
SMT-based False Positive Elimination in
Static Program Analysis

Maximilian Junker1, Ralf Huuck2, Ansgar Fehnker2, Alexander Knapp3

1 Technische Universität München, Munich, Germany
junkerm@in.tum.de

2 NICTA, University of New South Wales, Sydney, Australia
{ansgar.fehnker,ralf.huuck}@nicta.com

3 Universität Augsburg, Augsburg, Germany
knapp@informatik.uni-augsburg.de

Abstract. Static program analysis for bug detection in large C/C++ projects typ-
ically uses a high-level abstraction of the original program under investigation.
As a result, so-called false positives are often inevitable, i.e., warnings that are
not true bugs. In this work we present a novel abstraction refinement approach
to automatically investigate and eliminate such false positives. Central to our ap-
proach is to view static analysis as a model checking problem, to iteratively com-
pute infeasible sub-paths of infeasible paths using SMT solvers, and refine our
models by adding observer automata to exclude such paths. Based on this new
framework we present an implementation of the approach into the static analyzer
Goanna and discuss a number of real-life experiments on larger C code projects,
demonstrating that we were able to remove most false positives automatically.

1 Introduction

Static program analysis of industrial size C/C++ programs for the detection of quality as
well a security bugs has had some considerable success in the recent years. A number of
software tools and companies [23,12] resulted from theoretical advances and increased
computing power, leading to the detection of complex source code defects with minimal
effort from the side of the developers.

However, static analysis techniques are based on approximations of the original
source code semantics. As such, the results of static analyzers might contain spurious
warnings, i.e., false positives. The task of assessing the validity of tool warnings falls
back to the developer. But with the increasing complexity of the bugs that those tech-
niques can uncover, this assessment is getting more and more difficult. In large software
projects developers may be forced to spend a lot of time reconstructing a warning of a
static analysis tool just to discover that the claimed bug is not real. Therefore, it is vital
for static analysis tools not only to find many complex bugs, but also to assure that the
majority of those are not false positives.

Unlike static program analysis, traditional software model checking has established
methods in dealing with abstractions and false positives, which are referred to as spu-
rious counter-examples. One particular prominent methods is counter-example guided



abstraction refinement (CEGAR) [6]. In the world of static program analysis, how-
ever, there is no good notion of automatic iterative refinement. Moreover, CEGAR ap-
proaches typically refine in each iteration the whole program/function under consider-
ation and re-run the analysis on the new model, which can often be costly.

In this work we adopt some ideas from such established techniques, but take a sig-
nificantly different approach. The individual key insights and contributions are:

1. We define static program analysis problems in terms of syntactic model checking
problems. In this context a bug is a violation of a syntactic model checking formula
resulting in a counter-example.

2. We symbolically evaluate the feasibility of such a counter-example on a low-level
program semantics using an SMT solver. If the counter-example path is infeasible
we compute slices of this path that are the cause for its infeasibility and we construct
an observer automaton that excludes all paths with the same cause.

3. Unlike in CEGAR we do not refine the whole model, but only add the observer
automaton to the original model. We repeat the procedure until either all counter-
examples are eliminated or a bug is found that could not be eliminated.

We evaluate our approach by applying it to a number of case studies from the NIST SA-
MATE program [23] and show that most of the relevant false positives can be efficiently
removed using the proposed method.

Outline. In Sect. 2 we give a high-level introduction and overview of our model check-
ing approach to static analysis as well as the ideas of the refinement loop using observers
to exclude infeasible paths. We provide more details on computing infeasible sub-paths
in Sect. 3 and on the construction of the observers for language refinement in Sect. 4.
This is followed by large scale experiments in Sect. 5. Related work is discussed in
Sect. 6. Finally, we conclude with an outlook to future work in Sect. 7.

2 Syntactic Model Checking and Language Refinement

In this section we describe our model checking approach to static program analysis and
explain the key concepts of our false positive elimination procedure. The idea of using
model checking for static program analysis has first been introduced by Steffen and
Schmidt [24], discussing how data flow analysis problems can be expressed in modal
µ-calculus. This has later been expanded and further developed in [18,8,19].

The main idea is to abstractly represent a program (or a single function) by its
control flow graph (CFG) annotated with labels representing propositions of interest.
Example propositions are whether memory is allocated or freed in a particular location,
whether a pointer variable is assigned null or whether it is dereferenced. In this way
the possible infinite state space of a program is reduced to the finite set of locations and
their propositions.

The annotated CFG consisting of the transition system and the (atomic) proposition
can then be transformed into the input language of a model checker. Static analysis
bug patterns can be formulated in a temporal logic and evaluated automatically by the
model checker. As the annotated CFG discards most of the program semantics apart

2



void foo() {
l0 : int x, *a;
l1 : int* p=malloc(sizeof(int));

for(l2 : x = 10; l3 : x > 0; l7 : x--) {
l4 : a = p;
l5 : if(x == 1)

l6 : free(p);
}

}

l0

l1 mallocp

l2

l3

l4 usedp

l5

l6freep
l7

l8

Fig. 1. Example of an annotated CFG for a function foo. The locations are also annotated in the
listing.

from the annotations and reduces a program to its syntactical structure the approach is
called syntactic model checking [13].

