerodynamic performance at the low Re. Increasing nose 

radius decreases the APG and cusping of trailing edge increases aerodynamic loading within the 

cusped region [17]. Such airfoils have been proposed for small wind turbines by Selig and 

McGranahan [18] where of the 6 airfoils that were tested in the Re range of 1 x 105 – 5 x 105
, 2 airfoils 

(SH3055 and FX63-137) were cusped. These airfoils produced CL values of around 1.8 in the desired 

Re range. Likewise Henriques and Silva [19] developed a new high lift cusped airfoil using Xfoil 

(T.Urban 10/193) characterized to work well within the urban environment. The airfoil produced CL 

values close to 2 in the Re range of 6 x 104 – 1 x 106.                  

 
1.4 Small wind turbine rotor blades 

 
      Smaller blades with smaller chord lengths combined with low wind conditions leads to the blades 

operating at low Reynolds numbers from the root to tip [16]. It is vital that small wind turbine rotors 

have a good startup response to low wind speeds in order to generate maximum possible power 

[4,10,19]. Most of the starting torque comes from near the blade root whereas the tip generates most 

of the power producing torque [20]. The starting torque of small wind turbines is small due to their 

small rotor size deeming it insufficient to start at low wind speeds [7]. Small wind turbines suffer 

from a lot of resistive torque generated by friction linked to gearbox train, bearings and generator, all 

of which the rotor has to overcome before it can start rotating. As wind turbines get smaller, cogging 

friction associated with the generator increases [20]. To overcome this problem, small wind turbines 

have multiple rotor blades to compensate for the low starting torque [7]. The increased number of 

blades aid in the quick start of the rotors and allows the turbine to operate at much lower cut-in wind 

speeds. Although not a good strategy, considering the added cost associated with the extra blades, the 

cost difference becomes insignificant due to the small size of the turbine [12]. Nevertheless, high 

performance gains from the wind must be accomplished through aerodynamic optimization of the 

rotor blades.  Aerodynamic optimization of the rotor blades is associated with optimization of the 

chord and twist distribution, number of blades, choice of airfoil shape, and the tip speed ratio, TSR 

[21]. With blade optimization, power coefficients close to the Betz limit of 59.2% can be realized for 



 

 

wind turbines. There is always a trade-off between aerodynamic optimization of the blades and the 

associated costs, limiting the full potential of aerodynamic optimization as a result of the high cost of 

production.    

    Parameters associated with blade geometry optimization are important, because once optimized, 

shorter rotor blades would produce power comparable to larger and less optimized blades. The 

efficiency of the rotor largely depends on the blade’s profile [6,15] in increasing the lift to generate 

sufficient torque. As discussed earlier, the airfoil is one of the fundamental parts of a rotor blade 

design. Its purpose is to induce suction on the upper surface of the blade to generate lift. Drag is also 

generated perpendicular to the lift and its presence is highly undesirable. In order to maximize the 

power coefficient and the torque generated, the lift coefficient, CL and the lift to drag ratio, L/D ratio 

for the airfoil must be maximized [6,22-24]. Higher L/D ratios contribute to higher values of torque 

and it is desirable that at favorable L/D ratios, there is maximum CL in order to have a small sized 

rotor [15]. Airfoils resistant to laminar flow separation and separation bubbles will greatly improve 

the performance of small wind turbines without the need for higher rotor solidity. Together with 

aerodynamic optimization, lighter blades with low rotational inertia would yield better performance at 

lower wind speeds. 

      This paper presents the design and performance results of a small horizontal axis wind turbine 

rated at 400 W with a 1.26 m diameter, 2-bladed rotor designed for low Re applications in the wind 

speed range of 3 – 6 m/s. The blades incorporate twist, taper and a low Re AF300 airfoil throughout 

the blade cross section. The AF300 airfoil was designed to operate in the Re range of 0.75 x 105 to 2 x 

105 for application on rotor blades of small wind turbines. The AF300 airfoil has a flatback trailing 

edge for structural strength and to achieve a higher stalling angle of 14°.   

