
 

 

  
Abstract—This paper presents a set of artificial potential field 

functions that improves upon, in general, the motion planning and 

posture control, with theoretically guaranteed point and posture 

stabilities, convergence and collision avoidance properties of 3-trailer 

systems in a priori known environment. We basically design and 

inject two new concepts; ghost walls and the distance optimization 

technique (DOT) to strengthen point and posture stabilities, in the 

sense of Lyapunov, of our dynamical model. This new combination 

of techniques emerges as a convenient mechanism for obtaining 

feasible orientations at the target positions with an overall reduction 

in the complexity of the navigation laws. The effectiveness of the 

proposed control laws were demonstrated via simulations of two 

traffic scenarios. 

 

Keywords—Artificial potential fields, 3-trailer systems, motion 

planning, posture, parking and collision-free trajectories. 

I. INTRODUCTION 

HE nonholonomic motion planning problem involves 

finding a feasible path from some initial configuration to 

some desired final configuration for a system with 

nonholonomic velocity constraints. These nonintegrable 

constraints arise from the condition of non-slippage on the 

wheels in rolling contact with another rigid body. Some 

examples of these types of nonholonomic systems include 

mobile robots, tractor-trailer vehicles and mobile 

manipulators. A wide range of problems in various robotic 

applications have been solved by utilizing the artificial 

potential field method. Its major advantages include easier 

analytic representation of system singularities and inequalities, 

its simplicity and processing speed. The underlying principle 

of this method is to attach attractive fields to the target and 

repulsive fields to the obstacles. The robot's workspace is then 

filled with positive and negative fields, in which the robot is 

attracted to its designated target and repulsed away from the 

obstacles. The pioneer work on motion planning and control 

of robots via the artificial potential fields was done by Khatib 

in [1]. 

Tractor-trailer systems constitute a generalization of the 

mobile robots. They are basically composed of a mobile robot, 
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and several trailers pulled by the mobile robot, which satisfy 

nonholonomic restrictions as well. These articulated robot 

systems are found in a variety of places, such as airports, 

factories, mines, multiple-trailer trucks as they increase 

transportation efficiency. Researchers are currently designing 

various control algorithms for motion planning of these multi-

body vehicles that are capable of performing a wide range of 

tasks in various environments. 

In [2], Lee et al presented experimental data for the design 

and control of passive multiple trailer systems, both off and 

on-axle. Motion planning and collision avoidance schemes 

were considered by minimizing the trajectory tracking error 

with the reference trajectory implying the trajectory of the 

towing vehicle. In [3]-[6], the authors considered motion 

planning and posture control and formations types of the 

standard and general 1-trailer robots where point to point 

motion were controlled using a Lyapunov based control 

scheme. Ghost walls and the distance optimization technique 

DOT were utilized to orchestrate "near perfect" final 

orientations of every solid body of the articulated robot, inside 

a designated parking bay. 

This paper makes use of Lyapunov techniques as a tool for 

the motion planning of tractor-trailer robots. Specifically, the 

authors deal with the standard 3-trailer system. The multi-

body robot navigates its way towards the target in a 

constrained workspace populated with fixed obstacles. Here, 

the walls of the bounded workspace and the static obstacles 

are treated as ghost obstacles. To avoid these obstacles, we 

utilize Khatib's collision avoidance scheme to propose 

potential fields to safely traverse in the workspace towards the 

target position and attain the desired final posture. 

The paper is organized as follows. In Section II, the vehicle 

model is defined. In Sections III, IV and V, motion planning is 

carried out. The construction of stabilizing control laws is 

presented in Section VI, while Section VII contains some 

simulation results. The paper ends with some concluding 

remarks in Section VIII. 

II. VEHICLE MODEL 

Two different trailer systems can be distinguished from 

literature; standard and the general trailer systems, grouped 

into two different categories based upon their different 

hooking schemes. Basically, these systems consist of a tractor 

towing an arbitrary number of trailers, which mostly are 

passive in order to reduce the costs of implementation. The 

authors will consider a rear wheel driven car-like vehicle, and 

an on-axle (standard system) hitched two-wheeled passive 

trailer, in Euclidian plane. The tractor robot utilized herein 
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basically performs motions similar to that of a car-like robot, 

with front-wheel steering and decrees the path of the attached 

trailer. 

