
Exploring Potential Discriminatory Information
Embedded in PSSM to Enhance Protein
Structural Class Prediction Accuracy

Abdollah Dehzangi1,2, Kuldip Paliwal1, James Lyons1, Alok Sharma3, Abdul
Sattar1,2

{a.dehzangi, k.paliwal, j.lyons, and a.sattar}@griffith.edu.au ,

sharma al@usp.ac.fj

1 Institute for Integrated and Intelligent Systems (IIIS), Griffith University,
Brisbane, Australia

2 National ICT Australia (NICTA), Brisbane, Australia
3 University of the South Pacific, Fiji

Abstract. Determining the structural class of a given protein can pro-
vide important information about its functionality and its general ter-
tiary structure. In the last two decades, the protein structural class pre-
diction problem has attracted tremendous attention and its prediction
accuracy has been significantly improved. Features extracted from the
Position Specific Scoring Matrix (PSSM) have played an important role
to achieve this enhancement. However, this information has not been
adequately explored since the protein structural class prediction accu-
racy relying on PSSM for feature extraction still remains limited. In this
study, to explore this potential, we propose segmentation-based feature
extraction technique based on the concepts of amino acids’ distribution
and auto covariance. By applying a Support Vector Machine (SVM) to
our extracted features, we enhance protein structural class prediction ac-
curacy up to 16% over similar studies found in the literature. We achieve
over 90% and 80% prediction accuracies for 25PDB and 1189 benchmarks
respectively by solely relying on the PSSM for feature extraction.
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1 Introduction

Protein structural class prediction problem is defined as assigning a given pro-
tein to one of four structural classes namely all-α, all-β, α + β, and α/β [1].
Protein structural class prediction can provide important information about the
functionality of proteins as well as their general tertiary structure. Despite all
the efforts that have been made to find a fast computational approach to solve
this problem, especially for low homologous protein sequences, it still remains
unsolved for computational biology and bioinformatics [2–4].



During the last two decades, a wide range of classification techniques have
been proposed to tackle the protein structural class prediction problem such
as, Support Vector Machine (SVM) [5–8], Artificial Neural Network (ANN) [9,
10], Meta Classifiers [11, 12], and ensembles of classifiers [13–15]. Among the
proposed classification techniques used to tackle this problem, SVM has attained
the best results [7, 16–18]. Similarly, a wide range of features have been proposed
and used to reveal more discriminatory information for this task [5, 16, 19]. More
significant improvement for protein structural class prediction accuracy has come
from the new features being introduced rather than the classification technique
being used for this task [16, 17, 20].

The first group of features that significantly enhanced the protein structural
class prediction accuracy were extracted from the evolutionary information em-
bedded in the Position Specific Scoring Matrix (PSSM) [21]. Latter on, several
feature extraction techniques were proposed to explore the potential local and
global discriminatory information embedded in PSSM to tackle this problem
such as composition of the amino acids [8], pseudo amino acid composition [2],
dipeptide composition [8], and auto covariance [17]. However, the discriminatory
information embedded in PSSM has not been adequately explored since the pre-
diction accuracy relying on these features remains limited. Further enhancement
for the protein structural class prediction accuracy has been achieved by rely-
ing on the structural information extracted [7, 16] from the predicted secondary
structure of proteins using PSIPRED [22]. despite a wide range of feature extrac-
tion techniques being explored [5, 7, 8, 20], the protein structural class prediction
accuracy relying on structural information has not been improved adequately
since the study of Mizianty and Kurgan in 2009 [16]. This highlights the need
for novel feature extraction techniques relying on the alternative sources for
feature extraction.

In this study, we propose two segmented feature extraction techniques based
on the concepts of distribution and auto covariance methods to explore local
discriminatory information embedded in the PSSM. We also use the concept
of occurrence of the amino acids to explore global discriminatory information
embedded in PSSM rather than composition of the amino acids that has been
widely used for this task to capture the information regarding the length of the
protein sequence [16, 17]. By applying SVM to our extracted features we achieve
over 90% and 80% protein structural class prediction accuracies for 25PDB and
1189 benchmarks respectively. We enhance the protein structural class prediction
accuracy for up to 16% compared to smilar studies which have used PSSM for
feature extraction.

