

Abstract—There are many virtual payment systems available to

conduct micropayments. It is essential that the protocols satisfy the
highest standards of correctness. This paper examines the Netpay
Protocol [3], provide its formalization as automata model, and prove
two important correctness properties, namely absence of deadlock
and validity of an ecoin during the execution of the protocol. This
paper assumes a cooperative customer and will prove that the
protocol is executing according to its description.

Keywords—Model, Verification, Micropayment.

I. INTRODUCTION
YSTEM verification techniques’ are nowadays applied to
the design of many ICT systems. Correctness is

particularly important for payments systems, such as Netpay.
Netpay is a virtual payment protocol for small purchases,
typically on the internet. With the increase of paid services
and content on the internet, these online payment system
promise the ease of using cash. There are alternatives to credit
card based systems, which cannot be used due to their high
cost per transaction. Mircopayment systems for online
payments that have been proposed in recent years are Netpay
as described in [1],[2] and [3], Millicent [4], Micro-mint [5],
Payword [5], MiniPay [6], Micro-iKP [7] and POPCORN [8].

This paper models the Netpay protocol [1] using automata,
in particular the syntax of interface automata, which
distinguishes nicely between inputs and outputs. We will use
this model to show two essential properties: First, that the
different components cannot block actions of other
components indefinitely. This is a fairness type property,
which ensures that the protocol will progress. Second, we will
show that electronic money called ecoins, will remain valid
throughout, i.e. that there exists a chain of trust that links any
ecoin to a trusted broker, even if, for the sake of anonymity,
this chain is not stored explicitly by the protocol. The model in
this paper covers the handling of ecoins, and omits the parts of
the protocol that are concerned with spend redeeming ecoins.
For the properties under consideration, it was not necessary to
include these parts.

The next section of this paper will introduce automata
model that we will use for modeling and verification. Section
III will give an overview of the Netpay protocol, while Section
IV gives the detailed model. Section V formalizes the

Kaylash Chaudhary is an Assistant Lecturer in Computing Science at the
University of the South Pacific. He is currently pursuing a PhD Degree in the
School of Computing, Information & Mathematical Sciences, University of
the South Pacific, Suva, Fiji (e-mail: chaudhary_k@usp.ac.fj).

Ansgar Fehnker is a Professor in Computing Science at the University of
the South Pacific.

properties and will give the invariant proof. Section VI
concludes the paper with a discussion of future work.

II. INTERFACE AUTOMATA
This paper will use a model based on interface automata to

model the Netpay protocol. Interface automata are in
particular suitable because they provide a clean distinction
between input and output actions. They are similar to
input/output automata as defined in [9], however do not
require that all input actions are always enabled. This paper
will model the each player in the protocol -broker, vendor and
customer -as an interface automaton, such that the entire
system is defined by the composition thereof.

We define interface automaton as a tuple
ܣ ൌ ሺܵ, ,ܫ ,ܪ ܱ, ܵ௧, ܴሻ with the following components:

1. A finite set of states S.
2. Finite sets of input actions I, hidden or internal

actions H, and output actions O. Input, hidden and
output actions are disjoint sets.

3. A set of initial states ܵ௧, a subset of S.
4. A transition relation R, a subset of ܵ ൈ ሺ݅݊ݐݑ

ሻݐݑݐݑ ൈ ܵ where ሺܫ ܪ ܱሻ is the set of actions.

The model distinguishes between input, hidden, and output
actions. It is assumed that output actions are controlled by the
system whereas the input actions are controlled by the
environment. An execution fragment is an alternating finite or
infinite sequence of states and actions
,ݏ ܽ, ,ଵݏ … … withሺݏ, ܽ, ାଵሻݏ א ܴ. An execution fragment
starting with a start state ݏ א .௧is known as an executionݏ
The final state of a finite execution is identified as reachable
state.

Interface automata can only be composed if the input and
output actions match, this means that the input actions are
disjoint, and that the output actions are disjoint, and hidden
actions are disjoint from any action of the other automaton.
Two interface automata ܣଵ ൌ ሺ ଵܵ, ,ଵܫ ,ଵܪ ଵܱ, ଵܵ

௧, ܴଵሻ and
ଶܣ ൌ ሺܵଶ, ,ଶܫ ,ଶܪ ܱଶ, ܵଶ

௧, ܴଶሻ are said to be composable if
ଵܫ ת ଶܫ ൌ , ଵܱ ת ܱଶ ൌ , ଵܪ ת ሺܫଶ ଶܪ ܱଶሻ ൌ and ,
ሺܫଵ ଵܪ ଵܱሻ ת ଶܪ ൌ The set of shared input/output .
actions ݀݁ݎ݄ܽݏሺܣଵ, ଵܫଶሻis defined as ሺܣ ת ܱଶሻ ሺ ଵܱ ת ଶሻ. Ifܫ
two interface automata ܣଵand ܣଶ are composable their
composition is defined as a interface automaton ܣᇱ ൌ
ሺܵᇱ, ,ᇱܫ ,ᇱܪ ܱᇱ, ܵ௧ᇲ, ܴᇱሻ with

• ܵᇱ ൌ ܵଵ ൈ ܵଶ.
ᇱܫ • ൌ ሺܫଵ ,ଵܣሺ݀݁ݎ݄ܽݏ\ଶሻܫ .ଶሻܣ
ᇱܫ • ൌ ሺ ଵܱ ܱଶሻ\݀݁ݎ݄ܽݏሺܣଵ, .ଶሻܣ
ᇱܪ • ൌ ଵܪ ଶܪ ,ଵܣሺ݀݁ݎ݄ܽݏ .ଶሻܣ

Kaylash Chaudhary, and Ansgar Fehnker

Modeling and Verification for the
Micropayment Protocol Netpay

S

World Academy of Science, Engineering and Technology 72 2012

1107

• ܵ௧ᇲ ൌ ܵଵ
௧ ൈ ܵଶ

௧.
• ܴᇱ ൌ

൜൫ሺݒ, ,ሻݑ ܽ, ሺݒᇱ, ሻ൯ฬܽݑ ב ,ଵܣሺ݀݁ݎ݄ܽݏ ଶሻܣ ר
ሺݒ, ܽ, ᇱሻݒ א ܴଵ

ൠ

൜൫ሺݒ, ,ሻݑ ܽ, ሺݒ, ב ᇱሻ൯ฬܽݑ ,ଵܣሺ݀݁ݎ݄ܽݏ ଶሻܣ ר
ሺݑ, ܽ, ᇱሻݑ א ܴଶ

ൠ

ሼሺሺݒᇱ, ,ሻݑ ܽ, ሺݒᇱ, ܽ|ᇱሻሻݑ א ,ଵܣሺ݀݁ݎ݄ܽݏ ଶሻܣ ר
ሺݒ, ܽ, ᇱሻݒ א ܴଵ ר ሺݑ, ܽ, ᇱሻݑ א ܴଶሽ

This means that if an input and output action is shared they
will have to synchronize. This means also that an output action
might be blocked in a state, if there is no corresponding
outgoing input action. Input/output automata resolve this issue
by requiring all input actions to be enabled in all states.
Interface automata in contrast have the notion of an error state.

An error state is a state in which one component of the
compositions has an outgoing output action, while the other
component does not have the matching input action.

