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Abstract— The battery cells are an important part of electric and 
hybrid vehicles and their deterioration due to aging directly 
affects the life cycle and performance of the whole battery system. 
Therefore an early aging detection of the battery cell is an 
important task and its correct solution could significantly 
improve the whole vehicle performance. This paper presents a 
computational strategy for battery aging detection, based on 
available data chunks from real operation of the vehicle. The first 
step is to aggregate (reduce) the original large amount of data by 
much smaller number of cluster centers. This is done by a newly 
proposed sequential clustering algorithm that arranges the 
clusters in decreasing order of their volumes. The next step is the 
proposed fuzzy inference procedure for weighed approximation 
of the cluster centers that creates comparable one dimensional 
fuzzy model for each available data set. Finally, the detection of 
the aged battery is treated as a similarity analysis problem, in 
which the pair distances between all battery cells are estimated 
by analyzing the predicted values from the respective fuzzy 
models. All these three steps of the computational procedure are 
explained in the paper and applied to real experimental data for 
battery aging detection. The results are positive and suggestions 
for further improvements are made in the conclusions.  
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I.  INTRODUCTION  

In hybrid electric vehicles (HEVs) and electric vehicles 
(EVs), it is essential to design the battery system well since it is 
a major part of the total cost of a vehicle. Due to its high cost it 
is important to maximize the usage of the battery during its 
lifetime and thus to achieve an efficient and reliable 
management of the battery system.  

A battery pack in a HEV or EV typically consists of several 
battery cells. The voltage of each cell should in general be 
measured carefully because this is a strong indicator of the 
state of charge of the battery [1]. It is sufficient that even a 
single cell deviation from the normal operation condition 
would affect the entire battery pack performance by limiting its 
output. 

 Deviations in cell behavior generally may occur due to two 
reasons [2];  

- Changes in internal impedance and/or 
- Cell capacity reduction due to aging. 

There are then two main approaches for balancing a battery 
system [2]: 

- Passive; cells with too high voltage are removed by 
resistors connected in parallel with the cells 

- Active; moves energy from high voltage cells to low 
voltage cells 

The active approach has generally less losses but is more 
costly to implement, and both require detection of a deviating 
cell behavior.  

Battery systems that are used for HEVs are subject to 
especially high requirements since they are exposed to rapid 
charge and discharge cycles (such as regenerative braking, a 
common method to convert kinetic energy to electric energy 
that is further used to charge the battery). Additionally, 
batteries in vehicles can be exposed to high temperatures which 
can speed up the aging process.  

Aging of batteries is unavoidable during the period of their 
usage, and typically this leads to gradually decreased power 
capacity of the battery. For real vehicle applications it is of 
special importance to detect an “old” battery cell, since it will 
limit the driving range of the vehicle. Battery manufacturers 
typically provide data on the aging of a battery based on 
standard laboratory tests, but these are made for specific 
(identical) charge and discharge cycles that may not resemble 
the real usage in the vehicle.  

II. PROBLEM STATEMENT AND THE PROPOSED METHOD 
It becomes clear from the above preliminaries that the 

problem of battery aging detection belongs to the large group 
of diagnostics and anomaly detection problems. More precisely, 
it is the problem of finding the “old” battery cell within the 
whole battery pack, by analyzing the characteristics (behavior) 
of all the battery cells, based on the available data and 
comparing them to each other. It is preferable for this detection 
to be done in real time, by using the measured data stream 
from the real operation of the electric vehicle. As mentioned in 
the Introduction, in this paper we use data from standard 
laboratory tests that resemble to a large extent the real 
operation of the electric vehicle.  

The complexity of the problem for battery aging detection 
is demonstrated on existing real experimental data from two 
battery cells, as shown in Fig. 1, 2 and 3. One of the battery 
cells is “Good” and the other is “Old”. The differences between 
the time characteristics Ampere – Time and Volt – Time of the 



 

 

Good and Old battery, shown in Fig. 1 and Fig. 2 respectively, 
are hardly noticeable. However the difference between the 
static behaviors (Ampere – Volt) of these two batteries, 
depicted in Fig. 3, is easier to be noticed visually, and needs to 
be discovered in an automatic computational way. 