To illustrate the approach, we use a contrived function foo shown in Fig. 1. It works
as follows: First a pointer variable p is initialized and memory is allocated accordingly.
Then, in a loop, a second pointer variable a is assigned the address saved in p. After
the tenth assignment p is freed and the loop is left.

To automatically check whether the memory allocated for p is still accessed after
it is freed (a use-after-free in static analysis terms) we define atomic propositions for
allocating memory mallocp, freeing memory freep and accessing memory usedp, and
we label the CFG accordingly. The above check can now be expressed in CTL as:

AG(mallocp ⇒ AG(freep ⇒ ¬EFusedp))

This means, whenever memory is allocated, after a free there is no occurrence of
a used . Note that once a check has been expressed in CTL, the proposition can be
generically pre-defined as a template of syntactic tree patterns on the abstract syntax
tree of the code and determined automatically. Hence, it is possible to automatically
check a wide range of programs for the same requirement.

2.1 False Positive Detection

Model checking the above property for the model depicted in Fig. 1 will find a violation
and return a counter-example. The following path denoted by the sequence of locations
is such a counter-example: l0, l1, l2, l3, l4, l5, l6, l7, l3, l4, l5.

However, if we match up the counter-example in the abstraction with the concrete
program, we see that this path cannot possibly be executed, as the condition x == 1
cannot be true in the first loop iteration and, therefore, l5 to l6 cannot be taken. This

3



Fig. 2. Parallel composition of observers with original model

means, the counter-example is spurious and should be discarded. We might get a dif-
ferent counter-example in the last loop iteration . . . , l5, l6, l7, l3, l4, l5. But again, such a
counter-example would be spurious, because once the condition x == 1 holds, the loop
condition prevents any further iteration.

To detect the validity of a counter-example we subject the path to a fine-grained
simulation using an SMT solver. In essence, we perform a backward simulation of the
path computing the weakest precondition. If the precondition for the initial state of the
path is unsatisfiable, the path is infeasible and the counter-example spurious.

2.2 Observer Computation

Once we identified a counter-example as being spurious we know that this particular
path is infeasible, but that does not mean there are no other counter-examples for the
same property. Therefore, we need to rerun the check on a refined model to see if there
are other counter-examples. To get a refined model we construct a set of observer au-
tomata that have the following properties:

1. The observers can be run with the original abstract model, but they restrict the ab-
stract model by excluding the previously computed infeasible paths.

2. The observers are based on the minimal infeasible sub-paths of a counter-example.
This means, we do not need to encode each infeasible path individually, but only
the set of statements that are unsatisfiable. As an example consider the assignment
x = 10 and the condition x == 1. Any path through these two statements, and not
modifying x in between, will be infeasible. Hence, an observer monitoring the sub-
path can be sufficient for ruling out many paths simultaneously.

Fig. 2 schematically illustrates the idea of running the original model with a set of
observers that each represent a minimal reason for paths being infeasible. We require
that in the newly composed model no observer can reach its final state, i.e., all infeasible
sub-paths are excluded.

2.3 Refinement Loop

After constructing the observers based on the infeasible sub-paths, the original abstract
model can be rerun to see if there are other possible counter-examples. The full path
refinement loop is presented in Fig. 3. The refinement loop successively constructs new
observers for new infeasible paths and extends the original model accordingly. There
are two termination conditions: Firstly, we terminate whenever no bug in a program is
found, i.e., there is no counter-example in the (extended) model. Secondly, we terminate
when a path cannot be discharged as infeasible. There are two reasons for the latter:

4



Fig. 3. Counter-example guided path refinement loop

Either we found a genuine bug or our program semantics encoded in the SMT solver
does not model certain aspects that are necessary to dismiss a path.

There are a few things worth noting: As we will see in the subsequent section we
cover a wide variety of aspects in the C semantics including pointer aliasing. However,
some constructs such as function pointers are not taken into account. In our experience,
however, these program constructs are rarely the cause of false positives. Moreover,
while in the worst case we have to construct one observer for every infeasible path and
there might be an exponential number of infeasible paths w.r.t. the number of condi-
tional statements in a program, in practice we found the number of required observers
quite small. For most real-life cases the abstraction refinement loop terminates after two
or three iterations.

2.4 A Word on SMT Solvers

In general, SMT solving tackles the satisfiability of first-order formulae modulo back-
ground theories. The approach presented in this paper is largely independent of the par-
ticular SMT solver used. However, for the experiments and our examples, we require
a minimum set of theories including uninterpreted functions, linear integer arithmetic
and the theory of arrays, and we consider the SMT solver to support infeasible core
computation.

Using additional theories can improve the overall precision of the presented ap-
proach for a potential penalty in runtime. We discuss the results with the given sets of
theories in Sect. 5.

3 Computing Reasons for Infeasible Paths

For the path reduction refinement loop we have to identify infeasible paths. Moreover,
we are interested in a small sequence of statements that explains why a path is infeasi-
ble. Such an explanation will allow us to exclude all paths with that infeasible sequence
of statements. For instance, in the path through l0, l1, l2, l3, l4, l5, l6, l7, l3, l4 of foo in
Fig. 1 not all statements are contributing to it being infeasible, but only l2 : x = 10

5



and (l5, l6) : x == 1. We call the sequence of edges (l2, l3), (l3, l4), (l4, l5), (l5, l6) an
infeasible sub-path.

