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Similarity Analysis Based on the Weighted 
Moving Window for Tissue Characterization  
of Plaque in Coronary Arteries 

Gancho Vachkov and Eiji Uchino* 

Abstract. This paper is dealing with the problem of tissue characterization of the 
plaque in the coronary arteries by processing the data from the intravascular ultra-
sound catheter. The similarity analysis method in the paper is applied in the frame 
of the moving window approach, which scans all cells in the matrix data from one 
cross section of the artery. The center-of-gravity model is used for evaluating the 
dissimilarity between any given pairs of data sets, belonging to pairs of windows. 
As a computational strategy, the use of weighted values of dissimilarity within the 
cells belonging to one window is proposed in the paper, rather than simply using 
an equal mean value for all cells in the window. 

The similarity results from each cross section of the artery are displayed as gray 
scale image, where the darker areas denote the more similar areas to a predefined 
region of interest. The simulation results from the tissue characterization of a real 
data set show that the weighted moving window approach gives a sharper resolu-
tion of the similarity results that are closer to the real results, compared to the sim-
ple mean value approach. This suggests that the weighted moving window ap-
proach can be applied to real medical diagnosis.  

Keywords: Similarity analysis, Weighted mowing window, Tissue characteriza-
tion, Intravascular ultrasound, Classification. 

1  Introduction 

Health condition of the coronary arteries is vital for the normal functioning of the 
human heart since they supply a fresh blood to the muscular tissue of the heart. 
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When a gradual build-up of a plaque in the inner surface of the artery has oc-
curred, it may cause under some circumstances severe heart diseases (acute coro-
nary syndrome) such as myocardial infarction and angina.  

The inner structure of the plaque tissue is directly related to the risk of a heart 
failure. Here the most important are two types of plaque structure, namely the li-
pid and the fibrous structure. A lipid plaque covered by a small and thin fibrous 
plaque is very likely to break and enter the blood stream, thus creating dangerous 
blood clots. Therefore it is of utmost importance to analyze the structure of the 
plaque and find out the so called lipid and fibrous regions of interest, abbreviated 
as Lipid ROI and Fibrous ROI.  

The analysis and estimation of the size, shape and location of the Lipid ROI 
and Fibrous ROI is usually called tissue characterization in medical terms, which 
falls into the research area of pattern recognition and pattern classification.  

One of the most frequently used techniques to get reliable information from the 
coronary artery for further visualization and tissue characterization is the Intravas-
cular Ultrasound (IVUS) method [1]. The IVUS method uses a small rotating ca-
theter with a probe inserted into the coronary artery that emits a high frequency  
ultra-sonic signal to the tissue. The reflected radio-frequency (RF) signal is  
measured and saved in the computer memory for any further analysis and  
visualization.  

The IVUS is essentially a tomographic imaging technology, in which the re-
flected RF signal is preprocessed to produce a gray-scale image with a circular 
shape, called a B-mode image that is used by medical doctors for observation and 
analysis of the artery occlusion. One B-mode image corresponds to one cross-
section of the coronary artery with a given depth-range in all 256 directions (an-
gles) of rotation of the IVUS probe.  

The main goal in this paper is not just the data visualization, but rather develop-
ing an appropriate method for tissue characterization. Therefore further on we 
represent the data and the respective results in a rectangular X-Y shape, instead of 
in circular shape.  The axis X denotes the angle (direction) of the IVUS probe 
within the range of [0, 255], while the ordinate Y denotes the depth of the mea-
surement. i.e. the distance between the probe and the current measured signal. The 
depth-of-interest in our investigations is within the range: [0, 400] since any lipid 
ROI found in the deeper inner areas of the coronary artery is considered as “not so 
risky”.  

A graphical illustration of the matrix-type information obtained by the IVUS 
probe is presented in Fig. 1.The obtained large size matrix is called RF matrix 
and is further on saved in the computer memory  It consists of every single 
measurement obtained for the IVUS probe for one cross section in the coronary 
artery. 
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Fig. 1 Information obtained from the IVUS probe for one cross-section of the coronary ar-
tery. This is a rectangular X-Y matrix of data with X denoting the rotation angle and Y de-
noting the depth of the measurement. 

Deep and long term research and data analysis have been done until now [1] – 
[4] to utilize the information obtained from the IVUS method for a proper tissue 
characterization of the plaque in the coronary artery. As a result, different classifi-
cation techniques and algorithms have been proposed, developed and used for  
various simulations and comparisons. However, currently no “ideal” and easy-to-
apply method still exists.  

