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Abstract 

When two-stage and stratified two-stage sampling designs are to be used and more than one 

characteristic are under study, usually it is not possible to use the individual optimal allocation 

of first-stage and second-stage sampling units to each stage and to various strata for one 

reason or the other. In such situations some criterion is needed to work out an acceptable 

allocation which is optimal for all characteristics in some sense. Such an allocation may be 

called an optimal compromised allocation. In this paper we discuss the problems of 

determining the optimal compromise allocation in multivariate two-stage and multivariate 

stratified two-stage sampling. These problems are formulated as Nonlinear Programming 

Problems (NLPP). The NLPPs are then solved using Lagrange multiplier technique and 

explicit formulae are obtained for the optimum allocation of the first-stage and second-stage 

sampling units. 
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1. Introduction 

Two-stage sampling is frequently used in surveys to estimate the parameters of a 

population. The use of two-stage sampling designs often specifies two stages of selection: 

clusters or primary sampling units (PSUs) at the first stage, and subsamples from PSUs at 

second stage as a secondary sampling units (SSUs) on the assumption that the SSUs are 

homogeneous. For the large-scale surveys when SSUs consist of different components, 
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stratification may precede selection of sample at second stage in such a heterogeneous 

environment to obtain efficient estimates. Analyses of two-stage designs are well documented 

when a single variable is measures and the methods to obtain the optimum allocations of 

sampling units to each stage are readily available (Cochran (1977), Chapter 10; Arnold 

(1986); Sadooghi-Alvandi (1986); Schneeberger (1986); Valliant and Gentle (1997); Clark 

and Steel (2000); Dever, et al. (2001)). However, when more than one characteristic are under 

study the procedures for determining optimum allocations are not well defined. The 

traditional approach is to estimate optimal sample size for each characteristic individually and 

then choose the final sampling design from among the individual solutions. In practice it is 

not possible to use this approach of individual optimum allocations because an allocation, 

which is optimum for one characteristic, may not be optimum for other characteristics. 

Moreover, in the absence of a strong positive correlation between the characteristics under 

study the individual optimum allocations may differ a lot and there may be no obvious 

compromise. In such situations some criterion is needed to work out an acceptable sampling 

design which is optimum, in some sense, for all characteristics (Cochran (1977), Khan et al. 

(1997, 2003, 2010)). A few authors have discussed criteria to obtain a usable compromise 

allocation in multivariate two-stage sampling. Among them are Kokan and Khan (1967), 

Waters and Chester (1987) Kozak (2004) and Khan et al. (2006). 

In this paper a method of determining optimum compromise allocation for multivariate 

two-stage sampling designs and multivariate stratified two-stage sampling designs is 

developed. The problems are formulated as Nonlinear Programming Problems (NLPP), in 

which each NLPP has a convex objective function and a single linear cost constraint. Several 

techniques are available for solving these NLPPs, better known as Convex Programming 

Problems (CPP). We used Lagrange multiplier technique to solve the formulated NLPPs and 

explicit formulae are obtained for the optimum allocation of PSUs and the optimum size of 

SSUs or the subsamples to various strata. The Kuhn-Tucker (1951) necessary conditions, 

which are also sufficient, for this problem, are verified at the optimum solutions.  

2. The Problem in Multivariate Two-Stage Sampling Design 

In a multivariate two-stage sampling, where p characteristics are under study, n  units as 

PSU and m  subunits as SSU within each of n selected PSU are drawn randomly from N

units in first stage and M  units in the second stage, respectively. Let ijky , 
1

m ijk

ik j

y
y

m
 , 

and 
1

n ik
k i

y
y

n
  denote, respectively, the value obtained from j th subunit in the i th 

primary unit, the sample mean per subunit in the i th primary unit,and the overall sample 

mean per subunit for k th characteristic. It could be shown that ky  is an unbiased estimate of 

the over all population mean kY  of k th characteristic with variance (see Cochran, 1977) 
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where 
2

1kS  is the variance among primary unit means and 
2

2kS  is the variance among subunits 

within primary units for k th characteristic, respectively.  