The model presented departs from interface automata in one
important aspect, namely that we do accept error states, rather
than remove them from the set of states. We alternatively
adopt a notion of (weak) fairness for output actions. Weak
fairness means that an action cannot be continuously enabled
and not be taken. In the context of interface automata we
require a modified notion. We require that an output action
cannot be continuously enabled, while the corresponding input
action is continuously disabled. This means that an output
action might be temporarily blocked, but not indefinitely. This
is a property that needs to be proven for the Netpay model.

The model of the Netpay protocol will use a precondition
effect style of specification, with variables, and parameterized
actions. The state of an automaton is defined by the values
assigned to all variables. Preconditions are used to define sets
of states in which actions with a common label are enabled
while the effect is used to define the successor states. The
precondition are omitted is true. Transitions can synchronize if
they have the same parameterized action label this means the
state change in both automata will take place as a single
atomic step.

III. THE NETPAY PROTOCOL
This section describes the Netpay protocol for micro-

payments proposed by Dai [2]. The general structure of the
Netpay protocol is depicted in Figure 1. The Netpay
micropayment system comprises three different types of
actors: customers, brokers and vendors. It is assumed that the
broker is honest and trusted by both customers and vendors.
The brokers’ key responsibility is to register customers, credit
the account of vendors and debit customer account. The
payments occur between customers and vendors.

A key idea of Netpay is the use of cryptographic hash
functions such as MD5 or SHA2. The description of Netpay
refers to a number of micropayment and cryptographic
terminologies such as:

• One way hash function. Netpay as proposed by Dai
[2] uses the MD5 algorithm as one way hash

function. Electronic coins are generated and verified
using this hash function.

• Payword. A payword has a length of 32 digit
hexadecimal, and is generated with the one-way hash
function.

• Payword Chain. A payword chain is a series of
paywords, generated from the same seed. For
example, a payword chain of length 10 might
represent 10 cents.

• E-wallet. An e-wallet is a database for storing one or
more payword e-coins.

• Seed. A randomly selected value used to generate
payword chains.

• Touchstone. In addition to the payword chains,
vendors and broker store the touchstone. The
touchstone is used to verify the e-coins sent by the
customer.

• Index. Vendors also store an index for each payword
chain, which indicates the current spent amount of
each payword chain.

Let ࣭ be a set of seeds, and ࣪ be a set of paywords. A
payword chain is then a finite series of payword from ࣪כ.
Given a one way hash function h, a payword chain

ܹ, … … , ܹ is created from a seed ܹାଵ by applying the hash
function n + 1 times to the seed. This means ܹ ൌ ݄ሺ ூܹାଵሻ,
for i = 0,…., n. The touchstone is kept separately, to verify the
payword chain. Given the touchstone, a payword chain

ଵܹ, … , ܹcan be verified by applying the hash function to the
elements of the payword chain, and check that it is indeed a
chain, and that the hash of the first element is equal to the
touchtone.

We define the following two functions to be used by the
model. First a function createPW:࣭ ൈ ࣨ ՜ ࣪ ൈ which ,כ࣪
returns for a given seed s and an amount n a triplet of the
touchstone, a payword chain and the seed.

,ݏሺܹܲ݁ݐܽ݁ݎܿ ݊ሻ ቀ݄ሺାଵሻሺݏሻ, ሺ݄ሺݏሻ, … , ݄ଵሺݏሻቁ , ሻݏ
where ݄ሺݏሻ is the i-th application of the hash function to a
seed value. Then a function verifyPW:࣪ ൈ כ࣪ ՜ ९ which
returns for a touchstone ܹand a series of paywords
ሺ ଵܹ, … , ܹሻ the Boolean value true if it is a legitimate
payword chain:

ሺܹܲݕ݂݅ݎ݁ݒ ܹሺ ଵܹ, … , ܹሻሻ ሥ ܹିଵ ൌ ݄ሺ ܹሻ
ୀଵ,…,

The protocol contains four basic types on transactions:
Customer-Broker, Customer-Vendor, Vendor-Vendor and
Vendor-Broker transactions. These are illustrated in Figure 1.
We assume that every customer has a unique ID from a set ࣝ,
while every broker or vendor has a unique ID from the set ࣰ.
Note, that vendors and broker share the same ID space. Every
newly created payword chain will be associated with a unique
e-coin ID from the set ࣟ. An e-coin is defined as triplet
ሺ݁݅݀, ,ݏ݀ݎݓ ݀݅݁ ሻof an e-coin ID݀݅ݒ א ࣟ, a payword chain
ݏ݀ݎݓ א ݀݅ݒ and a vendor/broker ID ,כ࣪ א ࣰ. The latter
denotes which vendor or broker holds the touchstone.

World Academy of Science, Engineering and Technology 72 2012

1108

Fig. 1 A representation of Netpay protocol

The four types of transaction can be characterized as
follows:

A. Customer-Broker Transaction
The customer initiates the transaction in the Netpay

protocol by registering and sending an integer nto a broker,
where nis the amount of paywords requested. The Broker
generates the payword chain of length ݊ and assigns to that
chain a unique e-coin ID, which together with the broker ID
will constitute a new e-coin. The broker encrypts the e-coin
with the customer’s public key (M2, Figure 1) and sends it to
the customer. The customer decrypts it and stores in its e-
wallet.

B. Customer-Vendor Transaction
The vendor sends the cost and its ID (which is the host/port

number) to the customer when the customer wishes to buy
goods. The customer compares the ID with the vendor ID of
the e-coins in its e-wallet. If there is an e-coin with a matching
vendor ID and the length of the payword chain is greater than
the cost, the customer sends the e-coin (M4). If there is no e-
coin with a matching vendor ID, the customer sends any e-
coin with a sufficiently long payword chain (M4). Note, that
the latter is just an optimization, and not require for
correctness.

The vendor ID contained in an e-coin refers to the vendor
where this e-coin chain was spent last, or to the broker who
generated the e-coin, if the e-coin has not been spent before.
The vendor verifies e-coins by requesting the touchstone from
this broker (M5) or vendor (M8). The response from the
broker or vendor is encrypted by the secret key. If the
verification is successful, the vendor sends the required
information to the customer.

C. Vendor-Vendor Transaction
This transaction occurs when one vendor requests a

touchstone and index from another vendor for a particular e-
coin ID (M8 and M9).

D. Vendor-Broker Transaction
To redeem spent e-coins the vendor sends the touchstone,

customer ID, vendor ID, payword chain and payment to the
broker for each e-coin spent with the vendor. The broker will
verify each e-coin received from the vendor by performing
hashes on it and will count the amount of the paywords. The
broker will credit the corresponding amount to the vendors
account if all paywords are valid. This paper focuses on the
spending of e-coins, and omits redemption of e-coins from the
model.

The Netpay protocol specifies three kinds of e-wallets,
depending on whether it is a client-side, server-side or cookie-
based e-wallet. In this paper we will model the protocol for a
client side e-wallet.

E. Properties of Netpay Protocol
The properties of the Netpay micro-payment system are

defined in [10] as follows:
• Security: the aim of security is to prevent any party

from cheating the system. For example, double
spending of coins and creation of false coins.

• Anonymity: the customer anonymity should be
protected. A fundamental property of physical cash is
that the relationship between customers and their
purchases is untraceable. Anonymity as provided by
Netpay can be proven by anonymous simulation
which is introduced in [11].