Next, we explain how to detect infeasible paths in a C program by means of satisfi-
ability checking of weakest preconditions using an SMT solver. Moreover, we provide
a strategy to efficiently compute an infeasible sub-path from an infeasible path, which
enables the construction of an efficient observer.

3.1 Detecting Infeasible Paths

For checking the feasibility of a path we first collect the sequence of statements in
that path along the CFG. Moreover, we encode branching decisions along that path
as assertions in the sequence of statements, resulting in a straight-line program. Next,
we compute the weakest precondition for this straight-line program. The SMT solver
might return that the weakest precondition is unsatisfiable, i.e., that the path cannot be
executed and, therefore, is infeasible. In the following we provide the basic ideas for
modeling program statements, their semantics and the representation in an SMT solver.
The full details of the underlying semantics and the memory model can be found in
[21].

Path programs. Computing the straight-line program corresponding to a path through
the CFG amounts to collecting the sequence of assignments and function calls taken on
the path. Additionally, assert statements record what must be true at a point of execution
to follow the path through control-flow statements, like taking the then-branch of an if.
For example, the path (l2, l3), (l3, l4), (l4, l5), (l5, l6), (l6, l7) of the CFG of foo in Fig. 1
is represented by the path program

x = 10; assert(x > 0); a = p; assert(x == 1); free(p);

More formally, a path program is a sequence of statements s containing expres-
sions e . A statement can be e1 = e2; for assignments, assert(e); for checking a
(boolean) condition and f (e1, . . ., en); respectively e0 = f (e1, . . ., en); for
function calls (optionally assigning the return value). In our approach, an expression
may be almost any valid C-expression [20] including pointers and using structs.
Currently, however, we do not support function pointers, and string literals are treated
as fresh pointer variables. We make the simplifying assumption that identifiers, i.e.,
program variables and field names of structs are globally unique.

Weakest precondition. The set of states from which a path program can be executed
without violating any assertion is given by the weakest precondition of the path program
w.r.t. the trivial postcondition true . Generally, the weakest precondition wp(p, ψ) of a
path program p w.r.t. a condition ψ on states is given by a condition ϕ which is satisfied
by exactly those states from which an execution of p terminates in a state satisfying
ψ. In particular, wp(assert(e);, ψ) is equivalent to e ∧ ψ, indeed asserting that e must
already hold.

The computed formula wp(p, true) characterizing successful executability of p will
be handed to an SMT solver for checking unsatisfiability. However, we will not always

6



be able to represent executability faithfully in terms of a full C-semantics, but may
have to use safe approximations. These approximations have to ensure (under certain
assumptions) that the unsatisfiability of wp(p, true) implies that p is not executable.

In particular, our definition of wp is based on a simple memory model that allows
a good precision even in the presence of variable aliasing and basic pointer arithmetic.
The memory model is similar to the one described by Burstall [5]. The main idea is to
have a separate store, represented by a separate variable, for each primitive data type.
We use a simple type system consisting of primitive types like integers and pointer types
as well as struct-like composite types. Each store is again segmented into partitions,
one for each field of a struct and a distinguished partition for data that is not part
of a struct. The rationale behind this kind of model is that by introducing logical
structure such as distinct memories we achieve the property that certain aliasing is not
possible, such as aliasing between variables of different types or between different fields
of a struct. Properties that we do not get by construction are enforced by axioms. An
example for such an axiom is that local variables do not alias.

The memory model can be easily encoded in a language for SMT solvers. In our
experiments we used the theory of arrays [25]. The theory provides two operations:
access(m, a) (sometimes called read or select) to access the value of an array m at
location a and update(m, a, v) (sometimes called write or store) to get a version of
m that is updated at location a with value v . Using the theory of arrays, the memory
model can be represented as an array with tuples (containing a partition name and a
location) as indices.

To illustrate the use of the memory model in the semantics we consider a simple
assignment x = v, where the value of local variable x of type τ is assigned the value of
a local variable v, also of type τ . The wp semantics in this case is

wp(x = v, ϕ) = ϕ{Mτ 7→ update(Mτ , loc(x), v)} ∧ v = access(Mτ , loc(v))

where Mτ is the memory variable for τ and loc is a function mapping a variable name
to a location (i.e. partition and index).

A problem with regard to the definition of wp are function calls. We currently do
not consider the true effect of called functions but approximate the effect by assuming
that only those locations in the memory are touched that are explicitly passed as a
pointer. An exception in this regard is the malloc function. As it is central to handle
pointers sufficiently precise we use axioms to specify its semantics. An example for
such an axiom is that malloc always returns a fresh memory location which is not
aliasing with any other. On the other hand, no special axioms are needed for free,
disregarding whether its argument points to allocated memory.

Infeasible Paths. Based on the weakest precondition semantics, infeasibility follows
naturally as: A path through the CFG is called infeasible if wp(p, true) for its corre-
sponding path program p is unsatisfiable.

