

Abstract—This paper proposes a computational scheme
of a novel Evolving Knowledge Base system that is able to
gradually grow and update spatially and temporally. The main
assumption is that the input information comes from the real
environment in the form of chunks of data (not single data
points). Therefore the whole system works in a quasi-real time.
Each chunk of data is used for extraction of the so called
knowledge items, which is done by a specially introduced
sequential clustering algorithm. It is able to discover the
separate knowledge items sequentially, in decreasing order of
their size. Another important block of the proposed evolving
knowledge base system is the updating algorithm, It is in charge
of managing the Knowledge Base over time and performs (when
necessary) one of the three types recursive computations,
namely: learning, relearning and forgetting. The flexibility and
the degree of generality of the proposed evolving system is
illustrated on a specially constructed example that resembles a
real case of data flow coming as a sequence of 20 chunks of data.
These data exhibit evolving behavior during the sampling
periods and the knowledge Base system is able to catch such
behavior by properly updating its parameters. These results
show the way of different possible practical applications.

I. INTRODUCTION

The knowledge discovery based on numerical and other
data obtained from the real environment is a fast growing
research area [1-8]. The general objective here is to aggregate,
granulate or generalize the data in a specific way so that a
significant part of the information from the past data to be
available and usable during the further time periods for
approximation, generalization, prediction and another
knowledge discovery. The usual problem here is that data
from the environment come continuously as large streams of
information [1,3,4], or as big chunks of data [2,7] which
makes it impossible to keep all time such huge information.
Here the concept of the Evolving Knowledge Based Systems
is the most appropriate way for knowledge extraction and
knowledge management with time, since such systems (by
definition) are able to properly grow, update, prune and
forget the information in the Knowledge Base over time.

There is a large variety of algorithms and computing
techniques for such repetitive operation of the evolving
system and the researchers are yet to discover the most
effective and plausible operations that mimic the human way
of knowledge discovery.

In this paper we propose the computational framework of
a kind of Evolving Knowledge Base System, that is

Gancho Vachkov is with the Department of Reliability-based Information
Systems Engineering, Kagawa University, Hayashi-cho 2217-20,
Takamatsu-shi, Kagawa-ken 761-0396, Japan (Phone: +81-87-864-2265;
Fax: +81-87-864-2262; Email: vachkov@eng.kagawa-u.ac.jp).

computationally simple, but we believe has some similarities
with the natural way of extracting, keeping and updating the
small portions of information, coming from the Data flow that
are incorporated seamlessly in the current structure of the
Knowledge Base. This could be continuous and endless
process that produces a real evolving system be endless. The
merits of the proposed Knowledge Base system is that it is
able to grow end evolve spatially and temporally without
strict limitations. All the details as well as a special
illustration example are given in the sequel.

II. THE PROPOSED EVOLVING KNOWLEDGE BASE SYSTEM

In this paper we make some general assumptions before
constructing the evolving Knowledge Base (KB) system.
First of all, we assume that a real system (plant, machine) or
environment exists and its behavior during the time can be
registered in a numerical way by appropriate number of
sensors. These sensors produce a kind of multidimensional
Data Flow (data stream) that can be further used for
knowledge acquisition (also known as knowledge discovery
or knowledge building). Since the general notion of
knowledge is a bit vague, we define it in the paper in a more
concrete way, as follows.

An existing Knowledge Base consists of a number of
elements called knowledge items KI or knowledge granules.
Each KI could be considered as a kind of memory about some
past behavior of the real system (environment). For example,
one KI could be a specific, most frequently visited location in
the multidimensional space by some part of the data from the
data stream for a limited period of time. Therefore, it is clear
now that the KI does not simply represent a single data point
from the data stream, but is rather a kind of generalization
(cluster center) of a group of similar data.

A good understandable way to explain the notion of
knowledge in the human language is to consider that
knowledge is extracted not from a single word (single data
point) but rather from a whole sentence or group of sentences
in one paragraph (a portion of data).

The structure of the proposed Evolving Knowledge Base
system in this paper can be seen in Fig. 2.1. It is a further
development of our previous works in [7,8] on this topic.

Temporal and Spatial Evolving Knowledge Base System with
Sequential Clustering
Gancho Vachkov, Member, IEEE

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain FUZZ-IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 3010

 Real System
(Environment)

Samp
 ling

Chunk
 of
 Data

Sequential
Clustering

 Recent
Knowledge
 Items

Data

Flow

Updating
Algorithm

Knowledge
 Base

Resolution

Threshold

.