Many papers on nonholonomic systems have dealt 

exclusively with the kinematic models with the inherent 

advantage of decoupling the steering and velocity controls of a 

vehicle. However, to better mimic reality we accommodate for 

the dynamics of the vehicular system as well. This produces a 

trajectory in the state-space rather than merely a path in 

configuration space [7], while retaining the advantage of 

decoupling, but in this case, of the translational and rotational 

accelerations. 

In this research, the standard3-trailer system embodies a 

car-like tractor robot and three on-axle hitched two-wheeled 

passive trailers. A revolute link or a rigid bar of length 
s
iL  

joins the two vehicles; from the midpoint point of the rear axle 

of the ith vehicle to the midpoint of the rear axle of the i-1th 

vehicle (see Fig. 1). 

 

 

Fig. 1 Kinematic model of the standard 3-trailer robot 

 

With reference to Fig. 1, ( ),i ix y represents the Cartesian 

coordinates and gives the reference point of the ith solid body 

of the articulated robot while iθ gives its orientation with 

respect to the 1z axis. Also, 0L is the distance between the two 

axles of the tractor robot, and l is the length of each axle. The 

connections between any two bodies give rise to the following 

holonomic constraints on this system: 
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for 0,...,3i = . We define 1:i id aε= + where ia is a small 

offset for the ith vehicle (see Fig. 2). These constraints will 

reduce the dimension of the configuration space, since the 

position ( ),i ix y
 
can be expressed completely in terms of

( )0, ,o ix y θ . 

 

 

Fig. 2 Schematic diagram of a standard 3-trailer system and the 

ghost walls 

  

If we let m be the mass of the full robot, F the force along 

the axis of the tractor robot, Γ the torque about a vertical axis 

at ( )0,ox y and I the moment of inertia of the tractor robot, then 

the dynamic model of a standard 3-trailersystem extended 

from [3] is given by 
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A. Minimizing C-Space 

To ensure that the entire vehicle safely steers pass an 

obstacle, the planar vehicle can be represented as a simpler 

fixed-shaped object, such as a circle, a polygon or a convex 

Hull [8]. This representation is facilitated with the inherent 

view of minimizing the obstacle space in the workspace. 

Obstacle space is commonly known as C-space in the 

literature. In [3], the authors represented a standard 1-

trailersystem by the smallest circle possible, given some 

clearance parameters. The obvious problem of their 

representation was the creation of unwarranted obstacle space, 

which further curtailed the set of reachable points in the 

configuration space. In this research, given the clearance 

parameters 
1ε
 
and 

2ε  the authors enclose the articulated 

vehicle within separate protective circular regions (as seen in 

Fig. 2), i.e. a protective region for each solid body, which 

basically reduces the unnecessary growth of theC-space in [7] 

and subsequently presents a greater set of options. Hence, 

circular region 
iC is centered at ( ),i ix y for 0,...,3i = , with 

radius ( ) ( )
1
2

0 0
2 2 21

0 0 1 22 2
2 2

L d

Vr L lε ε + = + + + =   
and 
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( ) ( )
1
22 21

22 2
2 2

s
iLs

Vi ir L a l ε = − + + =  
.  

If we let 0 0
2s

i
L L d= +  for 1,...,3i = then 

0V Vir r= . Also 

with the choice of the reference points and the radius of the 

circular regions of the vehicles, we have 0 id d=  for 1,...,3.i =  

III. ATTRACTIVE POTENTIAL FIELD FUNCTIONS 

This section formulates collision free trajectories of the 

robot system under kinodynamic constraints in a fixed and 

bounded workspace. It is assumed that the car-like robots have 

priori knowledge of the whole workspace. We want to design 

the acceleration controllers, 
1

σ
 
and 2σ , so that the mobile 

robot moves safely towards its target. 

 A. Attraction to Target 

 A target is assigned for the robot to reach after some time t. 

For the ith body of the tractor trailer system, we define a target 

 

 ( ) ( ) ( ){ }2 22 2

1 2 1 1 2 2 , : i i iT z z z p z p rt= ∈ − + − ≤ℝ  

 

with center ( )1 2,i ip p  and radius irt . For the attraction to its 

designated target, we consider an attractive potential function 

 

 ( ) ( ) ( )
3

2 2 2 21
1 22

0

i i i i

i

V x p y p v ω
=

  = − + − + +   
∑x           (2) 

B. Auxiliary Function 

 To guarantee the convergence of the mobile robot to its 

designated target, we design an auxiliary function defined as:   

 

( ) ( ) ( ) ( )
3

2 2 21
1 2 32

0

i i i i i i i

i

G x p y p pρ θ
=

 = − + − + − ∑x (3) 

 

where 3ip is the desired final orientation of the ith body of the 

articulated robot. These potential functions are then multiplied 

to the repulsive potential functions to be designed in the 

following sections. 

