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A COLLISION AVOIDANCE CONTROL PROBLEM FOR
MOVING OBJECTS AND A ROBOT ARM

JUNHONG HA AND JITO VANUALAILAI

ABSTRACT. We propose the new controls constructed via the second
or direct method of Liapunov to solve the collision avoidance control
problems for moving objects and a robot arm in the plane. We also
explicate the controlling effect by the simulations.

1. Introduction

It is well known that the second or direct method of Liapunov is
applicable to many works related to qualitative theory of differential
games and collision avoidance control strategies. We refer to [1, 2, 3, 5]
as the related references.

In a collision avoidance control strategy, Stonier[4] first proposed the
use of the Liapunov method for the collision avoidance between two point
masses or objects moving to designated areas or targets located in the
horizontal plane. Via Liapunov-like functions, he determined analytic
forms of control laws for the planar movement of the two point objects.
In his approach, he used the so-called "right-of-wayassumption" which
allows one object to register the position of the other as a constant in
a sufficiently small time interval before making a move. However, the
assumption has two shortcomings. The first is the difficulty one may
have in justifying the use of the components of the position vector at
time t of the system trajectory as constants in the Liapunov-like function.
The second is the difficulty in the use of the assumption in a multi­
point system where the assumption poses the problem of deciding which
object or objects should be held in a given time interval. These problems
were overcome in VNH [6] where a single Liapunov-like function for the
entire system, instead of a Liapunov-like function for each point mass, is
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constructed. The two papers (Stonier [4J and VNH [6]) however have a
common drawback. The Liapunov-like functions defined in them do not
satisfy the Liapunov stability condition that they should be precisely
zero at stable equilibrium points of the system. The attempt to satisfy
this condition in both papers saw some restrictions placed on one of the
two types of parameters associated with the findpath problem.

The two parameters are the control and convergence parameters, and
the restriction is in the requirement that the control parameters be suf­
ficiently small so that the existence of a stable equilibrium state of the
system in a neighborhood of the center of a target could be guaranteed.
In other words, with this restriction, the objects cease motion very close
to but not at the center of their targets.

In this paper, the problem in the two papers is solved once and for
all by the use of a function that satisfies the sufficient conditionS of
Liapunov's stability theorem. This Liapunov junction can be easily con­
structed for a multi-point system, and it requires the control parameters
only for the purpose of controlling the direction of the trajectory.

Moreover, the proposed function need not be generalized, as was the
case in VNH [6J, in order to address the important collision avoidance
issue of a safe and smooth trajectory.

As an application of the proposed method, we consider the problem
of controlling a planar robot arm to its target.

In the next section, a control strategy for moving objects by the Lia­
punov technique is considered. In Section 3, the single planar robot arm
is considered, followed by simulations showing the robot movement.

2. Control plan for two moving objects
by Liapunov technique

Cunsider the autonomous nonlinear system

(2.1)

(2.2)

dx
dt = f(x), t > to

x(to) = Xo,

where f : }Rn ~ }Rn is assumed to be smooth enough to guarantee exis­
tence, uniqueness. By x = x(t, to, Xo) denote the solution of (2.1) and
(2.2) passing (to,Xo). If a constant function x = e satisfy f(e) = 0, then
we call it an equilibrium state of (2.1).
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The direct method of Liapunov states that this equilibrium state x =
e is stable if, in a neighborhood V of e, there exists a real scalar function
£(x) such that

(i) £(e) = 0,
(ii) £(x) > 0 for all e ~ x E V,

(...) d£(x) I o£(x) f( ) < 0 £ 11 'T\III -- = --. x or a x E 1./

dt (2.1) OX - ,

where d~~X)I denotes the time derivative of £(x) along a solution x
(2.1)

of (2.1). When £(x) successfully meets the above conditions, it is called
the Liapunov function for system (2.1).