 Fig. 2.1. Flowchart of the proposed Evolving Knowledge Base System.

As it is seen from this figure, first the data flow is split
(discretized) by appropriate sampling procedure into a
sequence of chunks of data, (sentences), as mentioned above.
The size of the data chunks (the number of data M) , as well as
the sampling periods Ts are not discussed in this paper, since
they are problem dependent parameters and we would like to
explain the main idea.

Generally speaking, the size M of the data chunk
corresponds to a reasonable number of data that represent one
typical situation in the monitored environment or typical
working condition (mode) of a machine. It can vary from one
to another physical system. For example, in case of getting
knowledge from pictorial information (sequence of images),
one chunk of data is actually the whole RGB pixel
information contained in one image.

As for the sampling periods Ts between the data chunks,
they should not be necessarily equal because the next data
chunk could be available (measured) at a farther (different)
time instant. In other words, the proposed evolving
Knowledge Base system is rather online system or more
precisely, a quasi-real time system, in a sense that the new
chunks of data are processed where they are available (and
not necessarily within the fixed sampling time). Such
assumption is more relaxed one from a computational point of
view and represents more closely the real world process of
leaning and knowledge building.

Each obtained single chunk of data is further processed in
order to extract the most significant (important) knowledge
items which will be called recent knowledge items (recent KI).
This is done by a special newly introduced sequential
clustering algorithm that is explained in details in the next
Section III. The objective of this algorithm is to extract the
centers (prototypes) of the groups of data (the clusters) from
the data chunk in a decreasing sequence, starting from the
largest cluster and continuing to the least cluster. The end of
this sequential process is decided by a preliminary given
threshold, as shown in Fig. 2.1.

Once the recent KI are extracted by the sequential
clustering, they are further used as inputs of the updating
algorithm of the evolving KB, as shown in Fig. 2.1. Here,
according to the already existing (old) knowledge items in the
knowledge base, three different updating modes can be

distinguished. They are numbered as 0, 1 and 2 and shown in
the next Fig. 2.2.

Resolution

Data Space of the Knowledge Base (KB)

- Old (existing) Knowledge Items in KB

- Recent (newly presented) Knowledge Items

 New
Knowledge

 Old
Knowledge

.

.

0

02

2
1

1
Refreshed
Knowledge

Refreshed
Knowledge

 Old
Knowledge

.

Fig. 2.2. Three Modes for updating the knowledge in the Evolving

Knowledge Base system, denoted as 0, 1 and 2.

- Mode 0 represents the case when an existing (old) KI in
the knowledge base has not been “visited” by any of the
recent KI from the sequential clustering. This means that all
recent KI are located farther than the predetermined
resolution parameter from this existing KI. The resolution
parameter is a distance that is used to separate the “close
knowledge items” from the “far knowledge items” in the KB,
as shown in the example in Fig. 2.2. As seen from this
example, there are two KI in the KB with mode 0. These are
considered as old knowledge items that will fade out to some
extent (forgetting step).

- Mode 1 represents the case of a completely new
knowledge item (new KI) for the KB. This means that the
recent KI is far from all the existing KI in the KB. In such
case this new knowledge should receive a fresh (first)
learning step. There are two cases with Mode 1 in the
example of Fig. 2.2.

- Mode 2 represents the case when a recent KI is located
in the vicinity of an existing KI from the KB, i.e. within the
circular area defined by the resolution parameter. Such
situation suggests that the old existing KI in the KB would be
upgraded to a refreshed knowledge item which should be
relearned in some way, taking into account the amount of the
knowledge, carried by the recent KI. There are two such cases
with Mode 2 in the example in Fig. 2.2.

Shortly speaking, Mode 0 is forgetting step; Mode 1 is
first learning step and Mode 2 is refreshing (relearning) step.
According to the real situation, i.e. the available recent KI,
coming at each sampling period, the knowledge base will
evolve gradually. This means that the number of the
knowledge items in the KB will grow monotonically and the
amount (the strength) of the knowledge that is carried out by
each item will be updated (by respective learning or
forgetting). Thus the evolving KB becomes truly Temporal
and Spatial Evolving KB system.

 It is worth noting that the knowledge items in the KB will
not grow in an uncontrollable way since this process highly
depends on the new available information (the new coming
chunks of data). According to the characteristics of the

3011

sampled information, the frequency of using each of the
Modes 0, 1 and 2 will change, which basically will prevent
the knowledge base from monotonically growing.