 
2. Methodology 
 
 
2.1 Rotor blade design for low wind speed application 
 
A 2-bladed, 1.26 m diameter rotor was designed for low wind speed conditions. The rotor was 

designed for the Air-X marine wind turbine which has a similar rotor diameter of 1.16 m. The 2-

bladed rotor was manufactured from wood to achieve a low rotational inertia for easy start up in low 



 

 

wind conditions and fiber-coated for stiffness and strength. Taper and twist distributions were 

incorporated in the design of the rotor. A low Reynolds number airfoil designated as AF300 was 

specially designed for the rotor blades [25] and formed the basis of the rotor cross-section throughout 

the span of blades. The AF300 airfoil was tested in the Re range of 38,000 – 205,000 corresponding to 

relative velocities, Vrel of 6 – 32 m/s experienced from the root to the tip of the rotor blade. In the Re 

range of 75,000 – 205,000, the AF300 airfoil showed no signs of flow separation up to a stall angle, 

αstall of 14°, producing CLmax  of  1.72, 1.81 and 1.86 at Re = 75,000, 128,000 and 205,000 respectively 

[24].  Figure 1 shows the geometry of AF300 airfoil. 

Flapwise (chord) and edgewise taper distribution and twist distribution for the rotor are shown in 

figures 2 – 4 based on blade element momentum theory, BEM. Equation 1 gives the chord distribution 

along the radial distance along the blade span.   
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Where D is the overall blade diameter. 

r and d are the incremental radius and diameter    

respectivily. 

Nb is the number of blades = 2. 

             λ = 6.5 and CL =1 [26,27]. 

 
 
The twist distribution based on the twist of the zero lift line [28] is shown below in equations 2 and 3: 
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where β is the pitch angle and αt  is the angle of attack at the tip of the blade: 
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            αo  is the angle of attack at zero lift and βt is the pitch angle at the tip (βt ≈ 0°.) 

             k is the acceleration factor (k > 0) 

 
Figure 3 shows the theoretical pitch distribution based on equation 2 at different values of k while 

figure 4 shows comparison between the twist distribution based on equation 2 at k = 0.5 and modified 



 

 

twist distribution which has pitch angles distributed more evenly along the span of the blade. Figure 5 

shows the outline of the rotor blade with taper and twist distribution.   

2.2 Rotor specifications 
 
Diameter = 1.26 m 

Hub diameter = 0.13 m 

Effective rotor radius = 0.565 m 

Twist angle, β = 20° – 3° = 17° 

Root and tip pitch angle = 20°and 3° respectively   

Rotor solidity, σ = 8.27% 

Airfoil section = AF300 throughout 

Design freestream velocity = 5 m/s 

Design rotational speed = 500 rpm 

Tip speed ratio, λ = 6.6 

 
 
2.3 Passive pitch control  
 
A centrifugal governor was designed to passively govern the pitch of the blades at high rpm as shown 

in Fig. 6. The governor has masses connected to spring-loaded links that swing in and out depending 

on the rpm of the rotor. During high rpm, they swing outwards, increasing the pitch angle of the rotor 

and slowing it down. As rpm decreases, the springs pull back on the links which decrease the pith of 

the blades. The governor is designed to work when rotor rpm increases above 850 rpm for the purpose 

of safely braking the rotors. Maximum pitching of 50° is possible during instantaneous braking of the 

rotors. The governor was constructed on top of the modified custom-designed hub plate to house the 2 

blades. The blades are fitted to 8 mm round shaft that rests on ball racer bearing mounts which makes 

passive pitching and setting the blades at different pitch angles possible.       

 
2.4 Experimental setup for performance testing 
 
      The rotor blades were mounted on an Air-X marine turbine from Southwest Windpower, Inc. The 

electrical power output of the turbine was measured at 3 different pitch angles of 15o, 18o and 20° for 



 

 

performance evaluation in the low wind speed range of 3 – 6 m/s. The Air-X turbine is a 12V DC 

system capable of producing maximum power of 400 W at 12.5 m/s. It is designed to charge 25Ah – 

25000Ah battery banks while an electronic microprocessor controls the charging and electronic 

braking of the turbine. More information on the turbine is provided in ref. [29].  

      The turbine was mounted on an 8.22 m tall pole in an open field facing the open ocean at the 

University of the South Pacific’s marine campus. The low-to-strong wind conditions made the site 

ideal for testing the performance of Air-X wind turbine with the 2-bladed rotor configuration at low 

wind speeds.  Data logging equipment contained inside a monitoring station at the base of the pole 

recorded average values of wind speed, turbine voltage and current at 10 sec interval at a sampling 

rate of 1 sec. Data were logged on a CR1000 Campbell Scientific data logger. For measuring voltage 

and current, the logger requires an analog voltage input range of -5 V to +5 V with a resolution of 

0.67 μV to 1333 μV. For measuring wind speed, the logger requires a period average input range of -

2.5 V to +2.5 V with a maximum measurable frequency of 200 kHz with a resolution of 136ns. Wind 

speed was measured via a 3-cup A101M anemometer by Vector Instruments which was mounted 1m 

below the turbine hub and extended 1m horizontally away from the turbine pole. The anemometer can 

measure a maximum wind speed of 75 m/s with a resolution of 0.1 m/s.  Figure 7 shows the setup for 

the performance testing of Air-X wind turbine with 2-bladed rotor mounted on the 8.22 m pole. 