• Robustness: the protocol is tolerant of network
bottlenecks and broker/authorizer down-time. The
broker will be only involved in the generation of e-
coins and providing touchstone for the first set of e-
coins. If the broker is down, the protocol should be
able to operate for customers who would like to
spend a partially spent payword chain with a vendor.

This paper will consider two properties that are important
for customers that use the protocol correctly. The first is that
any valid e-coin remains valid, even if it is partially spend. In
particular, the protocol should guarantees that there exists for
every e-coin a chain of trust back to the broker, even though
the system does not store this chain explicitly, to protect
anonymity. The second property is that the protocol does not
block any participant in the protocol indefinitely.

IV. DESCRIPTION OF NETPAY PROTOCOL USING IA
This section gives a detailed description of the Netpay

protocol as interface automata. We use one automaton each
for customers, vendors, and brokers. The overall system is
described by the composition of all the above automata.

In the following we use the following conventions:
Constants will be written with capital letters, local variable are
written with a capital initial letter, and parameters and free
variables with lower case letters only. Sets will be denoted

World Academy of Science, Engineering and Technology 72 2012

1109

mostly by calligraphic letters. We assume that sets for IDs and
paywords have a distinguished "undefined" element.

A. IA for Customer
The automaton ݎ݁݉ݐݏݑܥሺܦܫܥሻ modeling a customer

automaton is shown in Table I. Every customer has a unique
identifier ܦܫܥ, which is a parameter of the automaton. The
customer will have an e-wallet, which is a partial function
ݐ݈݈݁ܽݓܧ ك ࣟ ൈ כ࣪ ൈ ࣰ, which associates an e-coin ID with a
payword chain and a vendor/broker ID. The e-wallet is
initially empty. There are three possible control locations in
the cus-tomer automaton which are ܰܫܱܥܧܻܷܤ ,ܧܮܦܫ and
 In addition the automaton has local variable .ܵܦܱܱܩܻܷܤ
 to store the ID of the vendor who received the ecoin, or ܸ݀݅ܤ
the ID of the broker who was asked to supply an ecoin.

We will now describe the automaton’s actions. The model
assumes the customer is already registered and has started
using the protocol. In order to buy e-coins the customer has an
output action Sendሺܦܫܥ, ݊, ܾ݅݀ሻ where ܦܫܥ is the customer
ID and ݊ א Գ the amount requested, and ܾ݅݀ א ࣰ the ID of the
broker. The customer automaton will now be in
 .ܸ݀݅ܤ state, and the broker ID stored in variable ܰܫܱܥܧܻܷܤ

If the automaton is in location ܰܫܱܥܧܻܷܤ, input action
SendEcoinሺ݁ܿ݊݅, ,ܦܫܥ ݊݅ܿ݁ ሻ models the sending ofܸ݀݅ܤ
from customer ܦܫܥ to broker ܸ݀݅ܤ. The effect of this input
action adds the ecoin to the ݐ݈݈݁ܽݓܧ and changes the status
from ܰܫܱܥܧܻܷܤ to ܧܮܦܫ.

Buying goods from a vendor is also done in two steps. The
first is modeled by action
SendPaywordsሺܦܫܥ, ,݊݅ܿݓ݁݊ ሻ. The precondition is that݀݅ݒ
the customer has an ecoin in the ewallet. The length or size of
an ecoin |݁ܿ݊݅|is defined as the length of the payword chain.
The parameter ݊݁݊݅ܿݓ is a new ecoin, which includes the
first ݊ paywords of the payword chain.

TABLE I
CUSTOMER AUTOMATON

This new ecoin is computed by the function
,݊݅ሺ݁ܿ݁݃ݎ݄ܽܿ ݊ሻ which maps an e-coin
ሺ݁݅݀, ሺܹ1, . . . , ܹ݉ሻ, ,ሻ to ሺ݁݅݀݀݅ݒ ሺܹ1, . . . , ܹ݊ሻ, ݊ if (݀݅ݒ ݉.
The amount ݊ is chosen in this model non-deterministically;
we omitted the part of the protocols that checks if the funds
are sufficient from the protocol. In the context of this paper we
are interested only if the ecoin remains valid.

The effect of this action is that we change to status
 and store the ecoin ,ܸ݀݅ܤ store the vendor ID in ,ܵܦܱܱܩܻܷܤ
selected from the ewallet in ݈݊݅ܿ݁݀, and the new ecoin, i.e.
the remaining paywords that were not sent to the vendor, in
,݊݅ሺ݁ܿݎ݁݀݊݅ܽ݉݁ݎ The function .݊݅ܿݓ݁ܰ ݊, ሻ is defined݀݅ݒ
to map ሺ݁݅݀, ሺܹ1, . . . , ܹ݉ሻ, ሻ to݀݅ݒ
ሺ݁݅݀, ሺܹ݊ 1, . . . , ܹ݉ሻ, ݊ ሻ if݀݅ݒ ݉.

In status ܵܦܱܱܩܻܷܤ the customer waits for confirmation.
The reply from the vendor is modeled by input action
SendInformationBoughtሺܦܫܥ, ሻ. It is enabled if the݀݅ݒܤ
parameter ݀݅ݒ, which will be the replying vendor ID, is equal

 ሻܦܫܥሺݎ݁݉ݐݏݑܥ

ݐ݈݈݁ܽݓܧ ك ࣟ ൈ כ࣪ ൈ ࣰ, ݕ݈݈ܽ݅ݐ݅݊݅
ݏݑݐܽݐܵ א ሼܧܮܦܫ, ,ܰܫܱܥܧܻܷܤ ,ሽܵܦܱܱܩܻܷܤ
 ܧܮܦܫ ݕ݈݈ܽ݅ݐ݅݊݅
ܸ݀݅ܤ א ࣰ, ݂݀݁݊݅݁݀݊ݑ ݕ݈݈ܽ݅ݐ݅݊݅
݊݅ܿ݁ݓ݁ܰ א ࣟ ൈ כ࣪ ൈ ࣰ, ݂݀݁݊݅݁݀݊ݑ ݕ݈݈ܽ݅ݐ݅݊݅
݈ܱ݊݅ܿ݁݀ א ࣟ ൈ כ࣪ ൈ ࣰ, ݂݀݁݊݅݁݀݊ݑ ݕ݈݈ܽ݅ݐ݅݊݅

Ԣݏݑݐܽݐܵ ൌ ܧܮܦܫ

Ԣܸ݀݅ܤ ൌ ܾ݅݀

݊݅ܿ݁ א ,ݐ݈݈݁ܽݓܧ ݊
 .ݏ|݊݅ܿ݁| .ݐ ݊݅ܿ݁ݓ݁݊
ൌ ,݊݅ሺ݁ܿ݁݃ݎ݄ܽܿ ݊ሻ

Ԣܸ݀݅ܤ ൌ ݀݅ݒ
Ԣ݈ܱ݊݅ܿ݁݀ ൌ ݊݅ܿ݁

Ԣ݊݅ܿ݁ݓ݁ܰ ൌ ,݊݅ሺ݁ܿݎ݁݀݊݅ܽ݉݁ݎ ݊, ሻ݀݅ݒ

State:

Input Actions:

SendEcoinሺ݁ܿ݊݅, ,ܦܫܥ ሻܸ݀݅ܤ
Pre: ܵݏݑݐܽݐ ൌ ܰܫܱܥܧܻܷܤ
Effect: ݐ݈݈݁ܽݓܧԢ ൌ ݐ݈݈݁ܽݓܧ ݊݅ܿ݁

SendInformationBoughtሺܦܫܥ, ሻܸ݀݅ܤ
Pre: ܵݏݑݐܽݐ ൌ ܵܦܱܱܩܻܷܤ
Effect: ܵݏݑݐܽݐԢ ൌ ܧܮܦܫ
Ԣݐ݈݈݁ܽݓܧ ൌ ሺݐ݈݈݁ܽݓܧ\ሼܱ݈݀݁ܿ݊݅ሽሻ
ሼܰ݁݊݅ܿ݁ݓሽ

Output Actions:

Sendሺܦܫܥ, ݊, ܾ݅݀ሻ
Pre: ܵݏݑݐܽݐ ൌ ܧܮܦܫ
Effect: ܵݏݑݐܽݐԢ ൌ ܰܫܱܥܧܻܷܤ

SendPaywordsሺܦܫܥ, ,݊݅ܿݓ݁݊ ሻ݀݅ݒ
Pre: ܵݏݑݐܽݐ ൌ ܧܮܦܫ

Effect: ܵݏݑݐܽݐԢ ൌ ܵܦܱܱܩܻܷܤ

World Academy of Science, Engineering and Technology 72 2012

1110

to the stored ID, the vendor the e-coin was sent to. It will
replace the old ecoin in the ewallet with the new ecoin.

B. IA for Brokers

The behavior of the broker will be modeled by an
automaton ݎ݁݇ݎܤሺܦܫܤሻ. The broker ID ܦܫܤ is from the
same set ࣰ as the vendor IDs. This is because to vendors a
broker behaves like a vendor.

TABLE II

BROKER AUTOMATON

The broker keeps information on generated e-coins in a
database ܤܦݎ݁݇ݎܤ ك ࣟ ൈ ࣪. An entry ሺ݁݅݀, ܿ݅݀, ,ݏݐ ,ݏ ݊ሻ
captures the e-coin ID ݁݅݀, the customer ID ܿ݅݀, the
touchstone ݏݐ, the seed ݏ, and the amount ݊. Other local
variables are ݀݅ܧ, ,݀݅ܥ ܵ݁݁݀, ,݁݊ݐݏܶ ,ܸ݀݅ܤ and ,ݏ݀ݎݓܲ
which are used to store intermediate results, when generating
an ecoin, or replying to a request to send the touchstone for an
ecoin.

The broker automaton models two possible exchanges of
messages; the first when a customer requests a new ecoin, and
the second when a vendor asks to get the touchstone that
belongs to a given ecoin.

The first action of the broker automaton models a request to
generate e-coins. Input action Sendሺܿ݅݀, ݊, ሻ has aܦܫܤ
parameter ܿ݅݀, the ID of the requesting customer, ݊ the
amount requested, and the ID of the broker itself. The input
action is enabled when the status is ܧܮܦܫ, and it will change
to ܰܫܱܥܧܧܶܣܴܧܰܧܩ. This action will also store the ID of
the requesting customer in ݀݅ܥ. Finally it will compute a new
ecoin ID, and a triplet of a touchstone, payword chain and a
seed. The function ݊݁ݓselects a new value from either ࣭or ࣟ,
i.e. it will select a new seed and ecoin ID. This input action
will be followed by the output action
SendEcoinሺሺ݀݅ܧ, ,ݏ݀ݎݓܲ ,ሻܦܫܤ ,݀݅ܥ ሻ. It models theܦܫܤ
sending of a new ecoin, with ID ݀݅ܧ, payword chain ܲݏ݀ݎݓ
and vendor/broker ID ܦܫܤ to customer ݀݅ܥ. This action is
enabled if the status is ܰܫܱܥܧܧܶܣܴܧܰܧܩ. The status will
change to ܧܮܦܫ and the necessary information on the ecoin
will be stored in the broker database ܤܦݎ݁݇ݎܤ.

The request by a vendor for a touchstone is modeled by
input action GetTouchStoneሺ݁݅݀, ,݀݅ݒ ሻ. It has asܦܫܤ
parameters the ID ݁݅݀ of the ecoin that needs to be verified,
the ID ݀݅ݒ of the vendor making the request, and ID of the
broker itself. This action is enabled if the status is ܧܮܦܫ and if
an ecoin with ID ݁݅݀ exists in the broker database ܤܦݎ݁݇ݎܤ.
This action will change the status to ܹܶܫܣ, and store the
ecoin ID ݁݅݀ and the touchstone ݏݐ from the broker database,
and also store the ID of the requesting vendor ݀݅ݒ.

The reply to the touchstone request is modeled by output
action SendTouchStoneሺ݀݅ܧ, 1, ,݁݊ݐݏܶ ,ܦܫܤ ሻ, whichܸ݀݅ܤ
models sending the ecoin ID ݀݅ܧ, the index 1, the touchstone
 The index .ܸ݀݅ܤ to the vendor ܦܫܤ from the broker ,݁݊ݐݏܶ
has constant value 1, because this reply is sent by the broker,
when the ecoin is still fresh. The action is enabled if the status
is ܹܶܫܣ, and it change the status to ܧܮܦܫ.

C. IA for Vendor
The automaton ܸ݁݊݀ݎሺܸܦܫሻ modeling a vendor

automaton is shown in Table III and Table IV. Since there will
be many vendors, we use the vendor ID ܸܦܫ. Each vendor will
maintain a vendor database ܸ݁݊݀ܤܦݎ ك Ԫ ൈ ࣪, a partial
function from a ecoin ID to a touchstone. Recall that the
touchstone of an ecoin with ݊ paywords, is obtained by
applying the one-way-hash function ݊ 1 times to the seed.

 ሻܦܫܤሺݎ݁݇ݎܤ

ܤܦݎ݁݇ݎܤ ك ࣟ ൈ ࣪, ݕ݈݈ܽ݅ݐ݅݊݅

א ݏ݀ݎݓܲ ,כ࣪ ݕݐ݉݁ ݕ݈݈ܽ݅ݐ݅݊݅
א ܸ݀݅ܤ ࣰ, fi݊݁݀݁݀݊ݑ ݕ݈݈ܽ݅ݐ݅݊݅

Ԣ݀݅ܥ ൌ ܿ݅݀
Ԣ݀݅ܧ ൌ ,Ԣ݁݊ݐݏሺࣟሻሺܶݓ݁݊ ,Ԣݏ݀ݎݓܲ ܵ݁݁݀Ԣሻ ൌ
,ሺܹ݊ܲ݁ݐܽ݁ݎܿ ሺ࣭ሻሻݓ݁݊

 ሺሺ݁݅݀, ሻݏݐ א ሻܤܦݎ݁݇ݎܤ

Ԣ݀݅ܧ ൌ ݁݅݀
Ԣ݊ݐݏܶ ൌ ݏݐ
Ԣܸ݀݅ܤ ൌ ݀݅ݒ

Ԣܤܦݎ݁݇ݎܤ ൌ ܤܦݎ݁݇ݎܤ ሺ݀݅ܧ, ሻ݁݊ݐݏܶ

State:

א ݏݑݐܽݐܵ ሼܧܮܦܫ, ,ܶܫܣܹ ,ሽܰܫܱܥܧܧܶܣܴܧܰܧܩ
 ܧܮܦܫ ݕ݈݈ܽ݅ݐ݅݊݅

א ݀݅ܧ ࣟ, fi݊݁݀݁݀݊ݑ ݕ݈݈ܽ݅ݐ݅݊݅
א ݀݅ܥ ࣝ, fi݊݁݀݁݀݊ݑ ݕ݈݈ܽ݅ݐ݅݊݅
א ݀݁݁ܵ fi݊݁݀݁݀݊ݑ ݕ݈݈ܽ݅ݐ݅݊݅ ࣭
א ݁݊ݐݏܶ ࣪, fi݊݁݀݁݀݊ݑ ݕ݈݈ܽ݅ݐ݅݊݅

Input Actions:

Sendሺܿ݅݀, ݊, ሻܦܫܤ
Pre: ܵݏݑݐܽݐ ൌ ܧܮܦܫ
Effect: ܵݏݑݐܽݐԢ ൌ ܰܫܱܥܧܧܶܣܴܧܰܧܩ

GetTouchStoneሺ݁݅݀, ,݀݅ݒ ሻܦܫܤ
Pre: ܵݏݑݐܽݐ ൌ ܧܮܦܫ

Effect:ܵݏݑݐܽݐԢ ൌ ܶܫܣܹ

Output Actions:

SendEcoinሺሺ݀݅ܧ, ,ݏ݀ݎݓܲ ,ሻܦܫܤ ,݀݅ܥ ሻܦܫܤ
Pre: ܵݏݑݐܽݐ ൌ ܰܫܱܥܧܧܶܣܴܧܰܧܩ
Effect: ܵݏݑݐܽݐԢ ൌ ܧܮܦܫ

SendTouchStoneሺ݀݅ܧ, 1, ,݁݊ݐݏܶ ,ܦܫܤ ሻܸ݀݅ܤ
Pre: ܵݏݑݐܽݐ ൌ ܶܫܣܹ
Effect: ܵݏݑݐܽݐԢ ൌ ܧܮܦܫ

World Academy of Science, Engineering and Technology 72 2012

1111

TABLE III
VENDOR AUTOMATON (INPUT ACTIONS)

TABLE IV
VENDOR AUTOMATON (OUTPUT ACTIONS)

The status of the vendor can be either

,ܧܮܦܫ ,ܶܫܣܹ ,ܪܥܴܣܧܵ .ܦܧܫܨܫܴܧܸ or ܱܰܫܶܣܥܫܨܫܴܧܸ
Furthermore the vendor uses local variables
,݀݅ܧ ,ܸ݀݅ܤ ,ݏ݀ݎݓܲ to store information ݀݅ܥ and ݁݊ݐݏܶ
about the customers and vendors/broker it communicates with,
and the ecoins that need to be verified.

The vendor performs two major tasks: verifying e-coins
received from customers and providing the touchstone to a
requesting vendor. Verification of ecoins has to consider two
cases: that the touchstone for the ecoin is with the vendor, or
that the touchstone is with another vendor/broker.

The first task will be initiated upon receipt of the input
action SendPaywordsሺܿ݅݀, ሺ݁݅݀, ,ݏ݀ݎݓ ,ሻ݈ܿݐ ሻ. Thisܦܫܸ
action models the sending of an ecoin
ሺ݁݅݀, ,ݏ݀ݎݓ .ܦܫܸ ሻfrom customer ܿ݅݀ to the vendor݈ܿݐ
This action is enabled if the status is ܧܮܦܫ.

If the location of the touchstone ݈ܿݐ is not equal to the
vendor ID ܸܦܫ it will change its status to ܹܶܫܣand store the
customer ID ܿ݅݀ and the ecoin ID ݁݅݀, the payword chain
 .݈ܿݐ and the touchstone location ,ݏ݀ݎݓ

If the location of the touchstone ݈ܿݐ is equal to the vendor
ID ܸܦܫ, it will use the stored touchstone ܸ݁݊݀ܤܦݎሺ݁݅݀ሻto
verify the payword chain. If the payword chain can be
verified, i.e. ܹܲݕ݂݅ݎ݁ݒሺܸ݁݊݀ܤܦݎሺ݁݅݀ሻ, ,ሻis trueݏ݀ݎݓ
then the status changes to ܸܦܧܫܨܫܴܧ. The effect stores the
customer ID ܿ݅݀, and the ecoin ID ݁݅݀, the payword chain
 .݈ܿݐ and the touchstone location ,ݏ݀ݎݓ

Recall that the customer sends a prefix of a longer payword
chain, and that the last payword of that prefix, will be the
touchstone for the remaining payword chain, which is still
with the customer. Note, that this differs from the description
by Dai [2]. In that paper indices in combination with the
original touchstone are used to mark the last payword that has
been spent. For the scope of this paper both approaches are
equal, however adding indices would add complexity.

If the ecoin cannot be verified by the vendor itself, i.e. if
!݈ܿݐ ൌ it will request the ,ܶܫܣܹ and the status is ܦܫܸ

Ԣܤܦݎܸ݀݊݁ ൌ ሺܸ݁݊݀ܤܦݎ\ሼሺ݀݅ܧ, ሻሽሻ݀݅ܧሺܤܦݎܸ݀݊݁
 ሼሺ݀݅ܧ, ௦௧ሻሽݏ݀ݎݓܲ

Output Actions:

GetTouchStoneሺ݀݅ܧ, ,ܸ݀݅ܤ ሻܦܫܸ
Pre: ܵݏݑݐܽݐ ൌ ܶܫܣܹ
Effect: ܵݏݑݐܽݐԢ ൌ ܱܰܫܶܣܥܫܨܫܴܧܸ

SendInformationBoughtሺܿ݅݀, ሻܦܫܸ
Pre: ܵݏݑݐܽݐ ൌ ܦܧܫܨܫܴܧܸ
Effect: ܵݏݑݐܽݐԢ ൌ ܧܮܦܫ

SendTouchStoneሺ݀݅ܧ, ,݁݊ݐݏܶ ,ܸ݀݅ܤ ሻܦܫܸ
Pre: ܵݏݑݐܽݐ ൌ ܪܥܴܣܧܵ
Effect: ܵݏݑݐܽݐԢ ൌ ܧܮܦܫ