A steady growing of the number of KI will occur only in a
case of frequently repeating Mode 1, which means repeatedly
introducing new knowledge items to the KB. However, if
Mode 2 is frequently repeated, the KB will stop growing and
the old existing KI will be refreshed only. Finally, if Mode 0
takes place frequently, then the existing KI in the KB will be
gradually forgotten (will gradually fade out). This means that
such knowledge items will still keep their place (location) in
the KB, but the strength of their knowledge will decrease
steadily.

Here a kind of threshold could be introduced in order to
distinguish between the valuable knowledge and the noise
(insignificant, faded out) knowledge. Obviously, such
threshold is a problem dependent (human defined) parameter,
which is used to perform a kind of pruning of the KB as often
mentioned in some previous works [1-4].

Computational details about the new learning, refreshed
learning and forgetting steps carried out by the updating
algorithm of the evolving KB, are given in Section IV.

III. SEQUENTIAL CLUSTERING ALGORITHM FOR
EXTRACTION OF KNOWLEDGE ITEMS

Once a chunk of M data has been obtained by the current
sampling, the next important action to be taken is to perform
an appropriate clustering procedure (in a quasi-real time
mode) in order to extract the so called recent knowledge items,
as mentioned in the previous Section. The recent KI represent
and memorize in some way the areas of high data density in
the k-dimensional data space.

The best way to extract the recent KI is to run some kind
of clustering algorithm where the cluster prototypes (cluster
centers) will serve as locations of the recent KI. As for the
strength (the amount) of the knowledge of each recent KI,
different measures for the size, volume or width of the
extracted cluster could be used.

 The most often used clustering algorithms, such as the
very popular Fuzzy C-means clustering [９] or some other
unsupervised learning algorithms [10-12] use the concept of
simultaneous clustering. This means that the number Nc of
the clusters is predetermined and available before the
calculations.

The real problem here is that this number is rarely known
in advance, which leads to obtaining some implausible
solutions that have smaller or larger number of clusters than
the real ones. To alleviate this problem various criteria for
optimal clustering have been introduced and often used, such
as the Davies-Bouldin Index [13], Dunn’s Index [14] and
some others. However all these criteria give a posterior
solution of the clustering problem, in a sense that the optimal
number of clusters N* is known after performing unnecessary
computation of many possible solutions.

Another problem with the simultaneous clustering is that
the extracted clusters do not appear in any special (increasing

or decreasing) order of their characteristics (i.e. size, volume)
but rather randomly, depending on the initial conditions.

Another group of clustering algorithms uses the idea of
Sequential Clustering where the number of clusters is not
predetermined and the clusters can be gradually extracted
(one after another) in a kind of sequence until an appropriate
stopping criterion is satisfied.

There are some clear advantages here. First, there are no
redundant computations with lager than necessary number of
clusters. Second, the clusters are extracted in an ordered
sequence, starting with the most significant cluster (with the
largest volume) and proceeding to the least significant (the
smallest) cluster.

Probably the most famous sequential clustering algorithm
is the Mountain Clustering [15,16] with some of its versions
that use the so called mountain (or potential) function to
discover in a sequence the areas of highest density in the data
space. This algorithm is easy to implement but has some
problems with the proper selection of the parameters
(especially the width) of the new subtracted mountain
function after each discovered (and removed) cluster.

Other sequential clustering algorithms use the graph
spectral method [17] for clustering, but are quite demanding
from a computational and memory viewpoint because they
need large matrix computations.

In this paper we propose a novel sequential clustering
algorithm that needs a small number of tuning parameters and
is quite robust in proper discovering the clusters that are
automatically arranged in decreasing order of their size
(volume). Computational details of this algorithm are given in
the sequel.

We assume that a chunk of M data in the K-dimensional
space is available: []1 2, ,..., ,i i i iKx x x i 1,2,...,M= =x . The
objective is to extract the centers (prototypes)

[]1 2, ,..., ,i i i iKc c c i 1,2,...,n= =C of the clusters, arranged in

decreasing order of their volumes , ,...,SV s 1,2 n= , i.e.

1 2 ... nV V V≥ ≥ ≥ .

The cluster volume SV can be defined in different ways,
but in general this is a kind of measure of the density of the
cluster or measure of its size in the K-dimensional data space.
It will be defined in the sequel.

