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Abstract

Lagrangian swarm models consider long-range attraction and short-range repulsion
between individuals, moving with the velocity of the swarm’s centroid, as a seed in the
formation of the swarm itself and its behavior. By constructing a Lyapunov function
based on this heuristic rule, we create a relatively simple gradient system which sur-
prisingly exhibits complex emergent or self-organized motions in the absence of fixed
or moving obstacles. The Lyapunov function contains an inter-individual collision-
avoidance component; hence the component is bounded, yet it guarantees collision
avoidance. Three parameters are utilized, and which we call cohesion parameter, cou-

pling parameter, and convergence parameter. They are, respectively, a measure of the
strengths of the cohesion of the swarm, the interaction between any two individuals
and the instantaneous velocity of an individual with respect to the swarm centroid.
By varying these parameters in a precise way, computer simulations show that for a
sufficiently large number of individuals, our proposed model generates four types of
swarming-like behaviors. They are (1) the cruise formation (linear or nonlinear) rem-
iniscent of a cruising and leaderless school of fish, or a moving herd of land animals
with a leader (leader-following), (2) random walks similar to the swarming behavior of
fruit flies Drosophila melanogaster, (3) constant arrangements requiring individuals to
aggregate and stop, as in fruiting body formation by bacteria, and (4) circular motions
reminiscent of the behavior of a school of fish when threatened by a predator.

1 Introduction

With the amount of work carried out over the last three decades on studying and modelling
swarms, beginning with the work of Okubo (1980), it is now possible to group different
modelling approaches into at least two; the Eulerian and the Lagrangian approaches. In the
Eulerian approach, the swarm is considered a continuum described by its density. In the
Lagrangian approach, the state (position, instantaneous velocity and instantaneous acceler-
ation) of each individual and its relationship with other individuals in the swarm is studied;
it is an individual-based modelling. A question, posed by Edelstein-Keshet (2001) in her
descriptive survey of mathematical models of swarming and social aggregation, vividly elu-
cidates the dichotomy between the two; “are we following a given individual to see how it
is affected by its neighbors, or are we watching the herd move past us as a density wave?”
Edelstein-Keshnet and colleagues indeed provided two separate illuminating papers on a con-
tinuum model and a Lagrangian model for swarms [Mogilner and Edelstein-Keshet (1999);
Mogilner et al (2003)]. Excellent reviews of these approaches and their advantages and
disadvantages can be found in Gazi and Passino (2004b) and Merrifield (2006).
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Our interest lies in utilizing the key component of the Lagrangian approach, and that is,
the use of attraction and repulsion functions to model the swarming behavior in which there
is a long-range attraction and a short-range repulsion between individuals in the swarm
[Edelstein-Keshet (2001), Gazi and Passino (2004b)]. This behavior leads to aggregation
and formation, which are important for the survival of the members of the swarm [Brown
and Warburton (1999); Ekanayaka and Pathirana (2009)]. If constructed appropriately,
these attraction and repulsive functions, can be expressed as a gradient of some artificial
or social potential function. This means that there is a Lyapunov function, a minimum of
which corresponds to a stable stationary state of the individual-based Lagrangian system
[Edelstein-Keshet (2001)]. As noted in Gazi and Passino (2003, 2004b), the use of a gradient
system ensures there is an element of distribution of tasks among the members of the swarm
and that the swarm members are performing distributed optimization. Indeed, because of
the existence of the Lyapunov function, each individual in the swarm is individually and
optimally searching a minimum. The stability conditions provided by the Lyapunov function
can also provide the cohesiveness of the swarm in which the distances between individuals
in the swarm are bounded from above [Mogilner et al (2003)].

The model by Mogilner et al (2003) uses a class of attraction and repulsion functions that
are formed using both exponential and power laws. A recent stream of modelling that utilizes
the same basic form of this class of interaction functions is traceable to the work of Gazi
and Passino (2003). The attraction-repulsion function has an attraction component that
dominates for large distances and a repulsion component that dominates for small distances.
The stability conditions, provided by a Lyapunov function, are used to estimate the size of
the swarms. In 2004, the authors extended their 2003 results by also considering interactions
between individuals and their environment [Gazi and Passino (2004b)]. Specifically, they
considered a swarm that is moving in a profile of nutrients or toxic substances, i.e., an
attractant/repellent profile. Also in 2004, the authors provided another type of attraction-
repulsion function [Gazi and Passino (2004a)].

The 2003 Gazi-Passino model is isotropic; there is uniformity in attraction or repulsion
between all members of the swarm. Moreover, it is reciprocal; every member i moves toward
every other member j exactly the same amount as j moves toward i. In 2003, Chu and
colleagues generalized the Gazi-Passino model to include anisotropy [Chu et al (2003)].
Their anisotropic model contains a coupling matrix that allows the interaction strength
between individuals in a swarm to vary. They assumed that the interactions between only
at least two individuals, and not all, were reciprocal. In 2004, Wang and colleagues removed
this reciprocity argument by adopting an asymmetric coupling matrix [Wang et al (2004)].