For example, the path (l2, l3), . . . , (l6, l7) from above is infeasible since

wp(x = 10; assert(x > 0); a = p; assert(x == 1); free(p);, true)

is unsatisfiable due to incompatibility of x = 10 and x == 1. Next, we explain how to
identify shorter sub-paths capturing the relevant causes for infeasible paths.

7



3.2 Computing Infeasible Sub-Paths

The general idea of this work is to create observes to exclude infeasible paths in static
program analysis. We like, however, to avoid to generate one observer for each path.
Instead, we like to identify sub-paths that capture unsatisfiable inconsistencies. Exclud-
ing these sub-paths might, therefore, exclude a wide set of paths passing through those
fragments and, as a result, one observer will be able to exclude many infeasible paths
at once.

For instance, the path (l2, l3), . . . , (l6, l7) above shows that with respect to infeasi-
bility it is irrelevant how an execution reaches l2 : x = 10 and how it continues after
(l5, l6) : assert(x == 1);: Due to the incompatibility of x = 10 and x == 1 on that
path, any path containing (l2, l3), (l3, l4), (l4, l5), (l5, l6) as a sub-path is infeasible.

Generally, let us say that path π′ is a sub-path of path π and π includes π′ if π is of
the form π0 π

′ π1 for some (possibly empty) paths π0 and π1. This leads to:

Proposition 1. Every path including an infeasible sub-path is infeasible.

Thus, if we find an infeasible sub-path in a counter-example path, we can exclude all
paths that include this sub-path. We can compute the infeasible sub-paths by computing
the unsatisfiable sub-formulae of the weakest precondition and identifying the locations
in the CFG from which the sub-formulae originate.

SMT solvers usually can be instructed to deliver an unsatisfiable sub-formula. It
is advantageous to identify small unsatisfiable sub-formulae leading to short infeasible
sub-paths, thus allowing to exclude potentially more paths. However, finding all mini-
mal unsatisfiable sub-formulae requires exponentially many calls to the SMT solver in
the worst case (for algorithms see, e.g., [9] and [22]). We therefore heuristically enu-
merate unsatisfiable sub-formulae using the solver and employ an exponential algorithm
only to minimize these.

4 Observer Construction and Refinement

In this section we formally define how to construct observers based on sub-paths. More-
over, we show to compose the observers with the original model in a refinement loop
for eliminating false positives.

In short, for the observer construction we view a CFG as a finite automaton that
accepts paths as sequences of edges through the CFG as words. From an infeasible sub-
path we construct an “observing” finite non-deterministic automaton. The language of
this observing automaton is the set of paths, which include the infeasible sub-path.
We consider the synchronous product of the CFG automaton and the complemented
observing automaton where synchronization is on the shared alphabet, i.e., the edges.
This product automaton accepts exactly those paths as sequences of edges that do not
show an infeasible sub-path.

4.1 Representing Programs as Automata

We rely on the conventional notion of a finite (non-deterministic) automaton M = (A,
S ,R, I ,F ) consisting of an alphabet A, a finite set of states S , a transition relation

8



l0

l1 mallocp

l2

l3

l4 usedp

l5

l6freep
l7

l8

(l0, l1)

(l1, l2)

(l2, l3)

(l3, l4)

(l4, l5)

(l5, l6)

(l5, l7)

(l6, l7)

(l3, l8)

(l7 ,l3 )

Fig. 4. CFG automaton for the function foo. The dashed edges represent an infeasible sub-path.

T ⊆ S × A × S , a set of initial states I ⊆ S , and a set of final states F ⊆ S . The
words accepted by M are denoted by L(M ). We write M × N for the synchronous
product of the finite automata M and N over the same alphabet; then L(M × N ) =
L(M ) ∩ L(N ) holds. The finite automaton yielding language complement is denoted
by M c, i.e., L(M c) = A∗ \ L(M ) where A is the alphabet of M .

A CFG can naturally be regarded as such a finite automaton with the states being
the locations. For the alphabet we choose pairs of locations(l , l ′), i.e., making the edges
of the CFG “observable”. The transition relation of the automaton just follows from the
CFG. All the states are both initial and final to capture arbitrary sub-paths in the CFG.

Definition 1 (CFG Automaton). For a CFG with locations L and edges E ⊆ L×L, its
corresponding CFG automaton is the finite automaton given by (E ,L,T ,L,L), where
the alphabet is the set of edges E , the states are the locations L, the transition relation
is T = {(l , (l , l ′), l ′) | (l , l ′) ∈ E}, and all states are both initial and final.

The words accepted by a CFG automaton correspond exactly to the paths as se-
quences of control-flow edges through the CFG. Therefore, we will also call these ac-
cepted words “paths”. The CFG automaton for the function foo is shown in Fig. 4.

A CFG automaton can also be directly used for model-checking, as the annotations
of the CFG such as mallocp can be interpreted as predicates over its states. For foo we
would define mallocp ≡ l1 or usedx ≡ l3 ∨ l5.