2 Benchmarks

In this study, two popular benchmarks that have been widely used for the protein
structural class prediction problem namely, 25PDB and 1189 benchmarks are
used. The 25PDB benchmark was introduced in [19] consists of 1673 proteins
with less than 25% sequential similarities (the homology range between 22%



and 45%). This benchmark was extracted from 25% PDBSELECTED which
includes high resolution protein sequences in the Protein Data Bank (PDB) [23].
Therefore, this benchmark is considered as a reliable representative of proteins
in the twilight zone (proteins with the sequence similarities between 20% to
45%). Hence, this benchmark is employed in this study as the main source to
investigate the performance of our proposed techniques.

The 1189 benchmark is a popular benchmark that has been widely used in
the literature. This benchmark was introduced by [3] consisted of 1189 proteins.
However, 97 proteins were dropped from this benchmark in later studies [19] to
address further correction of Structural Classification of Proteins (SCOP) [24].
As the result, current version of this benchmark consists of 1092 proteins with
less than 40% sequential similarities. Dissimilar to 25PDB, this benchmark in-
cludes proteins with low resolutions as well. Therefore, despite higher sequential
similarity among proteins in this benchmark, lower prediction accuracies have
been reported in the literature for this benchmark compared to 25PDB using
similar approaches [5, 7, 8]. This benchmark is mainly used in this study to com-
pare our results directly with previously reported results as well as tuning the
classification and feature extraction parameters while 25PDB benchmark is not
used at all in the tuning step.

3 Feature Extraction Method

Since our proposed features are all extracted directly from PSSM, we need to first
produce this matrix. To calculate PSSM, PSI-BLAST [21] is applied for both
25PDB and 1189 benchmarks (using NCBI’s non redundant (NR) database while
its cut off value (E) is set to 0.001). PSSM provides the substitution probability
of a given amino acid based on its position in a protein sequence with all 20
amino acids. It consists of two L × 20 matrices (where L is the length of protein
sequence and 20 columns are representatives of 20 amino acids). The first matrix
provides the log-odds of the amino acids substitution probabilities and it is called
PSSM cons while the second matrix provides normalized substitution probability
and it is called PSSM probs. Since PSSM cons has been widely used in the
literature for feature extraction [16, 17], it is also adopted in this study.

To explore potential local and global discriminatory information embedded
in PSSM, four feature groups are proposed and used in this study. These feature
groups are, consensus sequence-based occurrence of the amino acids (AAO), semi
occurrence of the amino acids (PSSM-AAO), segmented distribution (PSSM-
SD), and segmented auto covariance (PSSM-SAC). The first two feature groups
are proposed to reveal global discriminatory information while the remaining
two methods are proposed to reveal local discriminatory information embedded
in PSSM. These four feature extraction methods are explained in detail in the
following subsections.



3.1 Consensus Sequence-based Occurrence (AAO)

To extract global discriminatory information embedded in PSSM, we first ex-
tract the occurrence of the amino acids feature group from the consensus se-
quence derived from PSSM. In the protein consensus sequence, amino acids
along the original protein sequence (O1, O2, ..., OL) are replaced with the cor-
responding amino acids with the maximum substitution probabilities in PSSM
(C1, C2, ..., CL). This is done in the following two steps. In the first step, the
index of the amino acid with the highest substitution probability (based on its
position in the protein sequence) is calculated as follows:

Ii = argmax{Pij : 1 ≤ j ≤ 20}, 1 ≤ i ≤ L, (1)

where Pij is the substitution probability of the amino acid at location i with
the jth amino acid in PSSM cons. In the second step, we replace the amino
acid at ith location of original protein sequence by the Ith amino acid to form
the consensus sequence. After calculating the consensus sequence, we count the
number of occurrence of each amino acid (for all 20 amino acids) along the
consensus sequence and return the corresponding values. Therefore, a feature
group consisting of 20 features is calculated. The occurrence feature group as
the global descriptor of the proteins is used in this study since it maintains the
information regarding the length of protein sequence which is discarded using
the composition feature group (occurrence of amino acids divided by the length
of the protein sequence (AAC) [16]).