In this paper we propose the use of the moving window approach for similarity 
analysis of the data in the RF matrix, in order to find regions that are most similar 
to a given (pre-specified) Lipid ROI or Fibrous ROI. The work in this paper is a 
more detailed and advanced step of our previous work in [4] that also uses the 
concept of moving window and similarity analysis. In this paper we introduce a 
moving window with maximal overlapping ratio, a new method for similarity 
analysis and also a new way for calculating the similarity, based on the concept of 
the weighted moving window. 

The rest of the paper is organized as follows. In Section 2 the standard moving 
window for similarity analysis is explained and in Section 3 the computational de-
tails of the new proposed weighted moving window are given. Section 4 explains 
the details of the center-of-gravity method used for similarity analysis. The expe-
rimental results are given in Section 5 and Section 6 concludes the paper.  

2  The Standard Moving Window for Similarity Analysis 

2.1  The Standard Moving Window Approach 

The idea of the standard moving window approach is well known and used in 
many applications, especially in the research field of image processing and also in 
other areas that use a large rectangular data set as initial information.  

First of all, a rectangular matrix of data to be analyzed should be available. In 
this research we use the RF data matrix, which contains all the reflected signal in-
tensities from one cross section of the artery. This matrix consists of all the meas-
ured values of the reflected RF signal and has a size of 256 x Dmax, where Dmax 
= 400 is considered as sufficient maximal depth for examination. 
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The next step is to select the window size X YN N× , with “reasonable” values for 

the Angle_Range: 2 60XN≤ ≤  and for the Depth_Range: 5 100YN≤ ≤ . Ob-

viously these are problem dependent parameters that affect the final results from 
the tissue characterization. In many cases reasonably small window size gives  
better similarity results, while extremely small or extremely large sizes lead to  
deterioration. 

The moving windows approach in fact performs a scanning procedure that 
starts with the first window being located at the upper-left corner of the RF matrix. 
Then this window gradually moves to the right with one-step (one angle position) 
only until the end of the line. After that the scanning is returned to the leftmost po-
sition, but shifted with one step (one depth position) downwards and continues on 
this new line. The scanning procedure continues until the last window reaches the 
bottom-right corner of the RF matrix.  

Such scanning procedure ensures that every two neighboring windows have a 
maximal overlapping ratio, since they differ from each other by only one horizon-
tal and one vertical position. This way of movement of the windows is different 
from our previous moving window approach in [4] where no overlapping between 
the neighboring windows was assumed.  

The moving window process with maximal overlapping ratio leads to generat-
ing a large number of windows, thus increasing the overall computation time. The 
total number of the generated windows is: max( )W YN 256 D N 1= × − + .  The total 

computation time depends not only on the number of the windows, but also on the 
complexity of the model that is calculated from the data in each window. In order 
to alleviate the computational burden, we have proposed in Section 4 a simple and 
easy to calculate representative model, called center-of-gravity model. 

2.2  Similarity Analysis by Using the Moving Window 

The similarity analysis used in frame of the moving windows approach is basically 
a method for calculating the difference (dissimilarity) between the structures of 
two data sets at each scanning step.  

The first data set is fixed (constant) and is used as a reference data sets (an ex-
ample) for comparison during the scanning process. These data should be availa-
ble before the scanning process. They correspond to one typical (and correctly 
identified) Fibrous or Lipid ROI. It is obvious that the proper identification of 
such ROI depends on the medical doctor decision and experience.  

The other (second) data set used for the similarity is different for each scanning 
step and is extracted from the respective window , 1,2,...,i WW i N= for this step.  

It becomes clear now that the proposed similarity analysis computation is essen-
tially a supervised procedure for decision making, in which the Dissimilarity De-
gree DS at each step is calculated between one reference data set and one un-
known set, belonging to the current window.  
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The value of DS is usually bounded: [0, ]iDS T∈  and shows how close is the 

data structure from the current window , 1,2,...,i WW i N= to the data structure in 

the predefined ROI. A value of dissimilarity, close to zero suggests that the two 
data sets are very similar while a bigger (closer to T) value stands for a bigger dif-
ference (bigger discrepancy) between the two data sets.  

For the purpose of fair quantitative comparison between the data sets, the dis-
similarity value is often normalized as: [ , ]iDS 0 1∈ . 