4.2 Computing Observers from Counter-examples

If the model checking procedure yields a counter-example as a path through a CFG
automaton, which is infeasible, we want to exclude this path in further model check-
ing runs. In fact, the notion of infeasible sub-paths allows us to exclude all paths
that include some infeasible sub-path due to Prop. 1. Consider, for example, the

9



CFG automaton in Fig. 4. The dashed edges represent an infeasible sub-path π =
(l5, l6), (l6, l7), (l7, l3), (l3, l4) of an infeasible counter-example reported by the model
checker. We can not only exclude π but also a path that represents a two-fold loop iter-
ation and then continues like before. On the other hand, we cannot exclude a path that
has (l5, l7) instead of (l5, l6), (l6, l7).

For a sub-path π accepted by the CFG automaton, we construct an automaton that
accepts exactly those paths π′ for which π is a sub-path. We define:

Definition 2 (Observer). Let P be a CFG automaton with alphabet E and let π =
e1 . . . ek be a path accepted by P . The CFG observer automaton Obs(E , π) is the au-
tomaton (E ,SObs ,T ,S0,F ), where

– SObs is the set of states {s1, . . . , sk−1} ∪ {Init, Infeasible}.
– T ⊆ SObs × E × SObs is the transition relation. A triple (s, e, s ′) is in the relation

if and only if one of the following holds:
1. s = Init and s ′ = Init and e 6= e1
2. s = si and s ′ = si+1 and e = ei+1 and 1 ≤ i ≤ k − 2
3. s = sk−1 and s ′ = Infeasible and e = ek
4. s 6= Infeasible and s ′ = s1 and e = e1
5. s = si and s ′ = Init and e ∈ E \ {e1, ei+1} and 1 ≤ i ≤ k − 1
6. s = Infeasible and s ′ = Infeasible

– S0 = {Init} is the set of initial states.
– F = {Infeasible} is the set of final states.

The rationale for the particular choice of the observer’s components is as follows:
The states mirror how much of π has already been observed on a run without interrup-
tion. When the observer is in state Init, nothing has been observed at all or a part of
π has been observed, but then the sequence was interrupted. If the observer is in state
Infeasible the whole path π has already been observed, which means no matter how
the program model continues, the current run already represents an infeasible path. If
the automaton is in state si , we know π has been observed until and including ei . The
transition relation reacts to an edge on the run:

1. As long as the initial edge e1 of π has not been observed, the observer needs to stay
in Init.

2. If the observer has already observed the first i edges of π and now observes the next
edge ei+1 it proceeds one step further, as long as ei+1 is not the last edge of π.

3. If the situation is as in (2) but ei+1 is the last edge of π, the observer transitions to
Infeasible.

4. It may happen that the observer already is in state sj when another sequence of π
starts. Intuitively, π is interrupted by itself. Therefore the observer may transition to
s1 as soon as it observes e1, even if it is currently in some sj .

5. If the sequence is interrupted in a different way, the observer returns to Init.
6. As soon as the observer is in state Infeasible, it remains there forever.

Example 1. We illustrate the observer construction with our running example. Re-
garding the CFG automaton of the function foo, a path containing the sub-path

10



π = (l5, l6), (l6, l7), (l7, l3), (l3, l4) is infeasible. The constructed observer automaton
is depicted in Fig. 5. As soon as it observes the sequence π it enters state Infeasible and
remains there forever. If the sequence is interrupted, it either returns to Init or, if the
interruption equals (l5, l6) as the first edge of π, it returns to s1. Hence, as long as the
observer is not in state Infeasible the sequence π has not been observed completely. As
Infeasible is the only accepting state, the observer only accepts paths that contain π, i.e.,
infeasible paths.

Init s1 s2 s3 Infeasible
(l5, l6) (l6, l7) (l7, l3) (l3, l4)

(l5, l6)

(l5, l6)

Fig. 5. Observer automaton for infeasible path of Example 1. Unlabeled edges mean “any other”.

Let π denote a path accepted by a CFG automaton P with the alphabet E of control-
flow edges and let P(π) be the set of paths in E∗ including π. By construction, we have
P(π) = L(Obs(E , π)), that is, the words accepted by Obs(E , π) are exactly the paths
including π. Furthermore,

L(P ×Obs(E , π)c) = L(P) ∩ L(Obs(E , π)c) =

L(P) ∩ (E∗ \ L(Obs(E , π))) = L(P) ∩ (E∗ \ P(π)) .

Thus by applying Prop. 1, that all paths including an infeasible sub-path are infeasible,
we get

Proposition 2. Let P be a CFG automaton P with alphabet E and let π be an infea-
sible path of P . Then the CFG automaton resulting from the synchronous product of P
and Obs(E ,w) excludes the infeasible paths that include π.

4.3 Implementing Observers

The observer is in general non-deterministic. Computing the complement of a non-
deterministic automaton would involve first creating its deterministic equivalent, which
can have exponential size compared with the non-deterministic automaton. We avoid
directly constructing the complement of the observer and instead implement the com-
plementation by adding a fairness constraint in the model checker [14]. The fairness
constraint in our case forbids that the observer enters state Infeasible. Although fair
CTL model checking is more complex than regular CTL model checking, it works well
in our experiments, as the next section shows.

