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Abstract—Cooperative coevolution employs different problem
decomposition methods to decompose the neural network prob-
lem into subcomponents. The efficiency of a problem decomposi-
tion method is dependent on the neural network architecture
and the nature of the training problem. The adaptation of
problem decomposition methods has been recently proposed
which showed that different problem decomposition methods
are needed at different phases in the evolutionary process. This
paper employs an adaptive cooperative coevolution problem
decomposition framework for training recurrent neural networks
on chaotic time series problems. The Mackey Glass, Lorenz
and Sunspot chaotic time series are used. The results show
improvement in performance in most cases, however, there are
some limitations when compared to cooperative coevolution and
other methods from literature.

I. INTRODUCTION

The prediction of chaotic time series has a wide range
of applications such as in finance [1], signal processing [2],
power load [3], weather forecast [4], and sunspot prediction
[5], [6], [7]. Chaos theory is used to study the behaviour of
dynamical systems that are highly sensitive to initial conditions
such as noise and error [8], [9].

Cooperative coevolution (CC) divides a problem into sub-
components which are implemented as sub-populations. In
the original cooperative coevolution framework, the problem
was decomposed by having a separate subcomponent for each
variable [10]. It was later found that the strategy was mostly
effective for problems that are separable [11]. Cooperative
coevolution naturally appeals to separable problems as there
is little interaction among the subcomponents during evolution
[12]. The efficiency of a problem decomposition method is
dependent on the neural network architecture and the nature
of the training problem. The degree of non-separability is
referred as problem description that determines the level of
interdependencies among variables [13].

There are two major problem decomposition methods for
neuro-evolution that decomposes the network on the neuron
and synapse level. In synapse level problem decomposition,
the neural network is decomposed to its lowest level where
each weight connection (synapse) forms a subcomponent.
Examples include cooperatively co-evolved synapses neuro-
evolution [14] and neural fuzzy network with cultural cooper-
ative particle swarm optimisation [15]. In neural level problem
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decomposition, the neurons in the network act as the reference
point for the decomposition. Examples include enforced sub-
populations [16], [17] and neuron-based subpopulation [18],
[19].

Adaptation of problem decomposition in different phases
of evolution has been effective for training feedforward neural
networks on pattern recognition problems [20] and recurrent
neural networks on grammatical inference problems [21]. The
results have shown that it is reasonable to adapt the problem
decomposition method at different stages of evolution. We
have shown that the neural network training problem changes
at different stages of evolution in terms of the degree of
non-separability [13]. The use of cooperative coevolution in
training recurrent neural networks for time series problems
has been given in our recent work [22].

This paper employs the adaptive modularity cooperative co-
evolution framework (AMCC) [20], [21] for training recurrent
neural networks on chaotic time series problems. The Elman
recurrent network [23] is used and three different chaotic
time series problems where the Lorenz and Mackey-Glass
are the simulated time series while the Sunspot is the real-
world time series. The generalised generation gap with parent
centric crossover (G3-PCX) evolutionary algorithm [24] is
employed in the sub-populations of AMCC. The performance
of AMCC is compared with neuron, synapse and network level
problem decomposition methods [22] and other computational
intelligence methods from the literature.

The rest of the paper is organised as follows. A brief
background on cooperative coevolution is presented in Section
2 and Section 3 gives details of the adaptive modularity coop-
erative coevolution method for training recurrent networks on
chaotic time series problems. Section 4 presents the results and
furthermore, Section 5 concludes the work with a discussion
on future work.

II. BACKGROUND
A. Cooperative Coevolution for Neuro-evolution

Cooperative coevolution divides a large problem into
smaller subcomponents which are implemented as sub-
populations that are evolved in isolation and cooperation takes
place for fitness evaluation [10]. The subcomponents are also
referred as modules. Problem decomposition determines how
the problem is broken down into subcomponents. The size
of a subcomponent and the way it is encoded depends on the
problem. The original CC framework has been used for general



function optimisation and the problems were decomposed to
its lowest level where a separate subcomponent was used to
represent each dimension of the problem [10]. It was later
found that this strategy is only effective for problems which
are fully separable [11]. Much work has been done in the use
of cooperative coevolution in large scale function optimization
and the focus has been on non-separable problems [11], [25],
[26], [27].