 ሻܦܫሺܸݎܸ݀݊݁

ܤܦݎܸ݀݊݁ ك ࣟ ൈ ࣪
ݏݑݐܽݐܵ א ሼܧܮܦܫ, ,ܶܫܣܹ ,ܪܥܴܣܧܵ ,ܱܰܫܶܣܥܫܨܫܴܧܸ

,ሽܦܧܫܨܫܴܧܸ ܧܮܦܫݕ݈݈ܽ݅ݐ݅݊݅

ሼ
Ԣݏݑݐܽݐܵ ൌ ܶܫܣܹ
Ԣ݀݅ܥ ൌ ܿ݅݀
Ԣ݀݅ܧ ൌ ݁݅݀
Ԣݏ݀ݎݓܲ ൌ ݏ݀ݎݓ
Ԣܸ݀݅ܤ ൌ ݈ܿݐ

ሽ
,ሺ݁݅݀ሻܤܦݎሺܸܹ݁݊݀ܲݕ݂݅ݎ݁ݒሺ݂݅݁ݏ݈݁ ሻሻݏ݀ݎݓ
ሼ

Ԣݏݑݐܽݐܵ ൌ ܦܧܫܨܫܴܧܸ
Ԣ݀݅ܥ ൌ ܿ݅݀
Ԣ݀݅ܧ ൌ ݁݅݀
Ԣݏ݀ݎݓܲ ൌ ݏ݀ݎݓ
Ԣܸ݀݅ܤ ൌ ݈ܿݐ

ሽ
 ݁ݏ݈݁
ሼ

Ԣݏݑݐܽݐܵ ൌ ܧܮܦܫ
ሽ

ሼ
Ԣݏݑݐܽݐܵ ൌ ܦܧܫܨܫܴܧܸ

ሽ
 ݁ݏ݈݁
ሼ

Ԣݏݑݐܽݐܵ ൌ ܧܮܦܫ
ሽ

ሺሺ݁݅݀, ሻݏݐ א ሻܤܦݎܸ݀݊݁

Ԣ݁݊ݐݏܶ ൌ ݏݐ
Ԣ݀݅ܧ ൌ ݁݅݀

State:

א ݀݅ܧ ࣟ, ݂݀݁݊݅݁݀݊ݑݕ݈݈ܽ݅ݐ݅݊݅
א ܸ݀݅ܤ ࣰ, ݕݐ݉݁ݕ݈݈ܽ݅ݐ݅݊݅
א ݏ݀ݎݓܲ ,כ࣪ ݕݐ݉݁ݕ݈݈ܽ݅ݐ݅݊݅
א ݁݊ݐݏܶ ࣪, ݂݀݁݊݅݁݀݊ݑݕ݈݈ܽ݅ݐ݅݊݅
א ݀݅ܥ ࣝ, ݕݐ݉݁ݕ݈݈ܽ݅ݐ݅݊݅

Input Actions:

SendPaywordsሺܿ݅݀, ሺ݁݅݀, ,ݏ݀ݎݓ ,ሻ݈ܿݐ ሻܦܫܸ
Pre: ܵݏݑݐܽݐ ൌ ܧܮܦܫ
Effect: ݂݅ሺ݈ܿݐ! ൌ ሻܦܫܸ

SendTouchStoneሺ݁݅݀, ,ݏݐ ,ܸ݀݅ܤ ሻܦܫܸ
Pre: ܵݏݑݐܽݐ ൌ ܱܰܫܶܣܥܫܨܫܴܧܸ
Effect: ݂݅ሺܹܲݕ݂݅ݎ݁ݒሺݏݐ, ሻሻݏ݀ݎݓܲ

GetTouchStoneሺ݁݅݀, ,ܸ݀݅ܤ ሻܦܫܸ
Pre: ܵݏݑݐܽݐ ൌ ܧܮܦܫ

Effect: ܵݏݑݐܽݐԢ ൌ ܪܥܴܣܧܵ

World Academy of Science, Engineering and Technology 72 2012

1112

touchstone from the vendor/broker. This means any vendor
can request a touchstone or reply to such a request.

First, consider that the vendor requests a touchstone. This
request is modeled by output action
GetTouchStoneሺ݀݅ܧ, ,ܸ݀݅ܤ ሻ. The parameters of thisܦܫܸ
action are the ecoin ID, the ID of the vendor/broker that has
the touchstone, and the ID of the vendor itself. The effect is
that the vendor will change its status to ܸܱܰܫܶܣܥܫܨܫܴܧ. The
received reply is modeled by input action
SendTouchStoneሺ݁݅݀, ,ݏݐ ,ܸ݀݅ܤ ሻ, which will in its effectܦܫܸ
verify the payword chain with respect to the received
touchstone, and change its status to ܸܦܧܫܨܫܴܧ. If the status is
-a vendor can inform the customer of the success ܦܧܫܨܫܴܧܸ
ful transaction which is modeled by output action
SendInformationBoughtሺܿ݅݀, ሻ. This action will updateܦܫܸ
the vendor database, by removing the touchstone and
replacing it by the last payword of the stored payword chain.

A vendor who receives a touchstone request will do the
following. An incoming request is modeled by input action
GetTouchStoneሺ݁݅݀, ,ܸ݀݅ܤ ሻ, which is similar to theܦܫܸ
input action with the same name for the broker in Table II.
The response to the request is modeled by output action
SendTouchStoneሺ݀݅ܧ, ,݁݊ݐݏܶ ,ܸ݀݅ܤ ሻ, after which theܦܫܸ
vendor is back to status ܧܮܦܫ. This action is also similar to
output action with the same name for the broker in Table II

In the next section we will look at the correctness of this
protocol, assuming a cooperative customer and vendor. In this
case the protocol should ensure that for every ecoin there
exists a chain of trust back to the issuing broker.

V. CORRECTNESS OF NETPAY PROTOCOL

Given the model of the Netpay protocol in section IV, we
prove the correctness of this in this section. The assumption is
that we have cooperative customers and vendors who adhere
to the protocol. In that case we require that an ecoin remain
valid, and will be correctly verified as a valid ecoin. We will
in particular show that for any ecoin there exists a chain of
touchstones back to the vendors who issued the ecoin. We will
show existence of such a chain, even though it cannot be
reconstructed from locally available information.

Furthermore we want the protocol to be responsive without
any deadlocks. In particular it should be the case that if an
output action satisfies the precondition locally, it cannot be
blocked indefinitely. This is of course based on the premise
that all executions are fair, i.e. that all participants execute
their enabled actions eventually.

A. Chain of Trust
The correctness proof will rely on invariants, i.e. properties

that can be shown to hold in every state, regardless of state
changes. The overall property we prove is that for any ecoin
there exists vendor with a touchstone ݏݐ, that the ecoin is valid
with respect to that touchstone, and that there exists a broker
and a positive integer ݅ such that ݄݅ሺݏݐሻ is the touchstone
stored by the broker. The proof is broken into three parts:

1) If a customer receives a new ecoin from a broker, that
broker will have a corresponding touchstone.

2) If a customer keeps the remainder of an ecoin after

payment to a vendor, then that vendor will have a
corresponding touchstone.

3) For any touchstone that a vendor keeps, there exists a
corresponding touchstone at a broker.

The proof for the overall property follows from this. The
following will describe each property in detail.

Lemma 1: Let ሺ݁݅݀, ,ݏ݀ݎݓ ܾ݅݀ሻ א of a customer ݐ݈݈݁ܽݓܧ
 ሻ, and let ܾ݅݀ be the ID of a brokerܦܫܥሺݎ݁݉ݐݏݑܥ
,ሺܾ݅݀ሻ. Then there exists an entry ሺ݁݅݀ݎ݁݇ݎܤ ሻ in theݏݐ
database ܤܦݎ݁݇ݎܤ of ݎ݁݇ݎܤሺܾ݅݀ሻ, such that
,ݏݐሺܹܲݕ݂݅ݎ݁ݒ .ሻ holdsݏ݀ݎݓ

Proof: The claim of Lemma 1 is an invariant, and can be
proven by induction on the length of execution. The base case
of induction is to prove that invariant is true in the initial state.
Initially, ݐ݈݈݁ܽݓܧ is empty, hence the invariant is true.