The typical clustering algorithms are from the group of
the unsupervised learning algorithms. However, in our
proposed sequential clustering algorithm we solve a direct
optimization problem, namely maximizing the cluster volume,
so that we are dealing actually with a supervised learning.

First of all, we define the so called Cover Function Hi,
which is a standard Gaussian function with a current location
of the center c and a fixed (predefined) width σ as
follows:

2

2exp , ,...,
2

i
iH i 1,2 M

σ
⎛ ⎞−

= ⎜− ⎟ =
⎜ ⎟
⎝ ⎠

c x
 (1)

3012

 The Cover Function calculates the proximity level
between the data point ix and the current center c of the

function. Here iH 0→ means Low Proximity (far distance

between the center c and the data point ix , while

iH 1→ means High Proximity (a short, close to zero

distance between c and ix).
Then the volume V of the current cluster is defined by the

following function, which sums the weighted proximities of
all data ix to the current c location of the cover function, as
follows:

2

2
1 1

exp
2

M M
i

i i i
i i

V P H P
σ= =

⎛ ⎞−
= = ⎜− ⎟

⎜ ⎟
⎝ ⎠

∑ ∑
c x

 (2)

Here [], , ...,iP 0,1 i 1,2 M∈ = is a kind of weight

parameter, called Power (Capacity) of the data point ix . At
the beginning of the computation process, it is assumed that
all data have a full power (full capacity):

, , ...,iP 1.0 i 1,2 M= = . Once a cluster s is extracted
from the data set, then the power of all data points is
decreased by the following recursive calculation:

(), ,...,i i i i i iP P P H P 1 H i 1,2 M= − = − = (3)

Then the problem of finding the current cluster
, , ...s s 1,2= becomes an optimization problem of maximi

zing the volume V of the cluster, computed by (2).
The type of the optimization algorithm used obviously

affects the accuracy of the obtained solution Vmax as well the
computation time. However this does not change the general
idea of the proposed sequential algorithm.

In this paper we have used a modification of the well
known Particle Swarm Optimization (PSO) algorithm,
namely its popular version: PSO with Inertia Weight as
explained in [18]. In all further simulations we have assumed
the following parameters for the PSO: number of particles Np
= 8; Inertia weight parameter, linearly decreasing from

1.8ω = to 0.4ω = and maximal number of Iterations Iter
= 400. If the criterion V is stabilized within a small
predetermined threshold, the algorithm terminates
automatically with less iterations..

Fig. 3.1. depicts a numerical example of 1600 data
considered as one chunk of data that has to be clustered
properly in order to extract the recent knowledge items
(recent KI). It is easy to notice that there are 4 distinct
clusters in this chunk, and the proposed sequential clustering
algorithm should be able to detect all of them.

It took less than 15 sec in average on a PC with 3 GHz
CPU to find each current cluster. Here we would like to note
that the actual computation time is not a performance
limitation for the proposed Knowledge Base System, since
(as mentioned above) it is working in a quasi-real time mode.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
A Chunk of Data containing 4 Subsets of Data

1

2

3

4

X1

X2

Fig. 3.1. Example of a chunk of data, consisting of 4 subsets of data (labeled
as 1, 2, 3 and 4). Each subset has 400 data and the total number of data in this
chunk is M = 4 x 400 = 1600.

It is clear that the modified PSO algorithm should be run
repetitively for each subsequent cluster. Therefore finding a
“good” initial (starting) position is important task for
reducing the total computation time. For such purpose we
have made here a small improvement of the convergence by
determining the initial area of the next subsequent step to be
within the area of the already found optimum from the
previous optimization step (with a predetermined width
around the optimum). This simple idea is illustrated for the
second step of the sequential clustering in Fig. 3.2. and the
better (speedier) convergence obtained can be seen in Fig.
3.3.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Start

End

X1

X2
Cluster1

Cluster2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Start

End

X1

X2

Cluster2

Cluster3

Fig. 3.2. Illustration of the proposed scheme for determining the initial area
for the subsequent optimization. It is seen that the initial area of the second
optimization is defined around the optimum, found at the first optimization.

0 50 100 150 200 250 300 350 400
50

100

150

200

250

300

350

400
New idea

Sigma = 0.15

Old idea

PSO Iterations

Cluster Volume V

Step = 2: Optimization
for finding Cluster 2

Fig. 3.3. Improved conversion of the PSO algorithm for finding the Cluster 2
(shown as new idea) by defining the new initial area according to Fig. 3.2.