   
Figure 1.  Experimental data taken from a “good” battery cell.  

   
Figure 2.  Experimental data taken from an “old” battery cell. 

   
Figure 3.  Static (Volt - Current) behaviour of the Good and Old battery cells. 

The proposed method for battery aging detection in this 
paper works in not pure real time mode, but rather in a semi-
real time mode by using fixed portions of data (data chunks). It 
consists of the following main computational steps:  

- Aggregation of the original experimental data by applying 
sequential clustering algorithm. This step aims to reduce the 
original large number of data into a smaller number of 
“representative” cluster centers, thus reducing the 
computation time in the next steps; 

- Fuzzy Inference algorithm for weighted approximation of 
the cluster centers. This step aims to create a one 
dimensional fuzzy model that represents in a plausible way 
the relationship Voltage- Current for each battery cell 
separately;  

- Similarity analysis of all pairs of battery cells, based on the 
prediction from their fuzzy inference models for extracting 
the most dissimilar (old) cell. 

The computational details of the above three steps are 
explained in the sequel of the paper, followed by results for an 
old battery detection, based on real experimental data.  

III. AGGREGATION OF THE RAW EXPERIMENTAL DATA BY 
SEQUENTIAL CLUSTERING 

The original (raw) experimental data are not ideally suited 
for direct usage by the algorithm for similarity analysis, 
because of several reasons. One of them is the large amount of 
original data, which significantly slows the computational 
procedure. Another reason is that the experimental data from 
the battery cells often include many ambiguous data, in a sense 
that there could be multiple measured outputs (voltage) under 
the same load condition (the same current). Such cases can be 
easily noticed in the experimental data from Fig. 3, and they 
lead to further computation problems (ill defined matrix) if 
some analytical computation methods involving matrix 
operations are used afterwards. 

Therefore an appropriate computation method is needed to 
make a kind of aggregation of the original large data set of M 
data into a smaller set of N representative points, called 
information granules or cluster centers.   

Such aggregation can be performed by different 
unsupervised competitive learning algorithms, such as 
clustering algorithms [3,4], Neural-Gas and its modifications 
[5,6] etc. All these algorithms aim to find the most appropriate 
locations of the predefined number of N clusters in the K-
dimensional data space, so that the resulting group of clusters 
resembles as much as possible the density distribution of the 
original set of M data in the K-dimensional space. 

The most often used is the Fuzzy C-means clustering [3,4], 
which belongs to the group of Simultaneous Clustering 
algorithms. Here the number N of clusters should be set before 
the calculations. However it is rarely known in advance, so this 
leads to obtaining some implausible clustering solutions, 
containing smaller or larger number of clusters than necessary. 

There is another group of clustering algorithms that use the 
idea of Sequential Clustering. Here the number of clusters is 
not predetermined, but grows gradually (one after another) in a 
sequence, according to a given criterion, until appropriate 
stopping conditions are satisfied.  

The advantages of the sequential clustering algorithms are 
twofold. First, the redundant computations for unnecessary 
large number of clusters are avoided. Second, the clusters are 
usually extracted in an ordered sequence, starting from the 
most significant cluster (the cluster with the largest volume) to 
the least significant (the smallest volume) cluster. Such 
representation of the clustering results is helpful for the next 
computation step – similarity analysis of the available data. 

One of the most famous and original sequential clustering 
algorithm is the Mountain Clustering [7] with some of its 
versions and modifications [8,9]. The general concept here is to 
use of the so called mountain (or potential) function, in order to 
estimate the current areas of highest density in the data space. 
The potential function decreases gradually in a sequence with 
each new extracted cluster. This algorithm is easy to implement, 
but has some problems with the proper selection of the 
parameters, especially the width of the each new subtracted 
mountain function.  