11



5 Experiments

In this section we report on the implementation of the aforementioned false positive
elimination techniques as well of analysis results from representative, large code bases.
All the experimental data has been obtained from projects and benchmarks provided by
NIST and the Department of Homeland Security for the 2010 and 2011 Static Anal-
ysis Tool Exposition (SATE) [23]. The experiments show that the proposed solution
provides a significant decrease in false positives while only moderately increasing the
overall runtime.

5.1 Implementation

We implemented a prototype of the SMT-based path reduction approach in our static
analysis tool Goanna4. Goanna is a state-of-the-art static analysis tool for bug detection
and security vulnerability analysis of industrial C/C++ programs. It is available both for
academic as well as for commercial use. Currently, Goanna support around 150 classes
of different checks ranging from memory leak detection and null -pointer dereferences
to the correct usage of copy control in C++ as well as buffer overruns.

The Goanna tool itself as well as the new false positive elimination procedure is
implemented in the functional programming language OCaml. For the infeasible path
detection in our experiments we are using the Z3 SMT solver [10]. The main reasons for
choosing Z3 has been its support for the computation of unsatisfiable subformulae, the
good level of documentation and the fact that Z3 provides an OCaml interface enabling
a quick prototyping.

5.2 Experimental Evaluation

As representative test beds for our experiments we choose the two main open source
projects from the NIST SATE 2010 and 2011 exposition: Wireshark 1.2.9 and Dove-
cot 2.0 beta6. Wireshark is a network protocol analyzer consisting of around 1.4MLoc
of pure C/C++ code that expand to roughly 16MLoc after pre-processing (macro ex-
pansions, header file inclusion etc.). Dovecot is a secure IMAP and POP3 server that
consists of around 170KLoc of pure C/C++ code expanding to 1.25MLoc after prepro-
cessing. We experimented with other in-house industrial code of different sizes as well
and obtained very similar results as for the two mentioned projects.

The evaluation was performed on a DELL PowerEdge SC1425 server, with an Intel
Xeon processor running at 3.4GHz, 2MB L2 cache and 1.5GB DDR-2 400MHz ECC
memory.

False Positive Removal Rates. As mentioned earlier, Goanna performs a source code
analysis for around 150 classes of checks. However, not all checks are path-sensitive,
i.e., some checks only require tree-pattern matching, and of those checks that are path-
sensitive not all are amendable to false path elimination. The reasons are as follows:
Certain path-sensitive checks such as detecting unreachable code already state that there

4 http://www.nicta.com.au/goanna

12



Table 1. False Positive Detection Rate for Wireshark and Dovecot

Wireshark 1.2.9 Dovecot 2.0 beta6
lines of code 1, 368, 222 167, 943
after pre-processing 16, 497, 375 1, 251, 327
number of functions 52, 632 5, 256
issued warnings 98 75
false positives removed 48 38
% removed warnings 49.0% 50.6%
correctly identified false positives 48 (100%) 38 (100%)

Table 2. Runtime Performance for False-Positive Elimination

Wireshark 1.2.9 Dovecot 2.0 beta6
total running time (no timeout) 8815s 1025s
time spent in refinement loop 1332s (15%) 302s (29.5%)
% of time in SMT 10.5% 12.2%
% of time in model checking 87.5% 86.3%
number of Goanna timeouts 12 1
number of SMT loops exceeding (20) 11 3
number of SMT solver timeouts 0 5

is no path satisfying a certain requirement. Hence, removing infeasible paths will not
change the results. A similar examples is having no path where a free() occurs af-
ter a malloc() and alike. The results below only include checks where false path
elimination can alter the analysis results.

The false positive elimination results for Wireshark and Dovecot are summarized
in Table 1. For Wireshark, our original Goanna implementation detected 98 relevant
path-sensitive issues. Running Goanna with the new SMT-based false path elimination
approach removed 48 issues. This means, around 49% of the produced warnings were
eliminated fully automatically. We manually investigated all of the removed warnings
and were able to confirm that these were indeed all false positives.

The results for Dovecot are very similar to the Wireshark results. The original im-
plementation raised 75 warnings and we were able to automatically identify 38 of those
warnings as false positives. This means, the number of warnings was reduced by 50.6%.
Again, all the automatically removed warnings were confirmed false positives.

For both projects, we investigated the remaining issues manually in detail. There
were several remaining false positives for various reasons: Due to the incompleteness
of the procedure, e.g., missing further knowledge about functions calls, a path could not
be identified as infeasible. Another reason is that we imposed a loop limit of 20 refine-
ment iterations. Sometimes this limit was reached before a warning could be refuted.
This happened 11 times in Wireshark, but only 3 times in Dovecot. As a side note, as
discussed in [15], there are in general various reasons for false positives and often addi-
tional context information known to the developer is the key for refuting false positives.
Moreover, it is worth noting that for path-insensitive checks (e.g., pattern matching)
false positives tend to be much lower or even zero.