The results from the sequential clustering performed for a
sequence of 8 steps (8 clusters) are shown in Fig. 3.4.

Now it becomes clear that a proper stopping criterion is
necessary to avoid the redundant computation steps that could
lead to discovering insignificant clusters.

3013

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Extracting 8 Sequential Clusters: 1,2,...,8

Sigma = 0.12

1

2

3

4

5

6
7

8

X1

X2

Fig. 3.4. Example of Chunk of Data with 4 Subsets of data (numbered as

1,2,3 and 4) used for illustration of the proposed Sequentia

The computation results shown in Fig. 3.5 with different
number of steps (different number of sequential clusters)
provide some hint about the construction of the stopping
criterion. It is seen that there is a big drop in the cluster
volume between the solutions with 4 and 5 clusters.

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

400
Cluster Volumes

Sequential Clusters

Sigma = 0.12

V

Fig. 3.5. The volumes of the clusters gradually decrease with increasing the

steps (clusters) of the proposed Sequential Clustering algorithm.

Figure 3.6. suggests that finding the maximum in the
volume differences between two neighboring clusters i and
i+1 (4 and 5 in this case) could be used as a robust stopping
criterion. According to this idea, the proper number of
clusters is s = 4 and it does not change with wide changes of
the widths: 0.04;0.06;0.08;0.10;0.12;0.15;0.18;0.20σ = .

Further on we used this criterion for all other simulations
throughout the paper.

2 3 4 5 6 7 8
0

20
40
60
80

100
120
140
160
180
200

Sigma varies
from 0.04
to 0.20

Cluster Volume Differences: V(i) - V(i-1)

Cluster i

0.15
0.12

0.10
0.08
0.20
0.06
0.04

0.18

Fig. 3.6. The peak in the differences between the neighboring Volumes V(i)
and V(i-1) can be used as a Stop Criterion for the proposed Sequential
Clustering algorithm. As seen, this algorithm is relatively insensitive to the
assumed width parameter Sigma, varying between 0.04 and 0.20.

IV. UPDATING ALGORITHM OF THE EVOLVING KNOWLEDGE
BASE SYSTEM

As seen from the flowchart in Fig. 2.1., Section II, the
updating algorithm is run at each new sampling, when a new
chunk of data is obtained and a respective number of n*
recent KI is extracted by the sequential clustering algorithm
explained in the previous Section.

The objective of the updating algorithm is to define the
amounts of learning, relearning and forgetting at each
sampling step. They correspond to the Modes 1, 2 and 0,
explained in Section II. A general illustration of this
dynamical learning-forgetting process is given in Fig. 4.1.

0 5 10 15 20
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Learning

Relearning
Forgetting

Time Samplings

Tlrn = 5; Tforg = 8

t

Fig. 4.1. Example of a three-step sequence of Learning, Forgetting and
Relearning, with different time constants for learning and forgetting.

Here the assumption that learning and forgetting are
exponential processes with respective time constants Tlrn = 5
and Tforg = 8 is made. The computations are as follows:

() ()exp(/);
() ()[exp(/)]

lrn

forg

W t G t t T
W t G t 1 t T

= −
= − −

 (4)

Here t = 1,2,… is the time sampling step; W(t) is the
amount of knowledge of this KI at sampling time t and G(t) is
the variable Gain of the exponential process of learning or
forgetting. It is computed as a range between the current
knowledge amount and the best possible knowledge (after
unlimited repetitions of the same learning). Such computation
(recalculation) of G(t) is made at each change of the
learning-forgetting mode, as shown in Fig. 4.1. for time
instances: t = 5 and t = 10.

 The above computation scheme has some complications
when performed in a recursive way. Therefore we propose
here another, simpler and more flexible recursive
computation scheme for learning, relearning and forgetting
that uses one time constant called Learning Constant Tlrn for
all three processes (all three modes). The important point here
is that this learning scheme uses a simple one-step-only
computation of the exponential process with updated
(recalculated) gain G(t) at each sampling period t. Below are
the recursive calculations for the three types of learning:

- Mode 1 (first learning):
() ()exp(/);
() ()

lrnW t G t t T
G t V t

= −
=

 (5)

- Mode 2 (relearning):

3014

() () ()exp(/);
() V() W()

lrnW t W t 1 G t t T
G t t t -1

= − −
=

＋

－
 (6)

- Mode 0 (forgetting)

 () () ()exp(/);
() W()

lrnW t W t 1 G t t T
G t t -1

= − − −
=

 (7)

 The variable V(t) represents amount of knowledge, carried
out by the a recent KI at the time sampling t. As seen in (5),
V(t) represents the new KI in the KB; in (6) V(t) represents the
refreshed KI in the KB and finally, in (7) such knowledge
item is missing, i.e. V(t) = 0.0.