Now let us consider the problem where there are two moving objects,
each having a fixed antitarget in a plane workspace, such that each
moving object has to be controlled to reach its target without colliding
with the other moving object and its fixed target. We often call this
problem the collision avoidance control problem. Precisely, the collision
avoidance control problem is the problem of controlling the movement
of the i-th moving object so that it reaches the the center of the i-th
target, while ensuring the i-th moving object avoids the j-th target and
the j-th moving object, which can be regarded as an antitarget of i-th
object. (Here, i,j E {I, 2}.)

For i, j = 1,2, we will denote by Ai the i-th moving object and by
1j the j-th target. Let us regard the centers of the moving objects Ai
as the points (Xi, Yi) on the plane. When each moving object Ai moves
continuously depending on t E IR+ = [0, (0), we can regard (Xi, Yi) as
a continuous function of t 2': O. In this paper, as studied in Stonier
[4J and VNN [6], we suppose that the dynamics of two point objects
(Xi, Yi), i = 1,2, are described by the system of ordinary differential
equations,

(2.3)

Here, (Zi, Wi) = (Xi, Yi) denotes the instantaneous velocity of the i-th
point object and (Ui, Vi) denotes its instantaneous acceleration. By the
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Liapunov technique, (Ui,Vi),i,j = 1,2, are considered as feedback con­
trollers to be obtained from a Liapunov function associated with the
system (2.3).

Now, let us define the target set TSi of the i-th target 1i with center
(PiI,Pi2) and radius rpi and the moving object set ASj ofthe j-th moving
object Ai with center (Xj, Yj) and length rapj of the j-th moving object
Aj as follows:

TSi = {(x, y) : (x - Pil)2 + (y - Pi2)2 ::; rpn, i = 1,2,

ASj = {(x, y) : (x - Xj)2 + (y - Yj)2 ::; rapJ}, j = 1,2.

In order to determine the controllers for the collision avoidance control
problem, we need to define the Liapunov function such that object Ai
approaches its targets while avoiding its antitargets. Accordingly, let us
define the following the functions for approaching the target and avoiding
antitargets:

the Vi function to make moving object ~ approach target 1i;

Vi = ~{(Xi - Pil)2 + (Yi - Pi2)2 + z; +wil, i, j = 1,2,

the Wij function to make the moving object ~ avoid target Tj, i:f:. j;

Wij = ~{(Xi - Pjl)2 + (Yi - Pj2? - rpJ}, i, j = 1,2,

the Vi2 function to make Al avoid A2;

Vi2 = ~{(Xl - X2)2 + (YI - Y2)2 - max{rap~, rap~}},

and the Gi function which denotes'the distance between centers of mov­
ing object ~ and target 1i;

Gi = ~{(Xi - Pil)2 + (Yi - pi2)2}, i = 1,2.

Using the above functions Vi, Wijl Vi2 and Gi , we can now define a Li­
apunov function I:, on V(I:,) = {x E R8 : Vi2(X) > 0, Wij(x) > 0, i, j =
1,2} into R+ for the system (2.3) as follows:

I:,(x) - Vi(XI, YI, ZI, WI) + V2(X2, Y2, Z2, W2)

(24) +GI2GI(XI, YI) + G2IG2(X2, Y2) + (3GI(XI, Yl)G2(X2, Y2)
. Wl2 (Xl, Yl) W2l(X2, Y2) Vi2(XI, Yl, X2, Y2) ,

where x = (XI, ZI, Yl, WI, X2, Z2, Y2, W2) E R8 and Gl2, G21 and {3 are posi­
tive constants, called the control parameters. The roles of the numerators
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Gb G2 and GIG2 in £ are to improve the trajectories leading to the tar­
gets and to reduce the effect of W12 , W21 and Vi2 when Al approached
to TI or A2 approached to T2• Note that these functions did not appear
in [4, 6].