A function of n variables is separable if it can be written
as a sum of n functions with just one variable [28]. Non-
separable problems have interdependencies between variables
as opposed to separable ones. Real-world problems mostly fall
between fully separable and fully non-separable. Cooperative
coevolution has been effective for separable problems. Evolu-
tionary algorithms without any decomposition strategy appeal
to fully non-separable problems [13].

The subpopulations in cooperative coevolution are evolved
in a round-robin fashion for a given number of generations
known as the depth of search. The depth of search has to
be predetermined according to the nature of the problem.
The depth of search can reflect whether the encoding scheme
has been able to group the interacting variables into separate
subcomponents [19]. If the interacting variables have been
grouped efficiently, then a deep greedy search for the sub-
population is possible, implying that the problem has been
efficiently broken down into subcomponents which have fewer
interactions amongst themselves [13].

B. Encoding Schemes for Recurrent Networks

There are three major encoding schemes based on the CC
framework for training recurrent neural networks. The first
scheme proposes a neuron level encoding where each neuron
in the hidden layer is used as a major reference point for each
module in the CC framework. Therefore, the number of hidden
neurons is equal to the the number of subcomponents. In
Enforced Subpopulation (ESP) [16], [17], a particular neuron
h; in the hidden layer encodes the input, output, and recurrent
weight links connected to it. In this encoding scheme, the sizes
of all individual subpopulations are the same for the entire
framework.

The second encoding scheme was presented in the coopera-
tively coevolved synapse (CoSyNE) where each connection
in the network is part of a single subpopulation. CoSyNE
demonstrated better performance than ESP on the two pole
balancing problem without velocity information [14].

The third encoding scheme decomposes the network into
the neuron level which is known as the neuron based subpop-
ulation (NSP) [19]. NSP has shown to be more efficient than
CoSyNE for training recurrent neural networks for grammati-
cal inference problems in [19]. NSP has performed better than
CoSyNE and ESP for pattern recognition problems in [29].
CoSyNE views the recurrent network as a separable problem
and has been successful for pole balancing [14]; however, it
performed poorly for pattern recognition problems [29].

III. ADAPTIVE PROBLEM DECOMPOSITION IN
COOPERATIVE COEVOLUTION

The general idea behind the adaptive modularity cooperative
coevolution (AMCC) framework is to use the strength of a
different problem decomposition method which reflects on the
degree of non-separability when needed during evolution [20],
[21]. AMCC employs modularity (problem decomposition or
encoding scheme) with greater level of flexibility (allowing
evolution for separable search space) during the initial stage
and decreases the level of modularity during the later stages
of evolution.

The AMCC framework is given in Algorithm 1. Initially,
all the sub-populations of the synapse level, neuron level and
network level encoding are randomly initialised with random
real values in a range. In Stage 1, the sub-populations at
synapse level encoding are cooperatively evaluated. Neuron
level and Network level encoding are left to be cooperatively
evaluated at Stage 2.

Synapse Level Encoding

STAGE 1
5P (n)
Neuron Level Encoding
STAGE 2
5P (n)
Network Level Encoding
STAGE 3

Fig. 1. The AMCC framework used for training the recurrent network on
chaotic time series. The sub-populations (SP) at Synapse level and Neuron
level are shown.

The details of the different problem decomposition methods
are given below.

1) Synapse level encoding: Decomposes the network into
its lowest level to form a single subcomponent [14], [15].
The number of connections in the network determines
the number of subcomponents.

2) Neuron level encoding: Decomposes the network into
neuron level. The number of neurons in the hidden, state
and output layer determines the number of subcompo-

nents [19].
3) Network level encoding: The standard neuro-
evolutionary encoding scheme where only one

population represents the entire network. There is no
decomposition present in this level of encoding.