3.2 Semi Occurrence (PSSM-AAO)

This feature group is directly extracted from the PSSM. It is called semi oc-
currence because it is not calculated in the similar manner to the occurrence
feature group as it was explained in previous subsection. Instead, it is produced
by summation of the substitution score of a given amino acid with all the amino
acids along the protein sequence which is calculated as follows:

PSSM-AAOj =

L∑
i=1

Pij , (j = 1, ..., 20). (2)

This feature group is able to provide important global discriminatory infor-
mation about the substitution probability of the amino acids [17]. Different to
composition of the amino acid extracted from PSSM (which is called PSSM-
AAC in [17]), PSSM-AAO maintains the information regarding to the length of
protein sequence. In PSSM-AAC the the summation of substitution probabilities
of the amino acids are divided by the length of protein sequence.

3.3 Segmented Distribution (PSSM-SD)

This method is specifically proposed to add more local discriminatory informa-
tion about how the amino acids, based on their substitution probability with each



Fig. 1. The segmentation method used to extract PSSM-SD feature group.

other (extracted from PSSM), are distributed along the protein sequence. We
propose this segmentation method in the manner where segments of a protein se-
quence are of unequal lengths and each segment is represented by a distribution
feature which is computed as follows. First, for the jth column in the PSSM,
we calculate the total substitution probability Tj =

∑L
i=1 Pij . Then, starting

from the first row of PSSM, we calculate the partial sum S1 of the substitution
probabilities of the first i amino acids until reaching to 25% of the total sum

S1 =
∑I1

j

i=1 Pij . Using the distribution factor F = 25%, we calculate the I1
j . The

I1
j corresponds to the number of the amino acids such that the summation of

their substitution probabilities is less than or equal to the F = 25% of (Tj). Sim-
ilarly, we calculate the partial sum of the first i amino acids (starting from the

first row of PSSM) until reaching 2 × F = 50% of the total sum S2 =
∑I2

j

i=1 Pij

and calculate the I2
j corresponding to the number of amino acids such that the

summation of their substitution probabilities is less than or equal to F = 50%
of the total Tj .

We repeat the same process beginning from the last row of the PSSM for
the jth column. We calculate the partial sum of the substitution probability of
the first i amino acids until reaching F = 25% and 2 ×F = 50% of the total

sum which are S3 =
∑I3

j

i=1 Pij and S4 =
∑I4

j

i=1 Pij respectively and calculate the
I3
j and I4

j . I3
j and I4

j correspond to the number of amino acids such that the
summation of their substitution probability is less than or equal to F and 2 × F
of Tj respectively (starting from the last row of PSSM). In this manner we extract
four segmented distribution features for each column in PSSM. The method used
to calculate PSSM-SD is shown in Figure 1. We repeat the same process for all
20 columns corresponding to 20 amino acids in PSSM and extract 80 features in
total in this feature group (4× 20 = 80). Note that F = 25% is adopted in this
study due it s better performance compared to use of F = 10% and F = 5%
explored experimentally by the authors. In the other word, using four segments
is sufficient for providing adequate local discriminatory information compared
to the use of 10 or 20 segments.



3.4 Segmented Auto Covariance (PSSM-SAC)

The concept of auto covariance has been widely used in the literature to capture
local discriminatory information and has attained better results compared to
similar methods used for this task such as dipeptide composition [8, 17]. Pseudo
amino acid composition based features are good examples of these types of fea-
tures [2, 4]. These features have been computed using the whole protein sequence
as a single entity for feature extraction. Therefore, they could not adequately
explore the local sequence order information embedded in protein sequence [17].
In the present study, we extend the concept of segmented distribution features
as described in the previous subsection to compute the auto covariance features
from the segmented protein sequence. This is done to enforce local discriminatory
information extracted from PSSM.