To determine the control pairs (Ui, Vi), i = 1,2, let us differentiate
£(x) with respect to t, where x is a solution of (2.3). Indeed, by straight­
forward calculations we have

d~~X) 1(2.3) =

[
al2 {3G2 al2GI {3GIG2 ](1 + - + -)(XI - Pu) - -2-(XI - P21) - 2 (Xl - X2) Zl
W l2 Vl2 W l2 Vi2

[
a12 {3G2 al2GI {3GIG2 ]+ (1 + - + -)(YI - P12) - --(YI- P22) - 2 (YI - Y2) WI
W12 Vi2 Wf2 Vi2

[
a21 {3GI a21G2 {3GI G2 ]+ (1 + - + -)(X2 - P21) - --2-(X2 - Pu) - 2 (X2 - Xl) Z2
W21 Vl2 W 21 Vi2

[
a21 {3GI a2lG2 {3GIG2]+ (1 + - + -)(Y2 - P2C2) - -2-(Y2 - PIC2) - 2 (Y2 - YI) W2·
W21 Vl2 W 21 Vi2

Therefore the time derivative d~~X) along the equation (2.3) is given by

d£(x) I (2 2 2 2
~ = - 'YIZI + {LIW1 + 'Y2Z2 + J.L2W2)

(2.3)

provided that the feedback control variables (Ui' Vi), i = 1,2 are given by

al2G l (3GIG2
UI = -A(XI - Pu) + W 2 (Xl - P21) +~(XI - X2) - 'YIZI

alli1 (3G/(h
VI = -A(Yl - pd + """W2(Yl - P22) +~(YI - Y2) - J.LIWI

a2N;2 (3G~G2
U2 = -B(X2 - P21) + W1 (X2 - Pn) +~(X2 - Xl) - "Y2Z2

a21(]2 (3G/lh
V2 = -B(Y2 - P22) + -2-(Y2 - P12) + --2-(Y2 - yI) - J.L2W2,

W21 Vi2

where A = 1+ .£ll.. + {3G2 and B = 1+~ + {3Gl. We call 'V. 1/., i = 1 2
W 12 V12 · W21 Vi2 It, ,.,.., "

convergence parameters.
In [6], it is shown that (1) the smaller aI2(resp. (21) is, the shorter the

distance between moving object AI(resp. A2 ) and target T2 (resp. Td can
become, (2) when j3 is increase, the distances between moving objects
get large and (3) the smaller 'Yi, J.Li are, the faster the speed of the moving
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objects arriving at their targets become. (See Example 2.1 for the sake
of verification via simulations.)

When we adopt the control pairs (Ui, Vi), i = 1,2, defined by (2.6),
it is easily verified that e = (Pll,0,P12,0,Pln,0,P22,0) is an equilibrium
state of (2.3).

Summarizing the above observations, we have the following theorem:

THEOREM 2.1. The equilibrium state e of (2.3), where Ui and Vi,

i = 1,2 are as in (2.6), is stable if we choose the parameters /i' f-ti >
O,i = 1,2.

Proof It is clear that .c(e) = °owing to the factors, Cl and C 2 , being

included in the numerators of .c. Since /i, f-ti > 0, i = 1,2, d~~X) I ~ °
(2.3)

by the equality (2.5). Hence e is stable. . 0

REMARK. Since the asymptotic stability of the system (2.3) with
(2.6) is not expected in general, there exists a possibility that E = {x E

]R8 : d~~X) I = 0, x =1= e} is not empty. Indeed, if we consider the
(2.3)

initial conditions Yl(O) = Y2(0) = Yl(O) = Y2(0) = °and Pl2 = P22 = °
(other conditions are arbitrary), then x with Yl = Y2 = Yl = Y2 = °is
a unique solution of (2.3), because the control pairs (Ui, Vi), i = 1,2, are
differentiable on V(.c). Hence the moving objects never can escape from
the x-axis. IT both the initial positions are on the x-axis at the opposite
from their targets, then e is not asymptotically stable.

We shall next give some examples to explain the above Remark, and
simultaneously to explain how to obtain theasymptotical stability of e
by simulations. In many realistic cases, we can find the cases where the
antitargets are in front of the moving objects. Hence we focus on these
ones.

The following data will be used as the initial data for Example 2.1
and Example 2.2:

Note that in the fourth order .Runge-Kutta method is used in the
simulations.