IV. REPULSIVE POTENTIAL FIELD FUNCTIONS 

We desire the ith body of the mobile robot to avoid all 

stationary obstacles intersecting their paths. For this, we 

construct the obstacle avoidance functions that merely 

measure the distances between each body and the obstacles in 

the workspace. To obtain the desired avoidance, these 

potential functions appear in the denominator of the repulsive 

potential field functions. This creates a repulsive field around 

the obstacles.  

A. Fixed Obstacles in the Workspace 

 Let us fix w solid obstacles within the workspace and 

assume that the qth obstacle is circular with center ( )1 2,q qo o

and radius qro . For the ith body with a circular avoidance 

region of radius 
Vir  to avoid the lth obstacle, we adopt 

 

( ) ( ) ( ) ( )2 2 2

1 2

1

2
iq i q i q q Vi

FO x o y o ro r = − + − − +  
x      (4) 

 

for 0,...,3i = and 0,...,q w= . 

B. Workspace Limitations 

We desire to setup a framework for the workspace of our 

robot. Our workspace is a fixed, closed and bounded 

rectangular region, defined, for some 2k rη >  for k=1, 2 with  

 
3

0

Vi

i

r r
=

= ∑ as ( ){ }2

1 2 1 1 2 2, : 0 ,0WS z z z zη η= ∈ ≤ ≤ ≤ ≤ℝ . 

 

We require the robot to stay within the rectangular region at 

all time 0t ≥ . Therefore, we impose the following boundary 

conditions: 

Left Boundary: ( )1 2 1, : 0z z z = , 

Upper Boundary: ( )1 2 2 2, :z z z η= , 

Right Boundary: ( )1 2 1 1, :z z z η= , 

Lower Boundary: ( )1 2 2, : 0z z z = . 

In our Lyapunov-based control scheme, these boundaries 

are considered as fixed obstacles. For the ith body of each 

robot to avoid these, we define the following potential 

functions for the left, upper, right and lower boundaries, 

respectively: 

 

1 ,i i ViW x r= −                           (5) 

( )2 2
,

i i Vi
W y rη= − +                                    (6) 

( )3 1
,

i i Vi
W x rη= − +                                     (7) 

4i i ViW y r= −                                      (8) 

 

for 0,...,3i = . Now, since 
3

0

2k Vi

i

rη
=

 
>  

 
∑  for 1,2k = each of 

the functions is positive in WS. Embedding these functions 

into the control laws will contain the motions of the tractor-

trailer robot within the specified boundaries of the workspace 

and will prevent it from crossing over the boundaries. 

C. Orientations 

One difficulty that exists with continuous time-invariant 

controllers is that although the final position is reachable, it is 

virtually impossible to get exact orientations at the equilibrium 

point of this special class of dynamical systems, a direct result 

of Brockett's Theorem [9].In this paper, we construct ghost 

walls along the sides of the target parallel to the desired final 

orientation of the robot, and a third ghost wall erected in-front 

of the target. This technique reduces the possible entry routes 

to a single opening as the other entry routes are blocked by the 

ghost walls. Next, we utilize an idea inspired by the work 

carried out by Khatib in [1], for the avoidance of these ghost 

walls in order to force the desired orientations. The technique 
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we use calculates the minimum distance from the robot to a 

ghost wall and avoids the resultant point on that ghost wall. 

Avoiding the closest point on any line basically affirms that 

the mobile robot avoids the whole wall. This algorithm helps 

greatly simplify the navigation laws. 