Next we have to show that the invariant remains true under
all possible actions. We assume that the invariant is true in a
predecessor state of an action and show that it will be true in
the successor state.
The customer has only two actions that modify the ewallet:
SendEcoinሺ݁ܿ݊݅, ,ܦܫܥ ܾ݅݀ሻ and
SendInformationBoughtሺܦܫܥ, .ሻܸ݀݅ܤ

• SendEcoinሺ݁ܿ݊݅, ,ܦܫܥ ሻܸ݀݅ܤ
This action is enabled if the status is ܰܫܱܥܧܻܷܤ,
which mean this action was preceded by output
action Sendሺܦܫܥ, ݊, ܾ݅݀ሻ. Both of these actions
synchronize with corresponding actions of the broker.
The combined action Sendሺܦܫܥ, ݊, ሻ will have asܦܫܤ
effect that the broker stored a valid ecoin and its
touchstone in its local variables
,݀݅ܧ ,ݏ݀ݎݓܲ .i.e ,݁݊ݐݏܶ
,݁݊ݐݏሺܹܶܲݕ݂݅ݎ݁ݒ .ሻ holds by constructionݏ݀ݎݓܲ
This step will be succeeded by a combined action
SendEcoinሺሺ݀݅ܧ, ,ݏ݀ݎݓܲ ,ሻܦܫܤ ,ܦܫܥ .ሻܦܫܤ
On the customer side it will store the ecoin
ሺ݀݅ܧ, ,ݏ݀ݎݓܲ ሻ in the ewallet, and on the brokerܦܫܤ
side ሺ݀݅ܧ, .ܤܦݎ݁݇ݎܤ ሻ in database݁݊ݐݏܶ

• SendInformationBoughtሺܦܫܥ, ሻܸ݀݅ܤ
This input action of a customer synchronizes with a
corresponding vendor action. It is enabled if the
status is ܵܦܱܱܩܻܷܤ, which means that this action
was preceded by action
SendPaywordsሺܦܫܥ, ,݊݅ܿݓ݁݊ ሻ. This action݀݅ݒ
created a new ecoin that replaced the broker ID with
a vendor ID. This means that the assumption of
Lemma 1, namely that the touchstone location is a
broker ID, no longer applies, and thus that the
invariant holds.

All other actions of the other automata do not change the
ewallet or broker database, and thus have no effect on the
invariant of Lemma 1.

The second invariant shows that if an e-coin is in an ewallet
and the touchstone location is said to be at a vendor, then the
vendor has the touchstone.

World Academy of Science, Engineering and Technology 72 2012

1113

Lemma 2: Let ሺ݁݅݀, ,ݏ݀ݎݓ ሻ݀݅ݒ א of a customer ݐ݈݈݁ܽݓܧ
 be the ID of a vendor ݀݅ݒ ሻ, and letܦܫܥሺݎ݁݉ݐݏݑܥ
,ሻ. Then there exists an entry ሺ݁݅݀݀݅ݒሺݎܸ݀݊݁ ሻ in theݏݐ
database ܸ݁݊݀ܤܦݎ of ܸ݁݊݀ݎሺ݀݅ݒሻ, such that
,ݏݐሺܹܲݕ݂݅ݎ݁ݒ .ሻ holdsݏ݀ݎݓ
Proof: This lemma defines as the pervious lemma as an
invariant. The claim is true in the initial state, as ݐ݈݈݁ܽݓܧ is
initially empty.

The customer has only two actions that modify the ewallet
SendEcoinሺ݁ܿ݊݅, ,ܦܫܥ ܾ݅݀ሻ and
SendInformationBoughtሺܦܫܥ, .ሻܸ݀݅ܤ

• SendEcoinሺ݁ܿ݊݅, ,ܦܫܥ ܾ݅݀ሻ
This action will add an ecoin ሺ݁݅݀, ,ݏ݀ݎݓ ܾ݅݀ሻ in
which ܾ݅݀ is a broker ID. Hence, the premise of
Lemma 2 is false, which makes the invariant true.

• SendInformationBoughtሺܦܫܥ, ሻܸ݀݅ܤ
This input action of a customer synchronizes with a
corresponding vendor action. It is enabled if the
status is ܵܦܱܱܩܻܷܤ, which means that this action
was preceded by action
SendPaywordsሺܦܫܥ, ,݊݅ܿݓ݁݊ ሻ. The effect of݀݅ݒ
the combined action
SendPaywordsሺܦܫܥ, ,݊݅ܿݓ݁݊ ሻ is that theܦܫܸ
vendor stores the first ݊ paywords in the vendors
local variable ܲݏ݀ݎݓ, and the remainder in the
customers variable ܲݏ݀ݎݓ. For clarification we
denote the first as ܲܿݏ݀ݎݓ and the latter as
 ௩. When customer and vendor successivelyݏ݀ݎݓܲ
synchronize on action
SendInformationBoughtሺܦܫܥ, ሻ the vendorܦܫܸ
stores the last payword of ܲݒݏ݀ݎݓ

chain as
touchstone in the ܸ݁݊݀ܤܦݎ, and all successive
paywords, ܲܿݏ݀ݎݓ

, as part of the new ecoin in the
ewallet of the customer. Since both derive from a
valid payword chain, we have that
ݏ݀ݎݓሺܹܲܲݕ݂݅ݎ݁ݒ

௦௧
௩ , .ሻ holdsܿݏ݀ݎݓܲ

All other actions of the other automata do not change the
ewallet or vendor database, and thus have no effect on the
invariant of Lemma 2.

Lemma 3: Let ሺ݁݅݀, ሻݏݐ א of a vendor ܤܦݎܸ݀݊݁
 ሻ andܦܫܤሺݎ݁݇ݎܤ ሻ, then there exists a brokerܦܫሺܸݎܸ݀݊݁
an ݊ א Գ such that for the broker database holds ݄݊ሺݏݐሻ ൌ
 .ሺ݁݅݀ሻܤܦݎ݁݇ݎܤ

Proof: This invariant states that a touchstone kept by a vendor
is a predecessor in the payword chain. The claim is true in the
initial state, as the vendor database is still empty.

The only action that changes the vendor database is
SendInformationBoughtሺܦܫܥ, ሻ. This action is enabledܸ݀݅ܤ
if the status is ܸܦܧܫܨܫܴܧ. There are two possible predecessor
actions that set the status to ܸܦܧܫܨܫܴܧ. The first is
SendTouchStoneሺ݁݅݀, ,ݏݐ ,ܸ݀݅ܤ ሻ, which retrieves aܦܫܸ
touchstone ݏݐ either from another broker or vendor, and this
touchstone is used in the condition
݂݅ሺܹܲݕ݂݅ݎ݁ݒሺݏݐ, ሻሻ. This means that all paywords inݏ݀ݎݓܲ

the payword chain ܲݏ݀ݎݓ and the received touchstone,
belong to the same payword chain. If ݏݐ was obtained from a
broker, the invariant holds trivially, if it was obtained from
another vendor it holds because by assumption the old
touchstone was a successor of a broker touchstone in a
payword chain.

The other possible predecessor is input action
SendPaywordsሺܿ݅݀, ሺ݁݅݀, ,ݏ݀ݎݓ ,ሻ݈ܿݐ ,ሻܦܫܸ
which will check the condition
݂݅൫ܹܲݕ݂݅ݎ݁ݒሺܸ݁݊݀ܤܦݎሺ݁݅݀ሻ, ሻ൯ if the touchstoneݏ݀ݎݓ
is in the vendors own database. This means that we can use the
assumption that the old touchstone was a successor of a broker
touchstone to show that the new touchstone is so as well.