In this paper we use our previously proposed sequential 
clustering algorithm from [10], with some modifications. This 



 

 

algorithm has been experimentally proven to be a robust 
clustering with automatic stopping criterion. Its computational 
details are summarized, as follows:  

The assumption is that we have a large number of M data in 
the K-dimensional space: [ ]1 2, ,..., ,i i i iKx x x i 1,2,...,M= =x . 
The objective is to extract the centers (prototypes) 

[ ]1 2, ,..., ,i i i iKc c c i 1,2,...,n= =C of the clusters in a sequence 

such that their cluster volumes: , ,...,SV s 1,2 n= are (most 
likely) arranged in a decreasing order: 1 2 ... nV V V≥ ≥ ≥ .  

The cluster volume SV can be defined in different ways, 
but in general this is a kind of measure of the density or size of 
the cluster in the K-dimensional data space.   

The clustering algorithms belong to the group of the 
unsupervised learning algorithms, but in our proposed 
sequential clustering algorithm we repeatedly solve an 
optimization problem, i.e. maximizing the cluster volume SV . 
Therefore we convert the unsupervised clustering problem into 
a supervised learning algorithm. 

First, the so called Cover Function Hi  is defined in the form 
of a Gaussian function with a movable center location 
c during the iterations and a fixed (predefined) K-dimensional 
width 1 2[ , ,..., ]Kσ σ σ=σ as follows:  
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The Cover Function calculates the proximity between the 
data point ix and its current location c . Here iH 0→  
means a Low Proximity (large distance between the location 
c  and the data point ix ), and iH 1→ means High Proximity 

(short distance between c and ix ).  

The volume V of the current cluster is defined in a 
cumulative way, by adding the weighted proximities of all data 

ix  to the current c location of the cover function, namely: 
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The weight parameter [ ], , ...,iP 0,1 i 1,2 M∈ = is 

called Capacity of the respective data point ix . At the 
beginning of the computation process all data have a full power 
(full capacity): , , ...,iP 1.0 i 1,2 M= = . Once a cluster s is 
extracted from the data set, then the capacity of all data points 
is reduced by the following recursive calculation:    

( ), ,...,i i i i i iP P P H P 1 H i 1,2 M= − = − =             (3) 

Now the problem of extracting the current cluster 
, , ...s s 1,2=  is transformed into solving one optimization 

problem of maximizing the volume V of the cluster, computed 
by (2) at each step of the sequential clustering procedure.  

The proposed sequential clustering algorithm was called in 
[10] the moving cup algorithm, because of the physical analogy 
with a cup that moves in the search space and tries to gather as 
many data points as possible at the end of the movement (the 
end of the optimization). 

As for the optimization algorithm, we used here again the 
popular Particle Swarm Optimization (PSO) algorithm with 
linearly decreasing Inertia Weight. The details of the algorithm 
are available in [11] and are omitted here.  

In our specially modified version of the PSO we have 
included constraints, as in [10], in order to take into account the 
fixed size of the search space. Another modification 
implemented here is for automatic termination of the iterations, 
according to the following rule: if the criterion V is stabilized 
within a small predetermined threshold, the algorithm 
terminates automatically, thus saving computation time. 

At each step , , ...s s 1,2= of the sequential clustering, a 
new cluster is being extracted, when the PSO algorithm 
terminates. Then the Average Capacity AC of all data points, 
as well as the total volume TV of all s currently extracted 
clusters can be calculated, as follows:  

1

M
s

s i
i

AC P M
=

= ∑    and   
1

s

s i
i

TV V
=

= ∑       (4) 

Here s
iP is the remaining capacity of the i-th data after the 

end of the s-th step, calculated by (3).  

The following trends exist during the progress of the 
sequential clustering: sAC 0→  and sTV M→ with s → ∞ . 
They allow us to establish a meaningful stopping criterion of 
the sequential clustering, by predefining the amount of the 
information loss ε (e.g. 0.02ε = ). The sequential clustering 
will stop after s steps (clusters), when the following inequality 
becomes valid:   

  ( )sTV M 1 ε≤ −                                    (5) 

In all further computations we have used the above 
stopping criterion with 0.02ε = .  