Alg. 1 Adaptive Modularity in Cooperative Coevolution

Stage 1: Synapse level encoding
Cooperatively evaluate Synapse level only

while FuncEval < ax MaxGlobal do

foreach each Sub-population at Synapse level do
Create new offspring

Cooperative Evaluation

end
end
Stage 2: Neuron and Network level encoding
i. Merge individuals from Synapse level into Neuron level
ii. Cooperatively evaluate Neuron level
while FuncEval < MaxGlobal do
while FuncEval < x MaxGlobal do

foreach each Sub-population at Neuron level do
Create new offspring

Cooperative Evaluation

end
end
i. Merge all individuals into Network level
ii. Evaluate Network level

while FuncEval < 8x MaxGlobal do
Create new offspring

end
1. Break all individuals from Network to Neuron level
ii. Evaluate Neuron level

end

Stage 1 employs synapse level encoding where the sub-
populations are evolved until « portion of the maximum time.
The sub-populations of synapse level encoding are merged into
neuron level. The individuals with their fitness are transferred
to the sub-populations of the Neuron level in Stage 2. The
framework proceeds to Neuron and Network level encoding in
Stage 2. All the sub-populations are cooperatively evaluated.
The Neuron level encoding is then evolved for 3 portion of the
maximum time. The sub-populations for the neuron level are
then merged into a single population for the network level and
evaluated. The Network level encoding is evolved for 3 portion
of the maximum time. The population of the Network level
is then broken down and encoded as Neuron level evolution
phase and evaluated. The procedure in Stage 2 is repeated
until the maximum training time has been reached or if the
minimum network error given by root mean squared error has
been reached. Figure 1 shows futher description of the AMCC
framework that shows Stage 2 and Stage 3 level of modularity
repeats in a cycle untill termination.

In the original AMCC framework presented in [20], [21],
the transformation is from synapse level to neuron level and
finally to network level. The AMCC framework presented in
Algorithm 1 is similar, however, slightly different in three
ways:

1) It transforms from one level of modularity into another

based on the training time rather than the neural network
error;

2) It employs synapse level encoding for the first a portion
of the maximum training time. It then transforms into the
neuron level and then to the network level and repeats
this transformation until termination. The neuron and
network levels are encoded for  portion of the total
training time given by number of function evaluations;

3) In the transformation from one level of encoding to
another, all the individuals of the sub-populations are
transferred rather than only the best ones.

Cooperative evaluation of individuals in the respective sub-
populations is done by concatenating the chosen individual
from a given sub-population with the best individuals from
the rest of the sub-populations [10], [18], [19], [22]. The
concatenated individual is encoded into the recurrent neural
network and the fitness is calculated by the root mean squared
error. The goal of the evolutionary process is to increase the
fitness which tends to decrease the network error. In this way,
the fitness of each subcomponent in the network is evaluated
until the cycle is completed.

The transition from one level of modularity to another
has to ensure that the information gained using the existing
modularity is transferred to the next level of encoding. Note
that the number of sub-populations in each level are different.
The Synapse level encoding has more sub-populations than the
Neuron level, however, the individuals in the sub-populations
of Synapse level must be merged to Neuron level. The sub-
populations are merged when the transformation is from the
Synapse to the Neuron level and from the Neuron to the
Network level. The transformation from the Network to the
Neuron level requires the population to be broken down and
encoded as the Neuron level.

IV. SIMULATION AND ANALYSIS

This section presents an experimental study of AMCC for
training recurrent neural networks on chaotic time series. The
Neuron level (NL) [22] and Synapse level (SL) [22] problem
decomposition methods are used for comparison. The Mackey
Glass time series [30] and Lorenz time series [8] are the
two simulated time series while the real-world problem is the
Sunspot time series [31]. The behaviour of the respective meth-
ods are evaluated on different recurrent network topologies
which are given by different numbers of hidden neurons. The
size and description of the respective dataset is taken from
our previous work for a fair comparison [22]. The results
are further compared with other computational intelligence
methods from literature.