Time interval: [0, 50]
Target centers: (Pll,Pl2) = (5,0), (P2bP22) = (-5,0)
Target/moving object radii: rpl = rp2 = 2, rapl = rap2 = 1
Initial states: (XbZbYl,Wl) = (-10,1,0,1),

(X2,Z2,Y2,W2) = (10,-1,0,1)
Control parameters: frl2 = 1, fr2l = 1, f3 = 1
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Convergence parameters : /1 = J.L1 = /2 = J.L2 = 5

EXAMPLE 2.1. For the given data, we see that two moving objects
can never arrive to their targets.

To verify the roles of the each parameter as mentioned in the above
remark, we consider two cases:

(1) Cl!12 = Cl!21 = 0.1, 1, 5;
(2) (3 = 0.1, 1, 5.

This example shows that the smaller adresp. a21) is, the shorter the
distance between moving object Al (resp. A2) and target T2(resp. T1)

can become for case (1) and when (3 is increase, the distances between
moving objects get large for case (2).

The results of simulations are given in Fig. 2.1 and Fig 2.2.

EXAMPLE 2.2. This example shows that all trajectories go to their
targets when the initial data in Example 2.1 are changed slightly as
follows:

(1) a12 = 1.5.
(2) /1 = 4, which means the speed of Al is faster than that of A2 •

(3) rp1 = 1.5, which means the sizes of targets are different.
The results of simulations appear in Fig. 2.3.

3. A single planer arm

We consider a very simple robot arm which has a translational joint
and a rotational joint in the horizontal plane. This arm consists of two
links made up uniforms slender rods; the revolute first link with fixed
length, and the prismatic second link which carries the payload at the
gripper. It is assumed that sliding motion of the second link relative
to the first link is due to a linear torque (there is no rotation of the
second link relative to the first). It is also assumed that the rotation of
the arm is caused solely by an applied actuator torque and is parallel to
the earth's surface so that gravity is not a factor. Our objective is to
move the gripper from an initial position to its target in the workspace,
the accepted path being smooth. For a schematic representation of the
robot arm in the horizontal xy-plane, we assume that the first link has
a fixed length R, the arm has length r(t) at time t, the arm has angular
position B(t) at time t, the arm has mass M located at which is the



142 Junhong Ha and Jito Vanualailai

center of mass, the payload of mass m is located at the gripper, the
linear torque is fret) at time t and the actuator torque is IO(t) at time t.

Using Lagrange' equations, it is easy to show that the equations of
motion of the arm are given by·

(3.1) { [MR2 + mr2(t)JO(t) + 2mr(t)r(t)B(t) = 'O(t)
mr(t) - mr(t)(P(t) = fret).

The Liapunov method requires a state-space description of the equa-
tions of motion. Accordingly, let

Xl the angular position, e(t), of the arm

X2 the angular speed, B(t), of the arm

Xa - the translational position, .r(t), of the mass m

X4 the translational speed, r(t), of the massm

u = the actuator torque, 'O(t)
v - the linear torque, fret).

These yield

Xl - X2

X2
U - 2mX2XaX4

-
MR2+ mxa2(3.2) xa X4

X4
v + mX22xa

m
Let us use the notation x = (Xl, ... ,xn) E Rn as a n-vector. Let us give
three variables X2, Xa, X4 in (3.2) the constraints such as

-a < X2 < a, a > 0,

o< R < Xa < Rmax,
-b < X4 < b, b > o.

The constraints tpay be expressed as the set

CS = {x E]R4: -00 < Xl < 00, -a < X2 < a, R < xa < Rmax, -b < X4 < b}.

We shall next construct a Liapunov function that determines control
pair (u, v) which makes the gripper (x, y) = (ox +Xa cos Xl, Oy +Xa sin xll
a.G~ its target (p, q) in polar coordinates and x E CS, where (ox,Oy) is

. the$:enter of the robot in the xy-plane. In this section, we assume that
(ox,Oy) = (0,0) without loss of generality. Now we define the functions
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v, vv, z, Q, G as follows:
V is the function that makes the gripper approach the target;

V = ~{Ql(Xl - p)2 + Q2(X3 - q? + X~ + X~},

W is the function that adjusts the angular speed of the gripper;

W = (a + x2)(a - X2),

Z is that function to controls the length of the robot arm;

Z = (-R + X3)(Rmax - X3),

Q is the function that controls the translational speed of the robot arm;

G is the function which denotes the distance between gripper and its
target;

1{ 2 2}G = "2 (Xl - p) + (X3 - q) .