To extract this feature group, we calculate the auto covariance of the substi-
tution probability of the amino acids using K as the distance factor for each seg-
ment of proteins generated using segmented distribution in the following manner.
Starting from the first row of PSSM, for the jth column of PSSM, we calculate K
auto covariance features for the first I1

j . Similarly, we calculate auto covariance

for the first I2
j amino acids. Then starting from the last row of PSSM for the jth

column of PSSM, We repeat the same process for I3
j , and I4

j (I1
j , I2

j , I3
j , and I4

j

are calculated from the previous subsection). This process is repeated for all 20
columns of PSSM and corresponding features are calculated as follows:

PSSM-segn,m,j =
1

(Inj −m)

Inj −m∑
i=1

(Pi,j − Pave,j)× (P(i+m),j − Pave,j),

(n = 1, ..., 4 & m = 1, ...,K & j = 1, ..., 20), (3)

where, Pave,j is the average substitution probability for the jth column in PSSM.
Note that 2 × K auto covariance coefficients are computed in this manner by
analyzing PSSM in the downward direction and 2×K auto covariance coefficients
are computed in this manner by analyzing PSSM in the upward direction (4×K
features in total). We also compute the global auto covariance coefficient (K
features) of PSSM as follows:

PSSM-ACm,j =
1

(L−m)

L−m∑
i=1

(Pi,j − Pave,j)× (P(i+m),j − Pave,j),

(m = 1, ...,K & j = 1, ..., 20). (4)

Thus, we have extracted a total of ( 2K + 2K + K = 5K) auto covariance
features in this manner (for the jth column of the PSSM). Therefore, for all 20
columns of the PSSM, segmented auto covariance of substitution probability of
the amino acids are extracted and combined to build the corresponding feature
group which will be referred to as PSSM-SAC (PSSM-seg + PSSM-AC which
consists of 20× (5K)) features in total).



4 Support Vector Machine

SVM was introduced by [25] to find the Maximum Margin Hyper-plane (MMH)
based on the concept of the support vector theory to minimize classification
error. It transforms the input data to higher dimension using the kernel function
to be able to find support vectors (for nonlinear cases). The classification of some
known points in input space xi is yi which is defined to be either -1 or +1. If x′

is a point in input space with unknown classification then:

y′ = sign

( n∑
i=1

aiyiK(xi,x
′) + b

)
, (5)

where y′ is the predicted class of point x′. The function K() is the kernel function;
n is the number of support vectors and ai are adjustable weights and b is the
bias. This classier is considered as the state-of-the-art classification techniques
in the pattern recognition and attained the best results for the protein structural
class prediction problem [7, 16, 17]. In this study, SVM classifier implemented in
the LIBSVM (C-SVC type) toolbox using Radial Basis Function (RBF) as its
kernel is used [26]. The γ in addition to the regularization parameter C (which
also called the soft margin parameter) of the RBF kernel are optimized using
grid search algorithm implemented in the LIBSVM package.

5 Results and Discussion

We first explore the effectiveness of the segmented auto covariance (PSSM-SAC)
method compared to global auto covariance (PSSM-AC) used in [17]. PSSM-AC
was used to explore local discriminatory information embedded in PSSM and
attained the best results for this task. Then, one by one, we add the rest of the
feature groups extracted in this study and explore their impact on the protein
structural class prediction accuracy, separately. Finally, we compare the results
reported in this study with the similar studies found in the literature for the
protein structural class prediction problem. To evaluate the performance of our
proposed methods and to be able to directly compare our results with previously
studies, we adopt Jackknife cross validation as it was widely used for this task
in the literature [16, 17, 19]

5.1 The effectiveness of PSSM-SAC versus PSSM-AC

To investigate the effectiveness of PSSM-SAC compared to PSSM-AC we first
reproduce the experiments conducted in [17]. In this experiment, PSSM-AC in
combination of PSSM-AAC was used as the input feature group (called AAC-
PSSM-AC) for different values of K (between 1 and 10) using an SVM classifier.
We similarly combine the PSSM-SAC with PSSM-AAC (called AAC-PSSM-
SAC) to be able to directly compare these two feature groups with respect to
different values of distance factor K between 1 and 10 (using an SVM as it