Given an observed time series x(t), an embedded phase
space Y (t) = [(z(t),z(t = T),...,x(t(D — 1)T)] can be
generated, where, 7' is the time delay, D is the embedding
dimension, t = 0,1,2,..., N — DT —1 and N is the length of
the original time series [32]. Taken’s theorem expresses that
the vector series reproduces many important characteristics of
the original time series. The right values for D and 7" must
be chosen in order to efficiently apply Taken’s theorem [33].
Taken’s proved that if the original attractor is of dimension d,



then D = 2d 4 1 will be sufficient to reconstruct the attractor
[32].

The reconstructed vector is used to train the recurrent
network for one-step-ahead prediction where 1 neuron is used
in the input and the output layer. The recurrent network
unfolds % steps in time which is equal to the embedding
dimension D [5], [34], [22].

The root mean squared error (RMSE) and normalised mean
squared error (NMSE) are used to measure the prediction
performance of the recurrent neural network. These are given
in Equation 1 and Equation 2.
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where y;,y; and y; are the observed data, predicted data and
average of observed data, respectively. N is the length of the
observed data. These two performance measures are used in
order to compare the results with the literature.

A. Problem description

The Mackay Glass time series has been used in literature
as a benchmark problem due to its chaotic nature [30]. The
differential equation used to generate the Mackey Glass time
series is given in Equation 3.

ox ax(t — 1)
5t [14ac(t—1)] bx(?) )

In Equation 3, the delay parameter 7 determines the charac-
teristic of the time series, where 7 > 16.8 produces chaos. The
selected parameters for generating the time series is taken from
the literature [35], [36], [7], [37] where the constants a = 0.2,
b = 0.1 and ¢ = 10. The chaotic time series is generated by
using time delay 7 = 17 and initial value z(0) = 1.2.

The experiments use the chaotic time series with length of
1000 generated by Equation 3. The first 500 samples are used
for training the Elman network while rest of the 500 samples
are used for testing. The time series is scaled in the range [0,1].
The phase space of the original time series is reconstructed
with the embedding dimensions D = 3 and T' = 2.

The Lorenz time series was introduced by Edward Lorenz
who has extensively contributed to the establishment of Chaos
theory [8]. The Lorenz equation are given in Equation 4.
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where 7, 7, and b are dimensionless parameters. The typical
values of these parameters are n = 10, r = 28, and b = 8/3
[381, [71, [39], [40], [37]. The x-coordinate of the Lorenz
time series is chosen for prediction and 1000 samples are

generated. The time series is scaled in the range [-1,1]. The
first 500 samples are used for training and the remaining 500
is used for testing. The phase space of the original time series
is reconstructed with the embedding dimensions D = 3 and
T=2.

The Sunspot time series is a good indication of the solar ac-
tivities for solar cycles which impacts Earth’s climate, weather
patterns, satellite and space missions [6]. The prediction of
solar cycles is difficult due to its complexity. The monthly
smoothed Sunspot time series has been obtained from the
World Data Center for the Sunspot Index [31]. The Sunspot
time series from November 1834 to June 2001 is selected
which consists of 2000 points. This interval has been selected
in order to compare the performance the proposed methods
with those from literature [7], [37]. The time series is scaled
in the range [-1,1]. The first 1000 samples are used for training
while the remaining 1000 samples are used for testing. The
phase space of the original time series is reconstructed with
the embedding dimensions D = 5 and 1" = 2.

Note that the scaling of the three time series in the range of
[0,1] and [-1,1] are done as in the literature in order to provide
a fair comparison.