13



Run-time Performance. The runtime results for the experiments are shown in Table 2.
For the experiment we introduced timeouts both in Goanna as a whole as well as the
SMT solver. For Goanna including the SMT path reduction loop an upper limit of 120s
per file was set and in the SMT solver of 2s per solving. Moreover, we limited the
maximum depth of SMT loops by 20. The timeouts, however, were only triggered very
sporadically: Goanna timeouts occurred 12 times in Wireshark and once in Dovecot,
which in both projects accounts for roughly 0.02% of all functions. Loop limits were
reached similarly often and SMT timeouts occurred never in Wireshark and 5 times in
Dovecot. In the remainder the analysis results are based on all non-timeout runs.

As shown in Table 2 the overall runtime for Wireshark was around two and a
half hours, for Dovecot around 17min. In Wireshark for checks that can be improved
through false path elimination around 15% of the runtime was spent in the SMT re-
finement loop. For the same objective the overhead in Dovecot was slightly higher with
around 30%.

Interestingly, the vast majority of the overhead time is spent in the repeated model
checking procedure rather than the SMT solving. Although the additional observers
increase the state space in theory, the reachable state space will always be smaller
than in the original model, since the observers constrain the set of reachable states. We
have since then identified unnecessary overheads in our model checking procedure that
should reduce the overall runtime in the future. However, given the value of a greatly
reduced number of false positives, which can otherwise cost many engineering hours
to identify, we believe that a run-time overhead of 15%–30% is already acceptable in
practice; especially, if it equates to around 22min in over one million lines of C/C++
code.

6 Related Work

Counter-example based path refinement with observers for static program analysis has
been introduced by Fehnker et al. [14]. This work was based on using interval abstract
interpretation to refute infeasible paths. While fast, it was limited to simple root causes
for infeasible paths and much less precise than the SMT approach in this work. On
the other hand, the application of predicate abstraction in conjunction with on-demand
refinement has long been present in the CEGAR [6] approach and is used in many
software model checkers such as SLAM [17] and BLAST [4,3]. This approach refines
the whole model iteratively instead of eliminating sets of paths and using observers to
learn from it. To an extend a comparison of both approaches is still outstanding given
their origin from different domains, namely static analysis and software mode checking.

The detection of infeasible paths and its use for program analysis has been explored
by other authors, as well. Balakrishnan et al. [2] use this technique in the context of
abstract interpretation. Delahaye et al. [11] present a technique how to generalize infea-
sible paths. However they have not investigated its use in static analysis. Yang et al. [26]
propose the use of SMT solvers to remove infeasible paths by Dynamic Path Reduc-
tion. However, the work only addresses programs without pointers employing standard
weakest precondition and it is not aimed at false positive elimination. Harris et al. [16]
describe a way to do program analysis by enumerating path programs. In contrast to

14



our work they are not in a model-checking setting and their approach is not driven by
counter-examples, as ours is.

Finally there are many examples of using SMT solvers in the realm of software
model checking, e.g., as reasoning engine for bounded model checking [1,7].

7 Conclusions and Future Work

We have introduced a novel approach to reducing false positives in static program anal-
ysis. By treating static analysis as a syntactical model checking problem, we make static
analysis amendable to an automata-based language refinement. Moreover, unlike tradi-
tional CEGAR approaches we create observer automata that exclude infeasible sub-
paths. The observers are computed based on a weakest precondition semantics using an
SMT solver. We have shown that the approach works very well in practice and reduces
almost all relevant false positives.

Future work will further explore the limits of false positive removal. We plan to
investigate if more expensive SMT theories will lead to more false positive removals
or if in fact there are hardly any cases where this is necessary. Also, we will focus on
further comparison with existing software model checking approaches and investigate
if we can “outsource” some false positive removal directly to a software model checker
without much runtime penalty.

References

1. A. Armando, J. Mantovani, and L. Platania. Bounded Model Checking of Software Using
SMT Solvers Instead of SAT Solvers. Int. J. Softw. Tools Techn. Transf., 11(1):69–83, 2009.

2. G. Balakrishnan, S. Sankaranarayanan, F. Ivani, O. Wei, and A. Gupta. SLR: Path-Sensitive
Analysis through Infeasible-Path Detection and Syntactic Language Refinement. In Proc.
15th Int. Symp. Static Analysis (SAS’08), volume 5079 of Lect. Notes Comp. Sci., pages 238–
254. Springer, 2008.

3. T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic Predicate Abstraction of C
Programs. In Proc. 2001 ACM SIGPLAN Conf. Programming Language Design and Imple-
mentation (PLDI’01), pages 203–213. ACM, 2001.

4. T. Ball and S. Rajamani. The SLAM Toolkit. In Proc. 13th Int. Conf. Computer Aided
Verification (CAV’01), volume 2102 of Lect. Notes Comp. Sci., pages 260–264. Springer,
2001.

5. R. Burstall. Some Techniques for Proving Correctness of Programs which Alter Data Struc-
tures. Mach. Intell., 7:23–50, 1972.

6. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided Abstraction
Refinement. In Proc. 12th Int. Conf. Computer Aided Verification (CAV’00), volume 1855 of
Lect. Notes Comp. Sci., pages 154–169. Springer, 2000.