It is clear that the calculated value of dissimilarity depends on the assumed 
model for describing the structure of the data set in each window. A simple and 
yet effective model for similarity analysis is presented in Section 4.  

During the moving window process, the similarity value iDS is calculated 

many times, namely for each current position of the window iW . Then the main 

question is where (at which location) to assign the currently calculated value of 

iDS ? This problem arises because all X YN N×  data in the current window iW

have been used for calculation of the dissimilarity.  
The simplest and reasonable decision is to assign the same dissimilarity degree 

iDS  to all coordinates (all cells) within the current window iW that have been 

used in the calculations. In order to keep in a memory all these values, we create a 
new rectangular matrix called Dissimilarity Matrix DM, with the same dimension 
as the Data Matrix RF, i.e. 245 x Dmax. 

It is easy to realize that each data item (each cell) in the original data matrix RF 
will be visited not only ones, but many times by the moving window. If N denotes 
the number of all visits of a given cell at location { , }; [ , ]; [ , ]i j i 0 255 j 0 Dmax∈ ∈  

by a moving window with size X YN N× , then this number is calculated as:  

 
max

max max max

( ) , 0 ;

, ;

( ) , ;

Y Y

X Y Y Y

Y Y

N j 1 N if j N 2

N N N if N 1 j D N 1

N D j 1 N if D N 2 j D

= + ≤ ≤ −
= × − ≤ ≤ − +

= − + − + ≤ ≤

                         (1) 

The DM matrix is actually an additive matrix that accumulates all the calculated 
values for the dissimilarity degrees at the same location {i,j},  as follows:  

, ,...,i j i j kdm dm DS k 1,2 N← + =                                 (2) 

The final dissimilarity degree for each {i,j} location can be taken in different ways, 
but in the in the simplest case of the standard moving window, we take it as a 
mean value of the accumulated similarity degrees in DM, namely: 

max/ , [ , ]; [ , ]i j i jdm dm N i 0 255 j 0 D= ∈ ∈                                  (3) 

All final dissimilarity degrees (3) are saved in the DM matrix. Further on, they can 
be displayed in the following two ways for a final decision making: 
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 Hard Decision making with a user-defined threshold Th for separation of all 
the values into 2 crisp classes: Similar (with i jdm Th≤ ) and Not Similar  

(with i jdm Th> ) to the pre-specified region of interest, such as Lipid ROI or 

Fibrous ROI. Then the Similar only class is displayed as a crisp dark image 
to the medical doctor for his final decision. Obviously the threshold selection 
is not a trivial task that could lead sometimes to ambiguous results.  

 Soft Decision making. It is a kind of fuzzy way of displaying the results, in 
which all calculated values in (3) are visualized as a gray scale image with 
varying intensities. The similarity values closer to zero, corresponding to very 
similar areas, are displayed as darker areas. The values closer to one, corres-
ponding to less similar areas are displayed as brighter areas. This gives addi-
tional information to the medical doctor in taking his final decision.  

3  The Weighted Moving Window for Similarity Analysis 

The idea of taking the dissimilarity degree in (3) as a mean value of all calculated 
dissimilarities in one window has a certain drawback. It is that the calculated true 
value in the center depends equally on all neighboring dissimilarities, even on 
those that are far from the center. As a result such assumption may lead to a se-
rious deviation from the actual dissimilarity.  

In order to make more precise calculation of the dissimilarities at each cell of 
the window, we propose here the idea of the weighted moving window. The essen-
tial point is that the dissimilarity in each cell [ , ]i j of the matrix DM is now 

weighted between 0 and 1 according to its distance to the center 0 0[ , ]i j of the 

window, as shown in the next equation. 

0 0
2

| | | |

2 [ ]; , ; ,
i i j j

i j X Yw exp 0 ,1 i 1 N j 1 Nσ
− + −−

= ∈ = =             (4) 

As seen from (4), a Gaussian function with Manhattan (City Block) distance and a 
predetermined spread σ is assumed here to evaluate the amount of the weight for 
each cell in the window. For example, if the window size is 5 x 7, its center loca-
tion will be [3,4].Then, the Manhattan distance between the center and a cell lo-
cated at [4,2].will be 3. 