was used in [17]). The results achieved for 25PDB and 1189 are respectively
shown in Figure 2.a and Figure 2.b. As it is shown in these figures, increasing
the K value, AAC-PSSM-SAC significantly outperform AAC-PSSM-AC. Using
K = 10 we achieve up to 81.1% and 76.9% prediction accuracies respectively
for 25PDB and 1189 benchmarks. This highlights the effectiveness of PSSM-
SAC to extract local discriminatory information based on the concept of auto
covariance from the PSSM. Note that our results using solely AAC-PSSM-SAC
enhances the protein structural class prediction accuracy for up to 6% and 2.3%
for 25PDB and 1189 benchmarks respectively compared to the best results found
in the literature relying on PSSM for feature extraction. In continuation, we
replaced PSSM-AAC with PSSM-AAO which enhances the protein structural
class prediction accuracy for all 10 values of K between 0.5% and 2% (when
increasing K from 1 to 10, the impact of AAO is reduced from almost 2% to
0.5%) which shows the effectiveness of using AAO compared to AAC. Therefore,
for the rest of this study, AAO is used instead of AAC. We then use grid search
algorithm on 1189 to optimize SVM parameters (C and γ) for AAO-PSSM-AC
(where K = 10) to avoid over tuning. 25PDB also was not used at all for this
task. The optimal values achieved for C and γ are respectively 500 and 0.05
which are used for the rest of this study.

(a) Comparison of the AAC PSSM AC and

AAC PSSM SAC on 1189 benchmark

(b) Comparison of the AAC PSSM AC and

AAC PSSM SAC on 25PDB benchmark

Fig. 2. Results achieved for AAC PSSM SAC and AAC PSSM AC with respect the
value of K (Between 1 to 10) for 1189 and 25PDB benchmarks.

5.2 The Effectiveness of PSSM-SD Feature Group

In continuation, we add the PSSM-SD feature group to the combination of
PSSM-SAC and PSSM-AAO (AAO-PSSM-SAC) and study its impact for dif-
ferent values of K (between 1 and 10). The results achieved for 25PDB and 1189
benchmarks are shown in Figure 3. As we can see, by adding PSSM-SD, dis-
similar to AAC-PSSM-SAC by increasing the value of K to 10, the prediction



Fig. 3. The results achieved for combination of PSSM-AAO, PSSM-SAC, and PSSM-
SD using SVM for different values of K (between 1 to 10) for 1189 and 25PDB bench-
marks.

accuracy does not improve (it even slightly reduces). Therefore, adding PSSM-
SD reduce the dependency to the value of K in PSSM-SAC to provide local
information. In another word, we are able to increase the provided local infor-
mation using PSSM-SD feature group and at the same time reduce the number
of features. Using the combination of PSSM-AAO, PSSM-SAC, and PSSM-SD
where K = 1 (20 + 100 + 80 = 200 features in total), we achieve up to 89.4%
and 79.5% prediction accuracies for 25PDB and 1189 benchmarks respectively
which are 15.3% and 4.9% better than the highest results reported for these
benchmarks in the literature using features extracted from PSSM.

5.3 The Effectiveness of AAO Feature Group

In this Step, we add the AAO feature group to the combination of PSSM-AAO,
PSSM-SAC (where K = 1), and PSSM-SD (20 + 20 + 100 + 80 = 220 features
in total). By adding this feature group and applying SVM to these combination,
we achieve up to 90.1% and 80.2% prediction accuracies respectively for 25PDB
and 1189. These results are up to 16% and 5.6% respectively better than the best
results reported for these two benchmarks using PSSM for feature extraction. It
is important to highlight that these results are achieved using the same number
of features used in [17] to achieve their best results for these two benchmark
using PSSM for feature extraction. The results adding each feature group in
each step is shown in Table.1. Note that in this table the impact of PSSM-SAC
where K = 1 is shown while as it was explained in previous section, depend on
the combination of feature groups being used, this impact has changed.