B. Experimental set-up

The Elman recurrent network employs sigmoid units in the
hidden layer of the three different problems. In the output
layer, a sigmoid unit is used for the Mackey Glass time series
while hyperbolic tangent unit is used for Lorenz and Sunspot
time series. The experiemnt set-up is same as our previous
works [22]. The RMSE and NMSE given in Equation 1 and
Equation 2 are used as the main performance measures of the
recurrent network.

In the respective CC framework for recurrent networks (SL
and NL) shown in Algorithm 1, each subpopulation is evolved
for a fixed number of generations in a round-robin fashion.
This is considered as the depth of search. Our previous work
has shown that the depth of search of 1 generation gives
optimal performance for both NL and SL encodings [19].
Hence, 1 is used as the depth of search in all the experiments.
Note that all sub-populations evolve for the same depth of
search.

The termination condition of the three problems is when a
total of 100 000 function evaluations has been reached by the
respective evolutionary training algorithm. o = 0.2 and 8 =
0.1 in the AMCC framework from Algorithm 1. We obtained
these values from trial experiments that can be adjusted for
different application problems.

C. Results and discussion

This section reports the performance of AMCC for train-
ing the Elman recurrent network on the chaotic time series
problems. Note that the best performance is given by the least
RMSE and NMSE.

Initially, the number of hidden neurons is empirically eval-
uated and the mean and the best value of the RMSE is given
from 30 experimental runs. The number of hidden neurons
directly influences the difficulty of the learning problem. It



is more difficult to learn the problem if enough neurons are
not present in the hidden layer. The performance on the test
set are shown in Table I where the performances of AMCC
for different numbers of hidden neurons are given. The best
results are highlighted in bold.

The best results from Table I is chosen and further details
are given in Table II where the mean and 95 % confidence
interval (CI) of RMSE and NMSE is given with the best
performance out of 30 experimental runs. The best mean
prediction performance on the test dataset is highlighted in
Table II and shown in Figures 2 - 4. These arecompared with
NL and SL from our previous work [22].
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Fig. 2. Typical prediction given by AMCC for Lorenz time series

In the results for the Mackey time series, SL gives the
best performance in terms of the RMSE, however, AMCC
performance is close to SL. NL and SL use the same number
of hidden neurons (13), however, the performance of SL is
better. The results for the Lorenz time series in Table II show
that AMCC gives the best performance with 9 hidden neurons
in terms of RMSE when compared to the other methods.

In the Sunspot time series, the AMCC gives the best
performance with 3 hidden neurons. 3 neurons also give the
best performance in NL and SL. Note that this is a real-world
problem which contains noise.

The performance of AMCC on the different problems are
further compared to some of the results published in literature
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Fig. 3. Typical prediction given by AMCC for Mackey Glass time series

as shown in Tables III - V. The best values from the results in
Table II are used to compare with the results from literature.

In Table IV, the proposed method has given better perfor-
mance than similar evolutionary approaches such as training
neural fuzzy networks with hybrid of cultural algorithms and
cooperative particle swarm optimisation (CCPSO), cooperative
particle swarm optimisation (CPSO), genetic algorithms and
differential evolution (DE) [15]. AMCC has given better
performance than most of the methods from literature with
the only exception being the Hybrid NARX-Elman networks
[37].

The comparison of results with literature has shown that
AMCC performs better than several other methods. However,
it has not outperformed some methods that have additional
enhancements such as the optimisation of the embedding
dimensions and strength of architectural properties of hybrid
neural networks with residual analysis [37]. These can be
added to further improve the results. The cooperative coevolu-
tion methods outperformed several other methods on the real-
world Sunspot time series that contained noise. This reflects
on robustness.

AMCC has also shown to better maintain its performance
with different number of hidden neurons as compared to
other problem decomposition methods shown in Table 1. This



THE PERFORMANCE (RMSE AND NMSE) OF AMCC COMPARED WITH NL AND SL ENCODINGS [22] ON THE THE TEST DATASET OF THE THREE
PROBLEMS. THE MEAN AND 95 % CONFIDENCE INTERVAL (CI) IS GIVEN WITH THE BEST PERFORMANCE OUT OF 30 INDEPENDENT EXPERIMENTS.