The calculated weight by (4) is used to calculate the weighted dissimilarity that 
will be added to each cell of the matrix DM, in a similar way as in (2), namely:  

, ,...,i j i j i j kdm dm w DS k 1,2 N← + =                (5) 

The final dissimilarity degree for each {i,j} location will be calculated now as 
weighted average of the accumulated dissimilarities, taking into account the sum 
of all weights, namely:  
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X YN N

i j i j nk X Y
n k

dm dm w i 1 N j 1,N
= =

= = =∑∑              (6) 

 
Thus all the final dissimilarities in (6) will be normalized between 0 and 1. 

An illustrative example of the Gaussian function from (4) is given in Fig.2.  
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Fig. 2 Example of the Gaussian weight function from (4) used for calculating the weights 
of the dissimilarities in (5) in the case of a chosen window with size 5 x 7.  

4  The Center-of-Gravity Model Used for Similarity Analysis 

In order to calculate the similarity degree between any two data sets, we need a 
model that describes appropriately the structure of the data set. Then, as an initial 
step, we calculate (once only) the two Reference Models LRM  and 

FRM for the 
predefined Lipid ROI and Fibrous ROI., by using the respective available data: 

LM   and  

FM . After that a repetitive model calculation is performed for each of 
the moving windows that contain the same number of W X YM N N= ×  data.  

The Center-of-Gravity (COG) model, proposed and used in this paper produces 
a simple, but still representative estimation of the structure of the extracted data 
from each window. The COG model uses just two parameters with clear physical 
meaning, namely the Center-of-Gravity (CG) and the Standard Deviation (SD). 
The presumption is that data sets with different structures have different values of 
CG and SD, so the amount of the difference between the two parameters can be 
used to evaluate the similarity degree between them.  

As initial information for constructing the RF matrix, we use the raw (actual) 
reflected RF signal with a simple preprocessing, as shown in Fig. 3, namely taking 
the absolute vale of the RF signal after subtracting the central (stationary) value of 
2000 from it.  
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Fig. 3 The Intensity of the Raw (a) and the Preprocessed (b) reflected RF signal at one 
fixed angle (100) of the IVUS catheter and all depths, starting from 0 to 450. 

 

 
Let M denotes the number of data, i.e. the number of the preprocessed RF signal 

intensities , ,...,iR i 1,2 M= from a given ROI or a given window W. Then the 

two model parameters CG and SD are calculated as follows:  
- The Center-of-Gravity of the model is simply calculated as the mean value of 

the one-dimensional RF signal:   

1

M

i
i

CG R M
=

= ∑                                                 (7)  

-The Standard Deviation is calculated as: 

2

1

( ) ( 1)
M

i
i

SD R CG M
=

= − −∑
                                   (8)  

For example, the calculated values of CG and SD for the Fibrous ROI and the Li-
pid ROI, extracted from the one experimental RF data matrix are as follows:  

Fibrous ROI:  CG = 47.565;    SD = 34.344; 
Lipid ROI    :  CG = 45.375;    SD = 17.045. 

For calculating the normalized dissimilarity DS between two COG models, name-
ly the reference model Mo and the current window model Mi, we propose in this 
paper the following formula: 

2 2
0 0

2 2

( ) ( )

2 2
0( , ) [0 ,1]

i i

C S

CG CG SD SD

i iDS DS M M 1 exp expσ σ
− −

− −

= = − ∈       (9) 

Here Cσ  and Sσ  denote the predefined width for the CG and width for the SD, 

respectively. It is important to note that we are able to control the process of dis-
similarity analysis by changing in appropriate way the tuning parameters Cσ  and 

Sσ . For example, a smaller selected value of Sσ  , i.e. a narrower width Sσ will 

give bigger importance to the standard deviation DS of the extracted data, than to 
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the center-of-gravity CG. Therefore the proper choice of these two tuning parame-
ters (widths) is left to the user.  

5  Simulation Results from Tissue Characterization  

5.1  Simulation Details and Conditions 

The above described moving window approach for similarity analysis was used 
for tissue characterization of several sets of real data, in the form of respective RF 
matrices, each of them with X-Y size: 256 x 400 (the maximal depth: Dmax = 400). 
For each matrix, the respective Lipid ROI and Fibrous ROI have been properly 
identified and marked by a medical doctor through a microscopic analysis. These 
ROI data were used for creating the Reference Lipid and Fibrous models for simi-
larity analysis and also for testing and analyzing the correctness of the simulation 
results.  