   

Figure 4.  Example of aggregation of two experimental data sets . 

The average capacity AC of all data decreases 
monotonously with increasing the number s of clusters, as it is 
shown in Fig. 5 for the example of the data sets from Fig. 4.  
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Figure 5.  The average capacity of all data are monotonously decreasing with 
increasing the number of steps (number of clusters) s.  

At the end of this sequential clustering algorithm, the 
original large data set is aggregated (reduced) into a smaller 
number of s clusters with their volumes , ,...,iV i 1,2 s= and 
Cluster Coordinates saved in vector: , ,...,oi i 1,2 s=x . 

IV. FUZZY INFERENCE FOR WEIGHTED APPROXIMATION OF 
THE CLUSTER CENTERS 

The next step of the proposed method for battery aging 
detection is to approximate the aggregation results from all 
data in an uniform (equal) way, so that a fair comparison 
between the performances of all battery cells could be done. 
Here the problem is that the aggregation of the data from each 
battery cell is accomplished by different final number of 
clusters (granules), varying from 14 to 27 for the real available 
data. Additionally, each cluster has its own “weight” (volume) 
which means that it has different “importance” during the 
comparison between the battery cells. 

The proposed idea in this paper is to make the so called 
weighted one dimensional model: Current – Voltage (C-V) that 
approximates in a plausible way the relationship between these 
two measured parameters for each cell. Then, a direct 
comparison between all the models can be applied to discover 
the differences (or similarities) between the battery cells.  

An illustration of this idea is given in the following Fig. 6 
for two data sets, belonging to one Good and one Old battery 
cells. The ball-type curve symbols represent the location of the 
respective clusters at the end of the clustering algorithm. The 
curve between them is the result from the final weighted quasi-
linear approximation of the one-dimensional model.  
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Figure 6.  Approximation results based on the calculated data clusters for one 
Good and one Old battery cell. The curves between the cluster centers are the 

weighted approximations based on the fuzzy inference of the clusters.  

The whole approximation procedure is accomplished into 
the following two steps:  

- First, we identify a one-dimensional Takagi-Sugeno (TS) 
fuzzy model by using as input data the coordinates of all cluster 
centers and their respective volumes (relative weights). Here 
we assume fixed number and positions of nine triangular 
membership functions for the input Current, as shown in Fig. 7. 
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Figure 7.  Nine uniformly distributed Triangular Membership Functions.  

Here the identification problem is to determine the values 
of the consequents (singletons) of all 9 fuzzy rules such that to 
minimize the following objective function Q: 

2

1

( ) ,
S

i oi i
i

Q W V V S
=

= −∑                           (6) 

wher S is the number of all extracted clusters; iW  is the 
weight (volume) of the i-th cluster, calculated by (2); oiV is the 

cluster center (voltage), assumed as experimental value and iV  
is the modeled result (voltage) calculated by the fuzzy model.   

The minimization of the objective function (6) is done here 
in a numerical way, by applying (again) the PSO algorithm 
with constraints, almost identical to the algorithm, used in the 
previous Section III. 

- Second, the identified TS fuzzy model is used to predict 
the values for the voltage V at each cluster location and also 
around them, in whole experimental range of the Current.  

V. SIMILARITY ANALYSIS FOR BATTERY AGING 
DETECTION 

The behavior of all battery cells should be compared in 
order to discover the differences between them and isolate 
(detect) the old (aged) battery. This is essentially a Similarity 
Analysis procedure, in which we try to detect the battery, 
whose behavior is most deviated from the behaviors of all other 
batteries in the list. In Fig. 8 the approximated C-V 
characteristics of six battery cells is shown.  
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Figure 8.  Behaviour characteristics of six Battery Cells, represented by their 

fuzzy inference approximations from Section IV.  

One of the batteries is labeled as old (aged) O1 and the 
others G1.G2,…,G5 are considered as good batteries. The 
difference between their behaviors (characteristics) can be 



 

 

noticed visually, but we still need a numerical (automatic) way 
to estimate and sort the differences.  