TABLE 1

THE PERFORMANCE ON THE TEST DATASET OF THE SUNSPOT TIME SERIES

Lorenz Mackey Sunspot
Hidden  Mean Best Mean Best Mean Best
3 22E-2 1.1E-2 1.5E-2 6.9E-3 44E-2 24E-2
5 19E-2 6.8E-3 1.5E-2 69E-3 79E-2 1.7E-2
7 1.5E-2 7.6E-3 1.2E-2 6.8E-3 8.0E-2 24E-2
9 1.3E-2 5.1E-3 1.2E-2 8.1E-3 74E-2 1.9E-2
11 1.6E-2  6.9E-3 1.1E-2 7.5E-3 - -
13 1.7E-2  6.3E-3 1.3E-2 8.0E-3 - -
TABLE II

RMSE NMSE
Problem  Method Hidden Mean and CI Best Mean and CI Best
Mackey SL 13 9.39E-3 + 5.57E-4  6.33E-3 6.31E-4 + 7.60E-5 2.79E-4
NL 13 1.23E-2 £+ 9.16E-4 8.28E-3 1.11-3 + 1.77E-4 477E-4
AMCC 11 1.11E-2 £ 1.01E-3 7.53E-3 9.17E-4 £+ 1.78E-4  3.90E-4
Lorenz SL 5 1.95E-2 £ 2.59E-3 6.36E-3 8.28E-3 + 1.98E-3 7.72E-4
NL 11 1.82E-2 + 2.82E-3 8.20E-3 7.48E-3 £+ 2.60E-3 1.28E-3
AMCC 9 1.35E-2 + 2.01E-3 5.06E-3  4.04E-3 + 1.31E-3  4.88E-4
Sunspot SL 3 6.88E-2 + 2.66E-2 1.66E-2  5.48E-2 + 5.19E-2 1.47E-3
NL 3 5.58E-2 + 8.01E-3 2.60E-2 1.92E-2 £ 5.3¢E-3 3.62E-3
AMCC 3 4.39E-2 + 5.61E-3 2.41E-2 1.16E-2 + 3.05E-3 3.11E-3
TABLE III
A COMPARISON WITH THE RESULTS FROM LITERATURE ON THE LORENZ TIME SERIES
Prediction Method RMSE NMSE
Backpropagation-through-time (BPTT-RNN) (2010) [34] 1.85E-03
Real time recurrent learning (RTRL-RNN) (2010) [34] 1.72E-03
Recursive Bayesian LevenbergMarquardt (RBLM-RNN) (2010) [34] 9.0E-04
Hybrid NARX-Elman RNN with Residual Analysis (2010) [37] 1.08E-04  1.98E-10
Backpropagation neural network and genetic algorithms with residual analysis (2011) [41]  2.96E-02
CCRNN-Synapse Level (2012) [22] 6.36E-03  7.72E-04
CCRNN-Neuron Level (2012) [22] 8.20E-03 1.28E-03
Proposed AMCC-RNN 5.06E-03  4.88E-04

TABLE IV
A COMPARISON WITH THE RESULTS FROM LITERATURE ON THE MACKEY TIME SERIES

Prediction Method RMSE NMSE
Neural fuzzy network and hybrid of cultural algorithm and cooperative

particle swarm optimisation (CCPSO) (2009) [15] 8.42E-03

Neural fuzzy network and particle swarm optimisation (PS0) (2009) [15] 2.10E-02

Neural fuzzy network and cooperative particle swarm optimisation (CPS0) (2009) [15] 1.76E-02

Neural fuzzy network and differential evolution (DE) (2009) [15] 1.62E-02

Neural fuzzy network and genetic algorithm (GA ) (2009)[15] 1.63E-02
Backpropagation neural network and genetic algorithms with residual analysis (2011) [41]  1.30E-03

Hybrid NARX-Elman RNN with Residual Analysis (2010) [37] 3.72E-05  2.70E-08
Backpropagation neural network and genetic algorithms with residual analysis (2011) [41]  1.30E-03
CCRNN-Synapse Level (2012) [22] 6.33E-03  2.79E-04
CCRNN-Neuron Level (2012) [22] 8.28E-03  4.77E-04
Proposed AMCC-RNN 7.53E-03  3.90E-04

reflects on scalability and robustness.