      During its operation, the turbine charged a battery bank consisting of deep cycle batteries rated at 

12V with a combined load of 200Ah. A voltage regulated load consisting of high wattage filament 

lamps were connected to the battery bank to provide continual discharge of the battery bank to 

prevent the wind turbine from shutting down. 

 
3. Results and Discussion 
 
 
3.1 Performance testing of Air-X wind turbine with the 2-bladed rotor configuration 
 
Data logging of wind speed and turbine’s voltage and current output was carried out at 3 different  

pitch angle settings of 15°, 18° and 20° to find the optimum pitch angle at which the performance is 

optimum in the low wind speed conditions. Average data values were logged every 10 sec with a 1 

sec sampling rate. 



 

 

Wind turbine power and Coefficient of power, Cp, were evaluated from equations 4 and 5 

respectively. For the analysis of power and performance, atmospheric pressure was taken as standard: 

101.3 kPa. Ambient temperature was measured at the test site using a portable Cussons TA2 hot wire 

temperature probe. An average temperature value of 25°C was recorded. The air density and 

temperature are related by the gas equation [9].  The density of air using the gas equation was thus 

1.184 kg/m3.   
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Where  

 PT  is the wind turbine power (W) 

 V and I are the turbine voltage and current 

 PW  is the wind power (W) 

 V∞ is the freestream velocity of the wind (m/s) 

 ρ is the density of air (kg/m3) 

 A is the rotor swept area (m2) 

 
3.2 Average power output of Air-X wind turbine with the 2-bladed and the baseline 3-bladed rotor 
configuration 
 
The power output and performance of the 2-bladed rotor were compared with the 3-bladed stock rotor 

due to the comparable diameter size (1.26 m vs.1.16 m), rotor solidity (8.27% vs. 8.24%) and low 

wind speed applications starting from 3-3.5 m/s for the 2 rotors.   Average power output was 

obtained from the scatter plots of power output at different pitch angle setting and 

collectively plotted together against wind speed to see the effect of pitch angle, β on the 

power output of Air-X wind turbine. Figure 8 shows the scatter plot of power output of the 

turbine at β = 18°.  Average power output of the Air-X turbine with the baseline (stock) 3-

bladed rotor was also compared with the average power output of the 2-bladed rotor (figure 



 

 

9). The graph shows that maximum power is produced by the 2-bladed configuration at β = 

18° followed by 20° and then 15° pitch angles. The Air-X wind turbine outputs similar power 

at β = 18° and 20° in the wind speed range of 3 - 4.4 m/s. As wind speed increases beyond 

4.4 m/s, the rotor set to β = 18° produces more power in comparison to pitch settings of 15° 

and 20° within the whole wind speed range of interest for the turbine (3-7 m/s). It can be seen 

that at every given wind speed, the 2-bladed rotor produces maximum power at β = 18°, 

followed by 20°, 15° and lastly the baseline rotor. 

    A sound conclusion depends on the turbine’s power coefficient CP to evaluate which rotor 

configuration performs better. With 8.62% longer blades, the 2-bladed rotor produces more power at 

all the 3 pitch angles compared to the baseline rotor. At the optimum pitch, β = 18°, the 2-bladed rotor 

produces more than double the power than the baseline rotor. The power output of the baseline rotor 

coincides with only 15° pitch setting of the 2-bladed rotor upto a wind speed of 4 m/s.   

 
3.3 Cut-in wind speeds 
 
The average power output graphs show that Air-X starts producing power at cut-in wind speeds of 

2.98, 2.34 and 2.38 m/s for β = 15°, 18° and 20° respectively based on instantaneous 10 sec averaged 

wind speed data. The instantaneous cut-in wind speed was read from the power output graph 

corresponding to the minimum turbine power.  The cut-in wind speeds are presented in table 1 where 

both instantaneous and averaged cut-in wind speeds, based on average wind speeds corresponding to 

the minimum power produced were calculated. The averaged value of cut-in wind speed gives a true 

indication of the turbine’s minimum wind speed at which it will start producing power. The turbine 

will be seen to operate at the instantaneous cut-in wind speed only when it has first started off at the 

averaged cut-in wind speed and provided that it has gained enough rotational inertia, at which point 

even if the wind falls below the rated cut-in wind speed, the turbine will still be producing power. 