 The amount of the knowledge V(t) of the recent KI is
actually the Volume of the respective cluster for this KI,
extracted by the sequential clustering algorithm from Section
III. If V(i) is variable and changing over time, the respective
Gain G(t) of the exponential process in (5),(6) and (7) will
also change.

 This dynamical process of learning-forgetting is illustrated
in Fig. 4.2 on two examples with different patterns of
changing the volume V(t) over time. This is equivalent to
presenting a sequence of different recent KI to the KB over
time. It is clearly seen that the respective amount of
knowledge W(t) carried by the KI is also dynamically
changing in both directions (increasing-decreasing).

a)
0 5 10 15 20

-0.2

0

0.2

0.4

0.6

0.8

1

Learning
Curve

Learning by variable Recent KI:

Time Steps (Samplings)

V(t)

V(t)

G(t)

W(t)

b)
0 5 10 15 20

-1

-0.5

0

0.5

1

Learning by variable Recent KI:

Learning Curve

V(t)

G(t)

Time Steps (Samplings)

V(t)

W(t) V(t)

Fig. 4.2. Illustration of the dynamical process of learning-forgetting by

use of the proposed recursive calculations in (5), (6) and (7). Here the recent
knowledge items have different volumes V(t) over time.

V. EXAMPLE OF KNOWLEDGE ACQUISITION BY USE OF THE
EVOLVING KNOWLEDGE BASE SYSTEM

The whole computational scheme of the proposed
evolving Knowledge Base System in Sections II, II and IV

could be better understood by an appropriate example. For
such purpose we have designed a special numerical example
that shows the main features and the computation steps of the
proposed scheme.

As a starting point we use the same example from Fig.
3.1., which contains 4 Subsets (each of them with 400 data) in
the initial chunk of 1600 2-dimensional data points. This is
the initial condition of the real system at the initial sampling
period of t=0.

Then we suppose that these four subsets evolve over time
by changing their centers of gravity in six steps (six positions
within the data space X1–X2). They are numbered as 0,1,..,6
and shown as a specific trajectory for each subset in Fig. 5.1
For simplicity in generating the example, but without loss of
generality, we keep the shape and the approximate number of
data (about 400) for each subset during the evolution. The
subsets evolve from one to another step at different sampling
times, as shown in a qualitative way in the next Fig. 5.2. This
figure helps to understand the dynamics of the evolution
process of all 21 sampling periods, numbered as 0,1,2,…,20 at
which respective chunks of data are obtained for further
processing. As seen from Fig. 5.2., at time sampling t=19 and
t=20 all subsets reach their final position in the space, as
shown in Fig. 5.3.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Subset1
Subset3

Subset2

Subset4

Five Movement Steps of all 4 Data Subsets

1

5

1

3

5
5

5

1

1

33

3

X1

X2

Fig. 5.1. The six-steps trajectories of all 4 subsets of data from Fig. 3.1.,
numbered as 0,1,2,3,4 and 5 over time (0 means the initial condition).

0 5 10 15 20
10

20

30

40

50

Time Samplings

Subset1

Subset2

Subset3

Subset4

Evolution of all 4 Subsets during Time

Fig. 5.2. Evolution of the 4 subsets for the first 21 sampling periods. Each
subset is evolved gradually from level 0 to level 6 at different time samplings.
These levels are only qualitatively shown in the figure.

The whole computational scheme from Fig. 2.1 has been
performed for each of the sampling periods t = 0,1,2,…,20.

3015

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Final Postions of All 4 Substes

Subset1

Subset4
Subset2

Subset3

X1

X2

Fig. 5.3. The final positions of the 4 subsets in the space at time samplings
t = 19 and t = 20.

 This means that at each sampling the respective chunk of
data has been obtained and used for sequential clustering and
discovering the recent KI, according to Section III. Then the
updating algorithm from Section IV was applied for a proper
learning, relearning and forgetting of the knowledge items in
the Knowledge Base.