In the simulations, a moving window with size 21 x 31 was chosen, which gen-
erated 94976 windows in total, used for similarity analysis. Despite this large 
number, the calculations were fast, due to the simple structure of the proposed 
COG model. The CPU time for one RF data set was about 5 sec on a computer 
with 3.0 GHz Intel 4 CPU unit. This suggests that the proposed tissue characteri-
zation method, if “accurate enough”, could be applied in almost real-time mode.  

5.2  Tissue Characterization Results from the Similarity Analysis 

In the simulations we used one RF data set, corresponding to one cross section of 
the artery, for which the size, location and boundaries of the Fibrous ROI and the 
Lipid ROI were properly diagnosed by the doctor. The data extracted from these 
two ROIs were used to calculate the respective Reference COG models. Then the 
two reference models were used for similarity analysis by using the Soft decision 
between 0 and 1, with pre-selected widths in (9), as follows: C 8.0σ =  and S 5.0σ = . 
Such settings put a bigger priority to the standard deviation (the roughness of the 
data) than to the CG (the mean value of the data). The user-defined value for the 
spread in (4) was: 2.5σ = . 

The results from the similarity analysis, based on the proposed weighted mov-
ing window are shown in Fig. 4 for the case of Fibrous ROI and in Fig. 5 for the 
case of Lipid ROI. The results, based on the weighted moving window, with the 
dissimilarity calculated by (6), are depicted in Fig. 4a,4b and Fig. 5a,5b, while Fig. 
4c and Fig. 5c show the results from the standard moving window, where the dis-
similarity is taken simply as the mean value (3). It is easy to notice that the 
weighted moving window approach in Fig. 4a and Fig. 5a produces sharper im-
ages with higher resolution, which makes the final human decision easier.  

Fig.4b and Fig. 5b are augmentation of Fig. 4a and Fig. 5a, where the locations 
of the pre-specified Fibrous ROI and Lipid ROI are added, in order to validate the 
correctness of the tissue characterization by our proposed method. 
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a   b)    c  

Fig. 4 Tissue characterization results for the case of Fibrous ROI; (a) and (b) are the 
weighted moving window results; (c) is the standard moving window result. 

a)    b)    c)  

Fig. 5 Tissue characterization results for the case of Lipid ROI; (a) and (b) are the weighted 
moving window results; (c) is the standard moving window result. 

 

The characterization results show that the proposed similarity analysis method 
has identified much larger areas as “belonging to” the Fibrous ROI and Lipid ROI, 
than the actually two ROIs, identified by the medical doctor. There are several dif-
ferent reasons for such discrepancy between the human and computer results. 

One of them is that in reality there could be several (multiple) Fibrous and Li-
pid ROIs within the examined cross section, however the doctor has diagnosed 
and marked only one (a typical) example of a Fibrous ROI and a Lipid ROI. 
Another reason could be the heuristic (not optimal) selection of the window size 

X YN N× , as well as the widths Cσ  and Sσ . all these are problem dependent pa-
rameters that have a strong influence on the final tissue characterization results. 

6  Concluding Remarks 

We proposed in this paper a general Moving Window computational approach 
with maximal overlapping ratio for tissue characterization of coronary arteries. 
This approach uses data obtained from the IVUS catheter and allows implementa-
tion of different methods and models for similarity analysis. One of them, the 
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Center-of-Gravity based model was proposed and used in the paper. The moving 
window approach has been applied in two versions, namely the standard and the 
weighted mowing window. They differ by the way of calculating the dissimilarity 
degree DS for the cells in each window. In the standard moving window the aver-
age is taken and applied to all cells. In the weighted moving window, a Gaussian 
function with Manhattan distance is used to assign weights between 0 and 1 of the 
calculated DS for all cells in the window.  

A convenient and practical soft decision making for visualization of the similar-
ity results is used in the paper. In this kind of decision all dissimilarities create a 
gray-scale image, where the darker areas represent the more similar areas to the 
predetermined region of interest ROI. 

The simulation results by using a real set of data from the IVUS catheter show 
positive, but still “not perfect” results. They detect successfully large part of the 
actual Lipid and Fibrous ROI, but also show some other areas, as “very similar” to 
those ROI.  

Possible further improvements of the proposed weighted moving window ap-
proach include optimization of the window size and the widths Cσ  and Cσ  used 
for decision making. Other ways for improvement of the tissue characterization 
accuracy are considered now by applying other, more precise models for similarity 
analysis and other calculation methods for the dissimilarity degree.  
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