Minimum instantaneous and averaged cut-in wind speeds are 2.34 and 3.24 m/s respectivily for the 

rotors at β = 18°. 

 
3.4 Performance measurements of Air-X wind turbine with the 2-bladed rotor 



 

 

 
Figures 11 - 13 show the graphs of maximum, minimum and average CP variations with the wind 

speed for 15°, 18° and 20° pitch angles. The maximum, minimum and average CP variations were 

plotted  from points obtained from the scatter plots of CP vs wind speed shown in Fig. 10 for β = 18°.  

In Fig. 11, the maximum CP at different wind velocities is plotted for the 3 pitch angles. It is seen that 

CP at 20° pitch setting dominates CP at the other two pitch settings. The turbine performance at β = 

20° is marginally better than that at β = 18°. At wind speeds of 5 m/s and above, the CP of turbine at β 

= 18° starts to exceed the CP at β = 20°. In the wind speed range of 4.5 – 6 m/s, CP ranges from more 

than 0.2 to around 0.3 for pitch angles of 18° and 20°. At 6 m/s, the power coefficient at β = 18° and 

20° pitch angles is close to 0.30 (0.29 and 0.28 respectively).   

The variation of minimum CP with wind speed for the 3 pitch angles is presented in Fig. 12. It can be 

seen from the graphs that CP at 18° pitch setting is much higher compared to the other two pitch 

settings. The performance of the turbine at β = 15° is observed to be marginally better than at β = 20° 

till a wind speed of 6 m/s. The minimum CP values reach more than 0.20 after 5.5 m/s for β = 18°. The 

values of CP obtained at 6 m/s are 0.24 and 0.20 for β = 18° and 20° respectively. 

Figure 13 shows the variation of the average CP with wind speed for the 2-bladed rotor at different β 

settings and the 3-bladed baseline rotor. The average performance of the turbine is more important 

compared to the extreme cases (maximum and mimimum) as it gives a true indication of the turbine’s 

general performance at the respective wind speeds. The turbine has the highest Cp at β = 18°. It is seen 

that the Cp graphs at β = 18° and 20° coincide with each other  up to 4.5 m/s wind speed. Beyond 4.5 

m/s, the 18° pitch setting performs better than the other pitch settings. Compared with the 

performance of Air-X turbine with the baseline rotor, the 2-bladed rotor configuration has better 

performance at all the pitch settings studied over the wind speed range investigated. The performance 

curve of Air-X turbine with the baseline rotor matches only with the 2-bladed rotor configuration at β 

= 15° up to 4 m/s wind speed. Beyond 4 m/s, its Cp values are considerably lower than CP at β = 15°. 

The Air-X wind turbine achieves CP values of more than 0.2 at wind speeds of 5 m/s and above at β = 

18° and 20°. At 6 m/s, the turbine attains CP values of 0.208, 0.255 and 0.24 at the pitch settings of 

15°, 18° and 20° respectively whereas with the 3-bladed baseline rotor, the turbine achieves a CP of 



 

 

0.15.  A small wind turbine was developed and tested by Elizondo et al. [14], but it has rated wind 

speeds of about 10 m/s. The present work addresses and solves some of the technological issues 

associated with small wind turbines raised by Clausen and Wood [7]. 

 

3.4 Operation of the 2-bladed rotor at high wind speeds  

The Air-X marine wind turbine comes with a microprocessor that limits the rotors’ rpm to 850 rpm in 

high wind speeds [30] with the power producing rpm ranging between 500 – 850 rpm [29]. The 

turbine will stall the rotor at V∞ > 15.6 m/s and completely shut it down at V∞ > 22 m/s to protect both 

the rotor blades and the generator. Since the 2-bladed rotor produces more power compared to the 

baseline rotor at the same wind speeds, it rotates at a higher rpm and with more torque which 

increases the thrust and the centrifugal force on the blades at a lower wind speed compared to the 

baseline rotor. The 2-bladed rotor is thus constructed from wood, clothed in fiberglass for strength and 

stiffness. Together with this, the flatback trailing edge and cusped shape of the airfoil adds strength 

and rigidity so that the blades don’t easily bend due to the thrust caused by strong winds. With small 

wind turbines, the effect of thrust is minimized by the high rotation that the rotor goes through; the 

high rpm of the blades induces a very strong centrifugal force causing the blades to be stiff and 

maintain parallelism with the rotor plane of rotation.  