The total cost function of a two-stage sampling procedure may be given as: 

 

 1 2C c n c nm  , (2.2) 

 

where C  denotes the total cost of the survey, 1c  denotes the cost of approaching to a PSU for 

measurement, and 
2 21

p

kk
c c


  denotes the cost of measurement all the p  characteristics 

per SSU. Also 2kc  are the per unit costs of measuring the k th characteristic of a SSU. 

The optimum choice of n  and m  for an individual characteristic can thus be determined 

by minimizing the variance in (2.1) for the given cost in (2.2), or by minimizing the cost for 

fixed variance. 

In multivariate stratified sample surveys usually a compromise criterion is needed to 

work out an acceptable choice of the number of PSU’s and SSU’s which is optimum, in some 

sense, for all characteristics. However, if the total cost of the survey is predetermined, using 

the compromise criterion suggested by Khan, et al. (2003, 2006), an optimal choice may be 

one that minimizes the weighted sum of the sampling variances of the estimates of various 

characteristics within the available budget. It is, therefore, in a two-stage sampling, if the 

population means of p  characteristics are of interest, it may be a reasonable criterion for 

determining the optimal choice of n  and m  is to minimize a weighted sum of the variances 

of the two-stage sample means of all the p  characteristics, that is, 
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 , (2.3) 

 

where ka  is the weights assigned to the k th characteristic in proportion to its importance as 

compared to other characteristics and ( )kV y  as given in (2.1). Ignoring the term independent 

of n  and m  minimizing (2.3) will be equivalent to minimize 
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For a fixed budget 0C  given by (2.2) the problem of finding the optimum values of n  

and m  may be stated as the following NLPP: 
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n m


   


  





 (2.6) 

 

The restrictions 0n   and 0m   are obvious because negative values of the number of 

PSU’s and SSU’s are of no practical use. 

3. The Problem in Multivariate Stratified Two-Stage Sampling 

Design 

Stratified two-stage sampling is one of the most common designs in surveys. In this 

design the population of PSUs is divided into strata, within each stratum a simple random 

sample without replacement of PSUs is selected and each of the PSUs is further sub-sampled. 

Let the population of N  PSUs be divided into L  strata each with hN  PSUs such that 

1

L

hh
N N


 . Also let hiM be the number of SSUs in the i th PSU and 

0 1

hN

h hii
M M


  

be the total number of SSUs in the h th stratum. In a multivariate stratified two-stage 

sampling, where p  characteristics are under study, let hijky  denotes the value of k th 

characteristic on the j th SSU of i th PSU of h th stratum. A random sample of hn  PSUs and 

him  SSUs from i th PSU are selected in h th stratum. Let  
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denotes the overall sample mean per SSU for k th characteristic in h th stratum, where 
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and 
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It could be shown that ,k sty  is an unbiased estimate of the over all population mean
kY  of 

k th characteristic with variance (see Sukhatme et al., 1984) 
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where 
2

,k hbS  is the variance among primary unit means and 
2

,k hiyS  is the variance among 

subunits within primary units for k th characteristic, respectively.  

Assume that the total cost of the survey consists of two components depending upon the 

numbers of PSUs and the number of SSUs in the sample. Let 1hc  and 
2 21

p

h hkk
c c


  

denote the cost per PSU and the cost of measurement all the p  characteristics per SSU in h

th stratum, respectively, where 2hkc  are the per unit costs of measuring the k th characteristic 

of a SSU. Thus the total cost of the survey may be expressed as a function of first and second-

stage sample sizes, hn  and him , as: 
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where 0c  is the overhead cost of the survey (see Sukhatme et al., 1984; Khan et al., 2006). 

The second component in parenthesis    varies from sample to sample. It is, therefore, the 

expected cost function may be considered as: 
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  . If the total amount available for a multivariate 

stratified two-stage survey is predetermined, a compromise allocation of hn  and him  may be 

one discussed in Section 2 that minimizes the weighted sum of the sampling variances of the 

estimates of various characteristics, that is. 
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where ka  is the weights assigned to the k th characteristic in proportion to its importance as 

compared to other characteristics and  ,k stV y  as given in (3.1). For the purpose of 

minimization, the term independent of hn  and him  in (3.3) is ignored. Also letting  
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the problem of finding the compromise allocation of hn  and him  for a fixed cost 0C  may be 

given as the following NLPP: 
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where 0 0C C c  . 