Now let us consider the kth ghost wall in the ( )1 2,z z -plane, 

from the point ( )2 2,k ka b to the point ( )1 1,k ka b . We assume that 

the point ( ),i ix y
 
is closest to it at the tangent line which 

passes through the point. From geometry, it is known that if 

( ),ik ikLx Ly
 
is the point of intersection of this tangent, then 

 

( ) ( )1 2 1 1 2 1  , ik k ik k k ik k ik k kLx a a a Ly b b bλ λ= + − = + −  

 

where ( ) ( )1 1 ,ik i k k i k kx a d y b rλ = − + −  and 

( )
( ) ( )

( )
( ) ( )

2 1 2 1

2 2 2 2

2 1 2 1 2 1 2 1

,  
k k k k

k k

k k k k k k k k

a a b b
d r

a a b b a a b b

− −
= =

− + − − + −
. If 

1ikλ ≥ then we let 1ikλ = , if 0ikλ ≤ , then we let 0ikλ = , 

otherwise we accept the value of ikλ  between 0 and 1, in 

which case there is a perpendicular line to the point 

( ),ik ikLx Ly on the ghost wall from the center ( ),i ix y of ith 

body of the articulated vehicle at every time 0t ≥ .For the ith 

body of the robot to avoid the closest point of each of the kth 

line segment, we consider a positive potential field function:  

 

( ) ( ) ( )2 2 21

2
ik i ik i ik Vi

LS x Lx y Ly r = − + − − x                (9) 

 

for 0,...,3i = and 1,...,k m= . 

V.  DYNAMIC CONSTRAINTS 

Practically, the steering and bending angles of mobile 

robots are limited due to mechanical singularities while the 

translational speed is restricted due to safety reasons. 

Subsequently, we have; ( ) maxv v≤i  , where 
maxv is the maximal 

speed of the tractor; ( ) 2max
πφ φ≤ <ii  , where 

maxφ is the 

maximal steering angle, and ( ) 1 max 2i i
πθ θ θ−− ≤ <iii  where 

maxθ

is the maximum bending angle of the trailer with respect to the 

orientation of the tractor. The trailer can freely rotate within 

( )2 2
,π π− about their linking point with the tractor.  

Considering these constraints as artificial obstacles, we 

have the following potential field functions: 

 

( ) ( )( )1
1 max max2

U v v v v=  − +  x
      

(10) 

( ) max max1
2 2

min min

v v
U ω ω

ρ ρ

   
= − +         

x

      

(11) 

( ) ( )( ) ( )( )1
max 1 max 12i i i i iDC θ θ θ θ θ θ− − = − − + − x

   
(12) 

 

These potential functions guarantee the adherence to the 

above restrictions placed upon the translational velocity v , 

steering angle φ , and the rotation 
iθ , for the ith trailer. 

VI. CONTROL LAWS 

 Combining all the potential functions (2)-(8), and 

introducing constants, denoted as the control parameters,

, , , , 0ik ij j iq sα β ζ γ κ > , , , ,i j k q s∈ℕ , we define a candidate 

Lyapunov function  

 

( ) ( ) ( )
( ) ( )

( )
( ) ( ) ( )

3 2 4

0 1 1

3 2

1 1 1

                    

ijik

i k jik ij

w
j iq s

j q sj iq s

L V G
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G
DC FO U

βα

ζ γ κ

= = =

= = =

 
= + + 

  

 
+ + + 

  

∑ ∑ ∑
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x x x
x x

x
x x x

    (13) 

 

Clearly, ( )xL is locally positive and continuous on the 

domain ( ) ( ) ( ) ( ){ 8 : 0,  0,  0,ij ik iqD L W LS FO= ∈ > > >x x x xℝ

( ) ( ) }0, 0
j s

DC U> >x x . We define ( )1 2 3: , , ,0,0e i i ip p p=x  an 

equilibrium point of system (1). Thus, we have ( ) 0x
e

L = .  

 

 

Fig. 3 The total potential 

 

The total potentials as in Fig. 3 are generated for target 

attraction and avoidance of two stationary disk-shaped 

obstacles. For better visualization the target of the leader is 

located at ( ) ( )1 2, 35,35t t = , and the disks are fixed at 

( ) ( )11 12, 9,10o o = , ( ) ( )21 22, 11,19o o =  with radii of 
1 2 1.2ro ro= = , 

while 1 20lα = , 1,2l = . Also, the velocity and angular 

components of the robot have been treated as constants such 

that 0.5v= , 0ω= , and 0 0θ = .  

To extract the control laws, we differentiate the various 

components of ( )L x separately and carry out the necessary 

substitutions from ( )1 . The nonlinear control laws for system 

(1) will be designed using Lyapunov's Direct Method. The 

process begins with the following theorem: 

Theorem: The equilibrium point 
ex of system (1) is stable in 

the sense of Lyapunov provided 
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and 
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cos sin
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for 1, , ,i n= …  where 
1 2, 0δ δ >  are constants commonly known 

as convergence parameters. 