Because of the specific assumptions in creating this
numerical example, each chunk of data has produced the
same number of n = 4 recent knowledge items KI. The reason
is that there exist only 4 subsets of data at each sampling in
this example and they keep approximately the same shape and
size in the input space during the evolution. However this
specific case is not a constraint for the general computation
scheme, where there could be different (variable) number of
recent KI at each sampling period.

The evolved Knowledge Bases KB10, KB15 and KB20 at
time samplings t = 10, 15 and 20 respectively are shown in
Fig. 5.4. The time-constant used for learning was Tlrn = 6. It
is easy to notice from this figure that the knowledge base KB
is gradually evolved during the samplings in two ways. First,
it is enlarged with additional (new) knowledge items as a
result of the learning evolution. Second, the existing
knowledge items in KB from the previous samplings change
their amount of knowledge at the further samplings according
to the updating algorithm. For example it becomes clear that
the oldest knowledge items 1,2,3 and 4 in Fig. 5.4. are
gradually fading out and almost disappear at the last sampling
t = 20, while knowledge item 17 remains relatively strong.

a)
0 5 10 15

0

20

40

60

80

100

120

140

Knowledge Items

Tlrn = 6

Strengths of all Knowledge Items in KB

Sampling: t = 10

KB10

b)
0 5 10 15 20

0

20

40

60

80

100

120

140

160
Tlrn = 6

Knowledge Items

Strengths of All Knowledge Items in KB

New
Knowledge
Items

Sampling: t = 15

KB15

c)
0 5 10 15 20 25

0

20

40

60

80

100

120

140
Tlrn = 6

Knowledge Items

New
Knowledge
Items

Strengths of all Knowledge Items in KB

Sampling: t = 20

KB20

Fig. 5.4. The amount (strength) of knowledge for all knowledge items in

the Knowledge Base at 3 different time samplings: t = 10, 15 and 20. The
new added knowledge items are also depicted.

The locations of the knowledge items from KB15 and
KB20 are depicted in Fig. 5.5. In order to make visualization
of both the location and the strength of the knowledge items,
we have performed clustering of all KI in three groups
(strong, medium and weak knowledge). They are shown in
Fig. 5.5a and Fig. 5.5.b as three groups of curve symbols with
3 different sizes (Big, Medium and Small). Then it is easy to
visually notice that the amount of the knowledge carried out
by each knowledge item is evolving during time, if we
consider each separate KI as a certain fixed location
(coordinate) in the space. As a result some KI are gradually
fading out while others are growing (if regularly refreshed).

This evolving process could be even better visualized as a
gradual size motion of the knowledge items at each sampling
time.

a)
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
Knowledge Base KB15

21 Knowledge Items

3016

b)
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
Knowledge Base: KB20

26 Knowledge Items
Fig. 5.5. Locations of the knowledge items of the Knowldge Bases KB15

and KB20 in the 2-dimensional data space. For a better visualization of the
amount of knowledge, carried out by each knowledge item, all KI have been
clustered into three groups, shown as Big, Medium and Small ball-shape
curve symbols.

VI. CONCLUSIONS AND DISCUSSIONS

We have proposed in this paper a general and flexible
computation scheme for creating and managing an Evolving
Knowledge Base System. The input information for this
system is in the form of chunks of data, rather than single data
points.

There are two important computation procedures in this
framework, as follows. First, a plausible number of
knowledge items are extracted from each chunk of data by the
newly introduced sequential clustering algorithm. Second,
these knowledge items are used by a special updating
algorithm, which performs in a recursive way one of the three
possible updating operations: learning, relearning or
forgetting. Thus the knowledge base system behaves as a real
evolving system that is able to memorize a new knowledge, to
refresh an older knowledge and to gradually forget (fade out)
an old knowledge.

The most distinct features of the proposed evolving
knowledge base system are as follows:

1) It uses a small number of tuning parameters, such as
time constant for learning and a resolution parameter, which
are problem dependent and relatively easy to be predefined by
the user. By changing these parameters different versions of
evolving knowledge base systems can be created that mimic
the reaction (and the thinking way) of different humans
(agents). Such idea could be used for creating and analyzing
the behavior of a multi-agent system.

2) The proposed evolving system uses simple
computations and therefore could be successfully used for
different practical applications. Some of them are now under
consideration, such as quasi-real time monitoring of images,
in order to “memorize” the images that appear most
frequently.