7. L. Cordeiro, B. Fischer, and J. Marques-Silva. SMT-Based Bounded Model Checking for
Embedded ANSI-C Software. In Proc. 24th IEEE/ACM Int. Conf. Automated Software En-
gineering (ASE’09), pages 137–148. IEEE, 2009.

8. D. R. Dams and K. S. Namjoshi. Orion: High-Precision Methods for Static Error Analysis
of C and C++ Programs. In Rev. Lect. 4th Int. Sympl. Formal Methods for Components
and Objects (FMCO’05), volume 4111 of Lect. Notes Comp. Sci., pages 138–160. Springer,
2006.

15



9. M. de la Banda, P. Stuckey, and J. Wazny. Finding All Minimal Unsatisfiable Subsets. In
Proc. 5th Int. ACM SIGPLAN Conf. Principles and Practice of Declarative Programming
(PPDP’03), pages 32–43. ACM, 2003.

10. L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proc. 14th Int. Conf. Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’08), volume 4963 of
Lect. Notes Comp. Sci., pages 337–340. Springer, 2008.

11. M. Delahaye, B. Botella, and A. Gotlieb. Explanation-Based Generalization of Infeasible
Path. In Proc. 3rd Int. Conf. Software Testing, Verification and Validation (ICST’10), pages
215–224. IEEE, 2010.

12. V. D’Silva, D. Kroening, and G. Weissenbacher. A Survey of Automated Techniques for
Formal Software Verification. IEEE Trans. CAD Integ. Circ. Syst., 27(7):1165–1178, 2008.

13. A. Fehnker, R. Huuck, P. Jayet, M. Lussenburg, and F. Rauch. Model Checking Software at
Compile Time. In Proc. 1st Joint IEEE/IFIP Symp. Theoretical Aspects of Software Engi-
neering (TASE’07), pages 45–56. IEEE, 2007.

14. A. Fehnker, R. Huuck, and S. Seefried. Counterexample Guided Path Reduction for Static
Program Analysis. In D. Dams, U. Hannemann, and M. Steffen, editors, Concurrency, Com-
positionality, and Correctness: Essays in Honor of Willem-Paul de Roever, volume 5930 of
Lect. Notes Comp. Sci., pages 322–341. Springer, 2010.

15. A. Fehnker, R. Huuck, S. Seefried, and M. Tapp. Fade to Grey: Tuning Static Program
Analysis. In Proc. 3rd Int. Wsh. Harnessing Theories for Tool Support in Software (TTSS’09),
pages 38–51. UNU-IIST, 2009.

16. W. R. Harris, S. Sankaranarayanan, F. Ivančić, and A. Gupta. Program Analysis via Satis-
fiability Modulo Path Programs. In Proc. 37th ACM SIGPLAN-SICACT Symp. Principles of
Programming Languages (POPL’10), pages 71–82. ACM, 2010.

17. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software Verification with BLAST. In
Proc. 10th Int. Wsh. SPIN (SPIN’03), volume 2648 of Lect. Notes Comp. Sci., pages 235–239.
Springer, 2003.

18. G. J. Holzmann. Static Source Code Checking for User-Defined Properties. In Proc. 6th

World Conf. Integrated Design and Process Technology (IDPT’02). SDPS, 2002.
19. R. Huuck, A. Fehnker, and S. Seefried. Goanna: Syntactic Software Model Checking. In

Proc. 6th Int. Symp. Automated Technology for Verfication and Analysis (ATVA’08), volume
5311 of Lect. Notes Comp. Sci., pages 216–221. Springer, 2008.

20. ISO/IEC. ISO/IEC 9899:2011 Information Technology – Programming Languages – C. ISO,
Genève, 2011.

21. M. Junker. Using SMT Solvers for False Positive Elimination in Static Program Analysis,
2010. http://www4.in.tum.de/˜junkerm/publications/thesis.pdf.

22. M. H. Liffiton and K. A. Sakallah. On Finding All Minimally Unsatisfiable Subformulas. In
Proc. 8th Int. Conf. Theory and Applications of Satisfiability Testing (SAT’05), volume 3569
of Lect. Notes Comp. Sci., pages 173–186. Springer, 2005.

23. V. Okun, A. Delaitre, and P. E. Black, editors. Report on the Third Static Analysis Tool
Exposition (SATE 2010). SP-500-283, U.S. Nat. Inst. Stand. Techn., 2011.

24. D. A. Schmidt and B. Steffen. Program Analysis as Model Checking of Abstract Interpre-
tations. In Proc. 5th Int. Symp. Static Analysis (SAS’98), volume 1503 of Lect. Notes Comp.
Sci., pages 351–380. Springer, 1998.

25. A. Stump, C. Barrett, D. Dill, and J. Levitt. A Decision Procedure for an Extensional Theory
of Arrays. In Proc. 16th Ann. IEEE Symp. Logic in Computer Science (LICS’01), pages
29–37. IEEE, 2001.

26. Z. Yang, B. Al-Rawi, K. Sakallah, X. Huang, S. Smolka, and R. Grosu. Dynamic Path
Reduction for Software Model Checking. In Proc. 7th Int. Conf. Integrated Formal Methods
(IFM’09), volume 5423 of Lect. Notes Comp. Sci., pages 322–336. Springer, 2009.

16