5.4 Performance Comparison with Existing Methods

In this section, the overall protein structural class prediction accuracy as well
as prediction accuracy achieved for each structural class achieved by using the
combination of our feature groups (PSSM-AAO + PSSM-SAC + PSSM-SD +
AAO which will be referred as PSSM-S for simplicity) compared to previously



Table 1. The impact of proposed feature extraction groups proposed in this study to enhance
protein structural class prediction accuracy (in %).

Combination of features Classifier 25PDB 1189
PSSM-AAO SVM 65.5 62.4
PSSM-AAO + PSSM-SAC (K = 1) SVM 69.9 69.1
PSSM-AAO + PSSM-SD SVM 87.1 76.4
PSSM-AAO + PSSM-SAC (K = 1) + PSSM-SD SVM 89.4 79.5
PSSM-AAO + PSSM-SAC (K = 1) + PSSM-SD + AAO SVM 90.1 80.2
PSSM-AAO + PSSM-AC (K = 6) + PSSM-SD + AAO SVM 89.1 78.1

Table 2. Comparison of the results reported for the 25PDB benchmark (in percentage %).

References Method All-α All-β α / β α + β Overall
[19] Logistic Regression 69.1 61.6 60.1 38.3 57.1
[27] Specific Tri-peptides 60.6 60.7 67.9 44.3 58.6
[13] LLSC-PRED 75.2 67.5 62.1 44.0 62.2
[13] SVM 77.4 66.4 61.3 45.4 62.7
[14] SSA 92.6 83.7 80.5 65.9 81.5
[28] SCPRED 92.6 80.1 74.0 71.0 62.7
[29] CWT-PCA-SVM 76.5 67.3 66.8 45.8 64.0
[18] AATP 81.9 74.7 75.1 55.8 71.7
[8] AADP-PSSM 83.3 78.1 76.3 54.4 72.9
[17] AAC-PSSM-AC 85.3 81.7 73.7 55.3 74.1
This Study PSSM-S 93.8 92.8 92.6 81.7 90.1

Table 3. Comparison of the results reported for the 1189 benchmark (in percentage %).

References Method All-α All-β α / β α + β Overall
[3] Bayes Classifier 54.8 57.1 75.2 22.2 53.8
[19] Logistic Regression 57.0 62.9 64.7 25.3 53.9
[30] FKNN 48.9 59.5 81.7 26.6 56.9
[27] Specific Tri-peptides - - - - 59.9
[15] IB1 65.3 67.7 79.9 40.7 64.7
[31] SVM 75.8 75.2 82.6 31.8 67.6
[18] AATP 72.7 85.4 82.9 42.7 72.6
[8] AADP-PSSM 69.1 83.7 85.6 35.7 70.7
[17] AAC-PSSM-AC 80.7 86.4 81.4 45.2 74.6
This Study PSSM-S 93.3 85.1 77.6 65.6 80.2

reported results for this task are shown in Table 2 and Table 3. As we can see, we
not only significantly enhance the overall protein structural class prediction ac-
curacy but also in most of the cases achieve better results for different structural
classes. Relying solely on PSSM for feature extraction, we achieve over 90% and
80% prediction accuracies for 25PDB and 1189 benchmarks. It is important to
highlight that we also achieved significantly higher results for 25PDB compared
to studies which have used PSIPRED for feature extraction as well while it was
relatively comparable for 1189 [7, 16].

6 Conclusion and Future Works

In this study, we proposed novel feature extraction methods to explore poten-
tial local and global discriminatory information embedded in PSSM for protein
structural class prediction problem. We proposed the concepts of segmented auto



covariance and segmented distribution to extract this local information. We also
employed the concept of occurrence to extract potential global discriminatory
information directly from PSSM as well as the transformed protein sequence
using PSSM. By applying SVM we showed the effectiveness of our proposed fea-
ture groups by enhancing protein structural class prediction accuracy for up to
16% and 5.6% for 25PDB and 1189 benchmarks respectively. We, for the first
time, achieved over 90% and 80% (90.1% and 80.2%) protein structural class
prediction accuracies for 25PDB and 1189 benchmarks respectively using PSSM
for feature extraction. For our future work, we aim to study the effectiveness
of structural information based on predicted secondary structure of proteins to
enhance the protein structural class prediction accuracy, further.
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