Using the above functions V, W, z, Q and G, we can now define a total
Liapunov function I:- on the domain V(I:-) = CS for the system (3.2) by

(
13 . J1. TJ)

I:-(x) = V + G W + Z + Q '

where f3, J1. and TJ are positive constants, which are control parameters.
It is clear that I:-(x) 2:: 0 for all x E CS.

We remark that our Liapunov function is more simpler than the
Liapunov-like function considered by Stonier [4].

Now, to determine the control pair (u, v) we differentiate the Liapunov
function L(x) with respect to t, where x = (XI, X2, X3, X4) is the solution
of (3.2). By straightforward calculations we have

dL(x) I
~ (3.2) =
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(3.6)

If we substitute (X2, X4) of (3.2) into the above equality and we take the
control pair (u, v) as

(
f3G)-I

(3.4) u = (MR2+ mx~) 1+ W 2 [(p - xI)AI - ··nx2] + 2mx2x3x4

and
(3.5)

(
PG) -1 [ pG(R + Rmax - X3) ] 2

v = m 1+ Q2 (q - x3)A2 + Z2 - 1'2X4 - mX2X3,

then we have

dL(x(t)) I 2 2
dt = -,IX2 - 12X 4'

(3.2)

where Ai = ai +~ + ; + Zand 11,1'2 are positive constants. We ~o
call 11 and 1'2 convergence parameters, and their roles are similar to the
cases of moving objects. We note that e = (p, 0, q, 0) is an equilibrium
state of (3.2) with (3.4) and (3.5). For aI, a2, it is verified in simulations
that the variation of Xl (or X3) is faster than the one of x2(or Xl)' (See
Example 3.1 for verification.)

Therefore we have proved the following theorem:

THEOREM 3.1. The equilibrium state e of the system given by

Xl = X2

X2 = f3G:2W2 [A(P - Xl) - 1'I X2]

X3 =X3
Q2 [B( ) pG(R + Rmax - 2X3) ]

X4 =",G + Q2 q - X2 + z2 - 1'2X4

is stable if we take li > 0, i = 1,2. Moreover e of (3.6) is asyillptotically
stable.

Proof It is easily verified that L(e) = 0 and dL~X)I ::; O. Therefore
(3.2)

The equilibrium state e is stable. The asymptotic stability of e follows

from the fact E = {x E lR.4 : dL(x) I = O} = {e}. 0
dt (3.2)

REMARK. In Stonier [4}, he remarked that all parameters had to
be selected carefully, because the solution orbits may oscillate if the
parameters were slightly changed. However, in our case, we can see in
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the simulations that changing the parameters does not affect the stability
of solution orbits at all, because the system (3.6) is stable.

EXAMPLE 3.1. The initial settings are given as follows.
Time Interval: [0, 60]
RK4 Step Size: 0.01
Target Centers: (p, q) = (7r/2, 7)
Length of the first link : R = 3
Length of the total link : Rmax = 8
Initial States: (Xl,X2,X3,X4) = (0,0.1,4,0.1)
Control Parameters : f3 = J.L = TJ = 1
Convergence Parameters : 11 = 12 = 20

In this example, we give some simulation results of the effect of parame­
ters Q1 and Q2. Consider the following cases where (1) Q1 = 0.1, 1, 10
and Q2 = 1, and (2) Q2 = 0.1, 1, 10 and Q1 = 1.

If Q1 > Q2, Fig. 3.1 shows that the angular speed is larger than the
translational speed. If Q1 < Q2, Fig. 3.2 shows that the translational
speed is larger than the angular speed.

6
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