REFERENCES
[1] Angelov, P. and Filev, D., “An Approach to Online

Identification of Takagi-Sugeno Fuzzy Models”, IEEE Trans.
on Systems, Man and Cybernetics, vol. 34, No. 1, pp. 484-498,
2004.

[2] Ozawa S., Pang, S. and Kasabov N., “An Incremental Principal
Component Analysis for Chunk Data”, Proc. of the 2006 IEEE
Int. Conference on Fuzzy Systems, FUZZ-IEEE 2006,
Vancouver, pp. 10493-10500, July, 2006.

[3] Zhou, X, and Angelov, P., “Real-Time Joint Landmark
Recognition and Classifier Generation by an Evolving Fuzzy
System”, Proc. of the 2006 IEEE Int. Conference on Fuzzy
Systems, FUZZ-IEEE 2006, Vancouver, pp. 6314-6321, July,
2006.

[4] Soltic, S. Wysocki S. and Kasabov N., “Evolving Spiking
Neural Networks for Taste Recognition”, Proc. of the 2008
IEEE Int. Conference on Fuzzy Systems, FUZZ-IEEE 2008,
Hong Kong, pp. 2092-2098, June, 2008.

[5] Pang, S. and Kasabov, N., “r-SVMT: Discovering the
Knowledge of Association Rule over SVM Classification
Trees”, Proc. of the 2008 IEEE Int. Conference on Fuzzy
Systems, FUZZ-IEEE 2008, Hong Kong, pp. 2487-2494, June,
2008.

[6] Angelov, P. Ramezani, R. and Zhou, X., “Autonomous Novelty
Detection and Object Tracking in Video Streams using
Evolving Clustering and T-S type Neuro-Fuzzy system”, Proc.
of the 2008 IEEE Int. Conference on Fuzzy Systems,
FUZZ-IEEE 2008, Hong Kong, pp. 1457-1464, June, 2008.

[7] Vachkov, G., “Real Time Knowledge Acquisition Based on
Unsupervised Learning of Evolving Neural Models”, CD ROM
Proc. of the FUZZ-IEEE 2007 Conference, Imperial College,
London, pp. 1333-1338, July, 2007.

[8] Vachkov, G., “Human-Assisted Fuzzy Image Similarity
Analysis Based on Information Compression”, Journal of
advanced Comp. Intelligence, JACIII, vol. 13, no. 3, pp.
255-261, 2009.

[9] Bezdek, J.C., Pattern Recognition with Fuzzy Objective
Function Algorithms, New York: Plenum Press, 1981.

[10] Martinetz T., Berkovich S., and Schulten, K., “Neural-Gas
Network for Vector Quantization and Its Application to
Time-Series Prediction”, IEEE Trans. Neural Networks, Vol. 4,
No. 4, pp. 558-569. 1993.

[11] Xu, L., Krzyzak A. and Oja, A., “Rival Penalized Competitive
Learning for Clustering Analysis, RBF Net and Curve
Detection”, IEEE Trans. Neural Networks, Vol. 4, No. 4, pp.
636-649, 1993.

[12] Angelov, P., “An Approach for Fuzzy Rule-based Adaptation
using On-line Clustering”, International Journal of
Approximate reasoning”, vol. 35, no. 3, pp. 275-289, 2004.

[13] Davies, D. and Bouldin, D., “A Cluster Separation Measure”,
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 1,
pp. 224-227, 1979.

[14] Dunn, J.C., “Well Separated Clusters and Optimal Fuzzy
Partitions”, Journal of Cybernetics, vol. 4, pp. 95-104, 1974.

[15] Yager R. and Filev D., “Approximate Clustering via the
Mountain Method”, IEEE Trans. on Systems, Man and
Cybernetics, vol. 24, No. 8, pp. , 1994.

[16] Clark, A. and Filev, D., “Clustering Techniques for Rule
Extraction from Unstructured Text Fragments”, Proc. of the
NAFIPS’05 Conference, Ann Arber, USA, pp. , July 2005.

[17] Inoue, K., Urahama, K., “Sequential Fuzzy Cluster Extraction
by a Graph Spectral Method”, Patter Recognition Letters, vol.
20, pp. 699-705, 1999.

[18] Poli, R., Kennedy, J. and Blackwell, T., ”Particle Swarm
Intelligence. An Overview”, Swarm Intelligence, vol. 1, pp.
33-57, 2007.

3017