4. Optimal Allocation in Multivariate Two-Stage: A Solution 

The objective function Z  of the NLPP in (2.6) will be minimum when the values of n  

and m  are as large as permitted by the cost constraint. This suggests that at the optimum 

point the cost constraint will be active, that is, it is satisfied as an equation. Then, ignoring the 

restrictions 0n  and 0m  , we can use Lagrange multipliers technique to determine the 

optimum values of 
*n and

*m . If these values 
*n  and 

*m satisfy the ignored restrictions, the 

NLPP in (2.6) is solved completely. 

The Lagrangian function   is defined as 
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where   is a Lagrange multiplier. 

The necessary conditions for the solution of the problem are 

 

  
2 2 2

1 2 2
1 22 2 2

0
A A A

c c m
n n n m n M





      


, (4.2) 



Optimal Compromise Allocation in Two-Stage … 193 

 

2

2
22

0
A

c n
m nm





   


, (4.3) 

 

and 

 
1 2 0 0c n c nm C






   


. (4.4) 

 

From (4.2) and (4.3) we have 
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(4.3) and (4.5) give 
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It can be easily verified that the objective function Z  in (2.6) is convex for 
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   and the constraint is linear. Therefore, the Kuhn-Tucker (K-T) 

necessary conditions for the NLPP in (2.6) are sufficient also. These conditions are 
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 , and 0 n m   .  

 

For the case , and 0 n m    the above expressions give the same set of equations as 

(4.2), (4.3) and (4.4), which implies that the K-T conditions hold at the point  * *,n m  given 

by (4.5) and (4.6). Hence,  * *,n m  is optimum for NLPP (2.6). 

If 

2
2 2

1

A
A

M
 , one may use a single-stage sampling design instead of two-stage sampling 

by considering 
*m M . 

5. Optimal Allocation in Multivariate Stratified Two-Stage: 

A Solution 

As discussed in Section 4 the objective function Z  of the NLPP in (3.5) will be 

minimum when the values of hn  and him  are as large as permitted by the cost constraint. 

Therefore, this problem also suggests that the cost constraint will be active at the optimum 

point and one can use Lagrange multipliers technique to determine the optimum values of 
*

hn  

and 
*

him  considering the cost constraint as an equation and ignoring the non-negativity 

restrictions on the variables.  

The Lagrangian function   is defined as 
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where   is a Lagrange multiplier. 

The necessary conditions for the solution of the problem are 
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Multiplying by hi

h

m

n
 and summing over ( 1,2,..., )hi i N , (5.3) reduces to 
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(5.2) and (5.5) give 
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Substituting the values of hn  from (5.6) in (5.3), the optimum values of him  are 

obtained as: 
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Substituting the values of hn  and him  from (5.6) and (5.7) respectively, (5.4) gives 
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From (5.6) and (5.8) the optimum values of hn  are obtained as: 
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As the objective function of (3.5) is convex for 
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   and the constraint is linear, the K-T necessary 

conditions of the NLPP in (3.5) are sufficient also. It can be easily verified that the K-T 

conditions hold at the point  * *,h hin m  given by (5.7) and (5.9). Hence,  * *,h hin m  is optimum 

for the NLPP. 
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6. Conclusion 

In a survey when more than one characteristic are under study and, when two-stage and 

stratified two-stage sampling designs are to be used, the best sample allocation for one 

characteristic will not be best for another and therefore, some compromise must be reached. 

In this paper we discussed two compromise allocation problems for multivariate studies. 

Firstly, the problem of determining the optimum compromise allocation in multivariate two-

stage. Secondly, the problem of determining the optimum compromise allocation in 

multivariate stratified two-stage sampling. These problems were formulated as NLPPs, which 

were then solved using Lagrange multiplier technique and explicit formulae were obtained for 

the optimum allocation of PSUs and SSUs. The K-T necessary and sufficient conditions for 

these problems are also verified at the optimum solutions. 

Two-stage sampling designs are widely used techniques in surveys. In ordinary two-stage 

sampling, SSUs are selected at random from each PSU on the assumption that the SSUs are 

homogeneous. In large-scale surveys when SSUs are heterogeneous, stratification may be 

used to obtain efficient estimates. The proposed compromise allocation in this paper may be 

useful for the selection of sample in these situations. 
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