 

As discussed in section 2.3, a custom-built centrifugal governor was employed to safeguard the rotor 

in case the turbine’s active braking fails. Figure 14 shows the graph of pitch angle vs. governor rpm. It 

shows an exponenital increase in pitch angle whereby β increases abruptly from 881rpm and is fully 

‘braked’ at 1020 rpm which takes a fraction of a second due to the rapid dispalcement of the governor 

masses from the middle to the outermost positions on the governor arms to increase the centrifugal 

force to instantly brake the rotors.       

During rpm regulation, rpm of the rotor will cycle to the specific rpm from the operating rpm range 

(500 – 850rpm) at which the system should be generating electrical power. The cycle is sinusoidal 

because of the balancing effect of the masses and governor arm retainer springs which pull on the 

governor arms to a closed position after the rotor has slowed down through pitch regulation.      



 

 

 
 
4. Conclusions 
 
      A 2-bladed rotor was designed to work with the Air-X wind turbine to operate in low wind speed 

conditions that are present in the Pacific Island Countries. The cross section of the blades consisted of 

AF300 flatback airfoil, specially designed to achieve high lift at low Reynolds numbers and provide 

structural stability to the blades. The added structural strength as a result of the flatback trailing edge 

meant that the blades could be made from even lighter materials benefiting the rotor with low inertia 

and resulting in lower startup and cut-in wind speeds. 

      The 2-bladed rotor was manufactured from wood to be light and designed to operate in wind 

speed range of 3 – 6 m/s. The rotor incorporated an exponential twist and taper distribution and the 

AF300 airfoil for increased aerodynamic performance at low wind speeds. The chord distribution of 

the blades resulted in the outer portion to have higher solidity compared to the baseline blades to have 

a fast start up and low cut-in wind speed.   

      The turbine was field tested at 3 different pitch angles of 15°, 18° and 20°, with the turbine 

performing best at 18°. The 2-bladed rotor recorded instantaneous and average cut-in wind speeds of 

2.34 m/s and 3.24 m/s respectively, compared to the cut-in wind speed of 3.58 m/s measured for the 

rotor with the baseline blades. Performance of Air-X with the 2-bladed rotor was compared to the 

baseline rotor and found that the 2-bladed rotor has better CP in the low wind speed range of 3 – 7 

m/s. The 2-bladed rotor achieved CP values of 0.l, 0.217 and 0.255 at the wind speeds of 4, 5 and 6 

m/s respectively wherease the baseline 3-bladed rotor achieved 0.052, 0.112 and 0.15 at these wind 

speeds. Peak power coefficient attained by the 2-bladed rotor design at 6 m/s wind speed was 0.29. 
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Nomenclature  
 
A         rotor swept area (m2) 
 
CL coefficient of lift (dimensionless) 

CLmax    maximum coefficient of lift at stalling angle (αstall) (dimensionless) 

CD coefficient of drag (dimensionless) 

CP   coefficient of power (dimensionless)  

L/D      lift to ratio (dimensionless)  

Re ρ V∞ c/ μ, Reynolds number (dimensionless) 

V∞ freestream velocity (m/s)  

Vrel  relative velocity (m/s) 

αstall      stalling angle of attack where maximum value of lift coefficient occurs 

λ tip speed ratio (TSR) (dimensionless) 

ρ density of air (kg/m3) 

β           angle measured between the rotor plane of rotation and chordline of airfoil section at the root 

              of rotor blade (°) 
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Pitch angle 
setting (°) 

Instantaneous cut‐in 
wind speed (m/s) 

Averaged cut‐in wind 
speed based on 
minimum power 
output (m/s) 

15  2.98  3.46 
18  2.34  3.24 
20  2.38  3.33 
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Fig. 1 The profile of Airfish AF300 airfoil 
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Fig. 2 Flapwise and edgewise taper distribution along the rotor radius 
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Fig. 3 Blade twist distribution based on the twist of zero lift line equation 
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Fig. 4 Modified blade twist distribution compared with twist of zero lift line equation with k = 0.5 
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Fig. 5 Schematic diagram of the 2-bladed rotor blades 

 

Figure 5



 

Fig. 6 Photograph of the custom-made hub plate and centrifugal pitch control governor 
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Fig. 7 Close-up view of the Air-X turbine with the 2-bladed rotor and anemometer setup 
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Fig. 8 Scatter plot of power output at the optimum pitch angle of 18 degrees 
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Fig. 9 Average power output of the turbine at different wind speeds and different pitch angles. The power 
output of the rotor with baseline blades is also shown 
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Fig. 10 Scatter plot of the power coefficient at the optimum pitch angle of 18 degrees 
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Fig. 14 Blade pitch angle (β) vs. rotational speed of the centrifugal governor for pitch angle setting of 20 
degrees 
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