Proof: The time derivative of our Lyapunov function ( )L x

along a particular trajectory of system ( )1  is then: 

( ) ( ) ( )2 2

1 21
1

0
n

i

L vδ δ ω
=

= − + ≤∑xɺ for all ( )D L∈x , and ( ) ( )1
0eL =xɺ

where the functions 
if , , , , ,i i i j sg h g m d for , 1,...,3i j = , 3n = and 

1,2s = are defined as (upon suppressing x ): 
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A careful scrutiny of the properties of our scalar function 

reveals that xe is an equilibrium point of system ( )1  in the 

sense of Lyapunov and ( )xL is a legitimate Lyapunov 

function guaranteeing stability. This is in no contradiction 

with Brockett’s result [9] as we have not proven asymptotic 

stability. 

VII. SIMULATION 

To illustrate the effectiveness of the proposed controllers, 

we present two scenarios of where the car-like robot and its 

passive trailers move towards its designated goal while 

avoiding fixed obstacles in its workspace. The use of the ghost 

walls helps in attaining the desired posture of the tractor and 

the trailer robots. 

 

 

(a) Scenario 1 

 

 

(b) Scenario 2 

Fig. 4 Two scenarios of the resulting stable trajectory of the standard 

3-trailer system 
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Fig. 5 Translational and rotational velocities 

 

TABLE I 
NUMERICAL VALUES OF INITIAL STATES, CONSTRAINTS AND PARAMETERS 

FOR SCENARIO 1 

 Initial Conditions 

Initial Configuration ( ) ( )0 0, 5,10x y = , 0.5v = , 0ω = , 

( ) ( )0 2 3 4 4 4, , , 0, ,0,π πθ θ θ θ =  

Final Configuration  ( )
( )
01 02 03 13 23 33, , , , ,

23,14.5,0,0,0,0

p p p p p p

=
 

Fixed Obstacles ( ) ( ) ( ) ( )11 12 21 22

1 2

, 9,10 , , 11,19 ,

1.2

o o o o

ro ro

= =

= = 
 

Physical Limitations 

max 5v = , max 2
πφ = , min 0.14ρ =  

Dimensions of Robots 
1 10.75, 1.18, 0.5, 0s

iL L l c d= = = = =   1.2ω =  

Workspace Boundaries 
1 2 24η η= =  

Clearance Parameters 
1 2 0.1ε ε= =  

Safety Parameters 
1 2 0.41ξ ξ= =  

C
o
n
tr
o
l 
P
ar

a
m

et
er

s Ghost Walls 0.01ikα =  

Fixed Obstacles 
0 1 2 38, 2, 3, 3q q q qγ γ γ γ= = = =  

Dynamic 
Constraints 

1 2 31, 3, 1sξ ξ ξ κ= = = =  

Workspace 

Restrictions 
1ijβ =  

Convergence Parameters 
1 2 120δ δ= =  

 

Fig. 4 shows the stable trajectories for the two scenarios. 

Figs. 5 and 6 show respectively the evolution of the 

translational and rotational velocities and accelerations of the 

tractor. The corresponding initial and final states and other 

details for the simulation are listed in Table I (assuming that 

appropriate units have been taken into account). 

 

Fig. 6 Translational and rotational accelerations 

VIII. CONCLUSION 

This paper presents a set of artificial field functions derived 

using Lyapunov’s direct method that improves upon, in 

general, the posture control with theoretically guaranteed point 

and posture stabilities, convergence, and collision avoidance 

of a standard 3-trailer mobile robot. We have a centralized 

trajectory planning algorithm, which to some extent, 

demonstrates autonomy and multitasking capabilities of 

humans. The new algorithm provides us with a suitable and 

fitting platform to harvest collision-free trajectories from 

initial to desired states and generate maneuvers that culminate 

to practically reasonable postures within a constrained 

environment, whilst satisfying the nonholonomic constraints 

of the system. The proposed controllers stabilize the 

configuration coordinates of the vehicle to an arbitrary small 

neighborhood of the target. We note here that convergence is 

only guaranteed from a number of initial states of the system. 

The derived controllers produced feasible trajectories and 

ensured a nice convergence of the system to its equilibrium 

state while satisfying the necessary kinematic and dynamic 

constraints. We note here that convergence is only guaranteed 

from a number of initial states of the system. 

Future research will address the general 3-trailermobile 

robots. 
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