Calculating the Dissimilarity Degree between all pairs of 
battery cells is essential part of the similarity analysis of all 
available batteries. This is obviously a combinatorial procedure 
that has to be performed in order to make the final decision 
about detection of the old battery.  

We propose here a simple way to compute the dissimilarity 
degree between a given pair of battery cells {Bi,Bj} in (7), by 
taking the pair distance (PD) between the approximated values 
for the voltage, for a given number R of check points, namely:   

1

( , )
R

i j
i j r r

r

PD B B V V R
=

= −∑                       (7) 

The check points are usually uniformly distributed in the 
overlapped input space of the Current C, for all pairs of 
batteries. 

The next step is to calculate the mean distances between 
each battery cell and all other batteries in the complete list of L 
batteries, namely: 

1

( , ) ( ), 1,2,...,
L

k k i
i
i k

MD PD B B L 1 k L
=
≠

= − =∑      (8)  

The final step is to detect (isolate) the most distant battery, 
i.e. the battery, whose characteristics differs at most from all 
other characteristics. The “aged” battery, denoted by Bo will 
have the largest mean distance to all other batteries in the list, 
i.e. 

1
max { }o kk L

B SD
≤ ≤

=                                   (9) 

Another way to calculate the dissimilarity degree between a 
given pair of batteries is to use the weighted mean distance 
WMD, by applying a Gaussian function that gives bigger 
weights to the smaller distances. This gives actually a greater 
importance to the batteries that are closer to the current one.  

Experimental results for detection of the old battery cell are 
given in the next section by using both calculations: MD and 
WMD. 

VI. EXPERIMENTAL RESULTS FROM BATTERY AGING 
DETECTION  

The data used for battery aging detection in this paper are 
measured using both new batteries and an aged battery cell in a 
real (non-uniform) drive cycle (EUCAR cycle), realistic to a 
vehicle application. The aged battery had been used with this 
drive cycle for about 4 months, with about 18 hours of usage 
per day.  

A. Organization of the Experimental Data 
From the whole available amount of experimental data we 

have extracted three relatively long data chunks (each of them 
with 5000 data) representing the behavior of five “good” (new) 
battery cells, named as G1, G2, G3, G4 and G5, and one “old” 
(aged) battery cell named as O1. The three successive data 

chunks are further named as D1, D2 and D3 and contain the 
individual experimental data for each battery cell. 

In order to test the robustness of the proposed method for a 
correct detection of the aged battery O1, we have run the 
method for all 3 data chunks D1, D2 and D3 separately and 
also for longer sequences of data, obtained by merging of these 
data chunks. Thus we obtained 3 longer data sets, named as: 
D12 and D23 (with 10,000 data each) and data set D123 
(containing the full amount of 15,000 data).  

The next Fig. 9 depicts the data sets D3 containing 5000 
data each for all battery cells: G1, G2, G3, G4, G5 and O1. 

   

   

   
Figure 9.  Data Sets D3 containing 5000 data for all battery cells .  

B. Results from the Aged Battery Detection  
The following are some of the experimental results for 

aging battery detection. The have been produced by assuming 
R = 80 check points located uniformly within the interval [-60, 
+20] of the Current C.  

Table I shows the pair distances PD, calculated by (7) for 
all pairs of batteries by using the experimental Data set D3. 

Table II presents the calculated mean distances MD by (8) 
and also the weighted mean distances WMD, in the case of 
using Data Sets D3. The detected old battery is shown in bold 
for both cases: MD and WMD.  

Tables III, IV, V and VI show the detection results in the 
case of using data sets D1, D12, D23 and D123 respectively.  

In all experimental results, the assumed spread parameter of 
the Gaussian function was: 0.025σ =  



 

 

TABLE I.  THE  PAIR DISTANCES PD OF ALL BATTERY CELLS FOR 
DATA SET D3. 