The AMCC framework has performed better than the other
problem decomposition methods (NL and SL) where no adap-
tation is present. This has been observed for the Lorenz and
the Sunspot time series. In the Mackey Glass time series, the
synapse level encoding showed sightly better performance than
AMCC.

The AMCC framework employs the synapse level encod-

ing in the beginning of the evolution phase. Synapse level
encoding has strength in separable problems which exhibit
lower degree of non-separability. It provides more flexibility
and enforces global search. The efficiency in performance of
AMCC indicates that the use of neuron and network level
encoding is beneficial in later stages of evolution. One reason
can be due to the change in the degree of non-separability as
the interactions among the variables get stronger [13]. Hence,



TABLE V
A COMPARISON WITH THE RESULTS FROM LITERATURE ON THE SUNSPOT TIME SERIES

Prediction Method RMSE NMSE
Multi-layer perceptron (1996) [5] 9.79E-02
Elman RNN (1996) [5] 9.79E-02
FIR Network (MLP) (1996) [5] 2.57E-01
Wavelet packet multilayer perceptron (2001)[42] 1.25E-01
Radial basis network with orthogonal least squares (RBF-OLS)(2006) [7] 4.60E-02
Locally linear neuro-fuzzy model - Locally linear model tree (LLNF-LoLiMot) (2006) [7] 3.20E-02
Hybrid NARX-Elman RNN with Residual Analysis (2010) [37] 1.19E-02  5.90E-04
CCRNN-Synapse Level (2012) [22] 1.66E-02  1.47E-03
CCRNN-Neuron Level (2012) [22] 2.60E-02  3.62E-03
241E-02  3.11E-03

Proposed AMCC-RNN
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Fig. 4. Typical prediction given by AMCC for Sunspot time series

the evolution requires global search in the beginning and local
search towards the end which is enforced by neuron and
network level. It is not certain which type of search is needed
during the later stage (neuron or network), therefore, neuron
and network level encoding are used sequentially and these
complement each other.

There exists certain limitations in the AMCC approach that
can be improved in future research. The results showed that
AMCC did not show better performance than cooperative
coevolution method for the Mackey Glass problem. Note that
AMCC has more parameters to be adjusted for the problem (

a and () that reflects on the change of the modularity during
the evolutionary process. These parameters can be adapted
heuristically in future work for different number of hidden
neurons. This may have some effects on the performance of
the proposed method.

It must also be noted that although evolutionary computation
methods are known to be global optimization methods; their
use for neuro-evolution requires more computational time
when compared with gradient based methods. The application
of these methods is intended for problems where the use of
gradient descent based methods have local convergence and
are unable to provide high levels of accuracy.

V. CONCLUSIONS AND FUTURE WORK

This paper employed adaptation in problem decomposition
for the cooperative coevolution of recurrent neural networks on
chaotic time series. The results have been compared with other
problem decomposition methods and it has been observed
that the adaptive problem decomposition has given promising
results in terms of scalability, robustness and error. The results
have indicated that the nature of the problem changes during
evolution. According to the study, different levels of problem
decomposition at different stages of evolution is beneficial
mostly for Lorenz and Sunspot time series.

Although there are some limitations, the performance of
the proposed method generally compares well with the results
given by other computational intelligence techniques from
literature. This motivates further research in using evolution-
ary computation methods for chaotic time series prediction.
The results given by AMCC can be further improved by
incorporating boosting techniques, gradient based local search,
residual analysis and evolving the neural network topology
during evolution.
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