Theorem 1: Let ሺ݁݅݀, ,ݏ݀ݎݓ ሻ݀݅ݒ א of a customer ݐ݈݈݁ܽݓܧ
 ሻ andܦܫܤሺݎ݁݇ݎܤ ሻ, then there exists a brokerܦܫܥሺݎ݁݉ݐݏݑܥ
an ݊ א Գ such that for the broker database holds
݄݊ሺݏ݀ݎݓଵሻ ൌ ଵ is the firstݏ݀ݎݓ ሺ݁݅݀ሻ, whereܤܦݎ݁݇ݎܤ
element of the payword chain.
Proof: This follows from Lemma 1 to 3.

B. Non-Blocking Behavior
The automata that model of the Netpay protocol only use

input and output actions, and no internal hidden action. For
every action two automata have to synchronize. An action can
take place if the precondition of the input and output action are
satisfied. If the precondition of the output action is satisfied,
but the precondition of the corresponding input action is not,
then the output action is blocked. This means that one
automaton can prevent another automaton from producing
output.

In the I/O automata framework it is required that all input
actions are always enabled, i.e. output action can never be
blocked. In the interface automata framework states in which
actions are blocked are identified and removed from the
model. Neither of these two solution seemed appropriate for
this case; output may be blocked, if for example the other
automaton is processing another ecoin. This is acceptable as
long as this output action is not blocked indefinitely. If the
output action is enabled then at some point in the future the
corresponding input action should be enabled as well. In the
context of Netpay this means for example that a broker might
block a customer for some time, while it processes a different
ecoin request, but that the broker will eventually return to
status ܧܮܦܫ, where it accepts the request.

To prove the non-blocking behavior we have to assume that
the Netpay automaton model is (weak) fair, namely that if an
action cannot be enabled indefinitely, i.e. the precondition of
both input and output action are satisfied, then the action will
eventually be taken. Given that assumption we can show that
if an output action is indefinitely enabled, then the
corresponding input action will be enabled eventually.

Key to this is the observation that all automata will return to
the status ܧܮܦܫ. Most communication between two automata
are models as a pair of actions. These pairs are:

• Shared actions Sendሺܿ݅݀, ݊, ሻ andܦܫܤ
SendEcoinሺሺ݀݅ܧ, ,ݏ݀ݎݓܲ ,ሻܦܫܤ ,݀݅ܥ ሻ; theܦܫܤ
request for an ecoin by a customer, and the reply by a

World Academy of Science, Engineering and Technology 72 2012

1114

broker.
• Shared actions GetTouchStoneሺ݁݅݀, ,ܸ݀݅ܤ ሻ andܦܫܸ

GetTouchStoneሺ݀݅ܧ, ,ܸ݀݅ܤ ሻ; the request on aܦܫܸ
touchstone from broker/vendor and the reply.

• Shared actions
SendPaywordsሺܦܫܥ, ,݊݅ܿݓ݁݊ ሻ and݀݅ݒ
SendInformationBoughtሺܦܫܥ, ሻ; the sendingܸ݀݅ܤ
of an ecoin to a vendor, and the confirmation.

For the first two pairs we have that after taking the first
action, the only action that both participating automata can
take is the second, and the second action is enabled. This
means it won’t be blocked and the automata can return
to ܧܮܦܫ. The third pair is slightly more involved. If the
touchstone is held by the vendor, then the only action that is
possible next is SendInformationBoughtሺܦܫܥ, ሻ, andܸ݀݅ܤ
that action is enabled. If the touchstone is with another vendor
or broker, it has to execute action
GetTouchStoneሺ݁݅݀, ,ܸ݀݅ܤ ሻ andܦܫܸ
GetTouchStoneሺ݀݅ܧ, ,ܸ݀݅ܤ ሻ. Since these are notܦܫܸ
blocking, the requesting vendor will reach status
 eventually, which means that ܦܧܫܨܫܴܧܸ
SendInformationBoughtሺܦܫܥ, ሻ is enabled. This showsܸ݀݅ܤ
that for either of these series of actions, the automata will get
back to a status that accepts new requests.

V. CONCLUSION AND FUTURE RESEARCH
In this paper, we have modeled and analyzed some

properties of Netpay protocol using IA. We have verified two
important properties:

• There is no deadlock in the model.
• If the protocol is executing according to its

specification, the ecoins remains valid.
The verification done in this paper for ecoin validity is on

the assumption that the customer and vendor is cooperative.
We are currently working on verifying whether the ecoins
remain valid when a customer or vendor is not cooperative. As
mentioned in the paper, there are different e-wallets for the
Netpay protocol, we will model and verify Netpay protocol
with different e-wallets. The work of this paper has not
addressed anonymity and robustness properties. These are two
important properties of the Netpay protocol which is part of
our future work.

REFERENCES
[1] X. Dai and J. Grundy. Architecture for a component-based, plug-in

micro-payment system. In In Proceedings of the Fifth Asia Pacific Web
Conference. LNCS, Springer, April.

[2] X. Dai and J. Grundy. Three kinds of e-wallets for a netpay micro-
payment system. In The Fifth International Conference on Web
Information Systems Engineering, pages 66–67, Brisbane, Australia,
November 22-24 2004. LNCS 3306.

[3] X. Dai and J. Grundy. Architecture of a micro-payment system for thin-
client web applications. In In Proceedings of the 2002 International
Conference on Internet Computing. CSREA Press, June 24-27.

[4] S. Glassman, M. Manasse, M. Abadi, P. Gauthier, and P. Sobalvarro.
The millicent protocol for inexpensive electronic commerce. In Fourth
International World Wide Web Conference, December 1995.

[5] R. Rivest and A. Shamir. Payword and micromint: Two simple
micropayment schemes. pages 307–314. LNCS, 1998.

[6] A. Herzberg and H. Yochai. Mini-pay: Charging per click on the web.
1996.

[7] R. Hauser, M. Steiner, and M. Waidner. Micro-payments based on ikp.
In Proceedings of 14th Worldwide Congress on Computer and
Communications Security Protection, pages 67– 82, Paris-La Defense,
France, December 22-24 1996. Lecture Notes in Computer Science.

[8] N. Nisan, S. London, O. Regev, and N. Camiel. Globally distributed
computation over the internet. the popcorn project. In 18th International
Conference on Distributed Computing Systems (18th ICDCS’98), pages
592–601, Amsterdam, The Netherlands, 1998. IEEE.

[9] N. Lynch and M. Tuttle. An Introduction to Input/Output automata.
Technical Memo MIT/LCS/TM-373, Massachusetts Institute of
Technology, November 1988.

[10] X. Dai, J. Grundy, and B. Lo. Comparing and contrasting micro-
payment models for e-commerce systems. In Proceedings of the
International Conferences of Info-tech and Info-net (ICII), China, 2001.

[11] Y. Kawabe, K. Mano, H. Sakurada, and Y. Tsukada. Theorem proving
anonymity of infinite systems. Information Processing Letters,
101(1):46–51, 2007.

World Academy of Science, Engineering and Technology 72 2012

1115