Battery G1 G2 G3 G4 G5 O1 
G1 0.00 0.0125 0.0131 0.0147 0.0128 0.0152
G2 0.0125 0.00 0.0052 0.0097 0.0071 0.0158
G3 0.0131 0.0052 0.00 0.0052 0.0062 0.0150
G4 0.0147 0.0097 0.0052 0.00 0.0066 0.0154
G5 0.0128 0.0074 0.0062 0.0066 0.00 0.0163
O1 0.0152 0.0158 0.0150 0.0154 0.0163 0.00 

TABLE II.  DETECTION RESULTS FROM DATA SET D3  

Battery G1 G2 G3 G4 G5 O1 
MD 0.0137 0.0101 0.0089 0.0103 0.0099 0.0155

WMD 0.0029 0.0028 0.0027 0.0028 0.0029 0.0032

TABLE III.  DETECTION RESULTS FROM DATA SET D1 

Battery G1 G2 G3 G4 G5 O1 
MD 0.0110 0.0091 0.0092 0.0097 0.0094 0.0114

WMD 0.0022 0.0022 0.0019 0.0025 0.0021 0.0024

TABLE IV.  DETECTION  RESULTS FROM DATA SET D12 

Battery G1 G2 G3 G4 G5 O1 
MD 0.0103 0.0083 0.0084 0.0089 0.0080 0.0112

WMD 0.0023 0.0021 0.0021 0.0022 0.0021 0.0022

TABLE V.  DETECTION  RESULTS FROM DATA SET D23 

Battery G1 G2 G3 G4 G5 O1 
MD 0.0124 0.0085 0.0082 0.0098 0.0087 0.0126

WMD 0.0022 0.0024 0.0023 0.0025 0.0025 0.0026

TABLE VI.  DETECTION  RESULTS FROM DATA SET D123 

Battery G1 G2 G3 G4 G5 O1 
MD 0.0117 0.0083 0.0087 0.0096 0.0087 0.0118

WMD 0.0023 0.0021 0.0020 0.0026 0.0024 0.0025

It is seen from the above tables that the detections by using 
the mean distances MD in (8) show correct results, i.e. the old 
battery O1 was discovered properly. As for the case of the 
weighted mean distances WMD, for three data sets (D1, D12 
and D123) the detection showed different (not the correct) 
results. However, the “true” old battery O1 is listed in these 3 
cases as a “second guess” (the second maximal value in the 
Table). Obviously the proper selection of the spread parameter 
σ here plays an important role for the correct detection and is 
usually determined heuristically. 

A look at Fig. 8 and Fig. 9 can explain such deviation in the 
results, namely that the battery cell G1 has a quite different 
behavior compared to that one of the other good cells: G2, G3, 
G4 and G5. Therefore it can be easily mistaken as an old 
battery. This implies that the proposed method, even if not 
currently a perfect one is robust enough to detect the battery 
cells that behave “very differently” from the normal good cells.  

VII. CONCLUSIONS  
The proposed computational procedure for battery aging 

detection in this paper consists of three main steps: data 
aggregation by sequential clustering; fuzzy inference for 
weighted approximation of the cluster centers and similarity 
analysis by using the pair distances method.  

The initial information for detection of the aged battery is 
in the form of relatively large portions of real operation data 
(data chunks) from the electric vehicle. The result from the 
detection is to find a certain battery cell, from the list of all 
cells, whose performance is most different from the 
performances of all the other batteries.  

The proposed method basically does not use problem 
dependent parameters in the final detection stage, with 
exception for calculation of the weighted mean distance WMD. 
However, it still uses some tuning parameters in the PSO 
algorithms for sequential clustering and for fuzzy model 
identification. It is experimentally proven that they have very 
little influence to the final detection results.  

There are some ways to improve the detection results, such 
as creating another type of model that describes more precisely 
each data set before the comparison. Another direction for 
future development of the proposed method is to modify it for 
handling not only data chunks, but also data streams in real 
time. Thus it would become an evolving method being able to 
detect the gradual changes in the performance (aging) of each 
battery cell separately.  
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