A shortcoming of the the Gazi-Passino model and its variants mentioned above is that
they do not have a collision-avoidance capability between members of the swarm because the
attraction-repulsion functions does not grow to infinity when individuals collide. The effect
of their attraction-repulsion functions is only enough for each individual to move towards
the center of the swarm and stop without collapsing to a tight cluster. To resolve this issue,
Liu and colleagues, in 2005, introduced a repulsion term which is inversely proportional
to the forth-power of the distance between two individuals [Liu et al (2005)]. In 2009,
they expanded their work to obtain swarm models that are non-reciprocal and exhibit self-
organized oscillations [Liu et al (2009)].

In 2006, Chen and Fang (2006a,b) added a component to a Geza-Passino-like model,
and produced a system that is practically scalable, in the sense that regardless of how
large the size of the swarm is, there is no or limited cost associated with any increase in
size. This is in contrast to other Geza-Passino-like models in which every member knows
the state of every other member in the swarm. However, Gazi and Passino (2004b) has
argued that sensing limitations in engineering applications, like controlling robots, could
be solved with technologies such as the Global Positioning System. Indeed, as reported in
Martinoli et al (2004), distributed control principles had been successfully applied to a series
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of case studies in collective robotics (aggregation and segregation, foraging, collaborative
stick pulling, cooperative transportation, flocking and navigation in formation, odor source
localization, cooperative mapping, and soccer tournaments) for which several approaches
extensively exploited global communication capabilities.

Another stream of modelling within the Lagrangian framework uses algebraic graph
theory, potential functions and the Lyapunov method to study flocking. The work of Olfati-
Saber (2006) provides distributed and decentralized algorithms with obstacle avoidance ca-
pabilities. In 2007, Tanner and colleagues used, in addition, non-smooth analysis to con-
struct discontinuous controllers that ensure a robust flock model [Tanner et al (2007)]. In
2008, Gu and Hu used fuzzy logic and the algebraic graph theory, together with non-smooth
analysis, to create functions for collision avoidance between members in a flock [Gu and Hu
(2008)]. These three scalable models express the three well-known heuristic flocking rules of
Reynolds (1987) into precise mathematical statements.

Our approach is also Lagrangian; hence, we consider spacing between individuals, which
moves with the velocity of the swarm centroid, of primary importance. We create functions
to measure the distance between individuals, and use them to move the individuals toward
the swarm centroid and for collision-avoidance between the members of the swarm, and for
avoidance of any fixed obstacle in the swarm’s path. We do this by having these functions as
part of a Lyapunov function, which in turn generates the appropriate forms of the velocity
of each individual. These velocity components, in turn, are used to construct a gradient
system of first-order ODEs that govern the motion of the swarm. The system is a gradient
system because its component is the gradient of the Lyapunov function. Therein lies a major
contribution of this paper, and that is, because the Lyapunov function is non-increasing in
time, every solution of the system is bounded, yet collision avoidance will occur. This is a
depart from the model of Liu et al (2009) which requires an unbounded attraction-repulsion
function to guarantee collision avoidance. As explained later in some detail in subsection 5.3,
our deterministic system will always have a sufficiently large value of the Lyapunov function
at the initial state. This ensures sufficient control efforts for collision avoidance. In other
words, during collision avoidance, it is not the Lyapunov function that increases in time,
but rather its instantaneous rate of change, with respect to time, that increases in absolute
value. This corresponds to sufficient control efforts required for collision avoidance. Another
major contribution of this paper is the precise use of three parameters – the convergence,
coupling and cohesive parameters – to predict the behavior of the swarm, and to allow for
an isotropic and a reciprocal swarm model, or anisotropic and non-reciprocal swarm model,
a generality missing in other Lagrangian models discussed above.

Our approach is a result of a development of a Lyapunov-based robot control technique
that was proposed by Stonier Stonier (1990), whose work is an application of the Lyapunov
method to qualitative differential games that involve dynamical systems subject to control
by one or more players [Leitmann and Skowronski (1977), Getz and Leitmann (1979), Stonier
(1983)]. Using these differential games concepts, Stonier constructs Lyapunov-like functions
that provide nonlinear controllers for collision-avoidance between robot arms, and between
robot arms and stationary objects. The main advantage of this global potential approach,
as classified by Lee (2004), is the ease at which it can be used to extract control laws based
on velocity or acceleration. Stonier’s work was later expanded and improved by Vanualailai
et al (1995, 1998). Their paper was the basis of further improvements by Ha and Shim
(2001). In addition, Vanualailai et al (2008) applied their method to the point stabilization
of nonholonomic vehicles. Further, Sharma et al (2009, 2010) applied the method to a flock
of nonholonomic vehicles .

In this paper, we show that our approach, which utilizes three parameters, not only
captures the basic feature of aggregation, cohesion and stability of a swarm, but also exhibits
more complex dynamics such as random walks, and self-organized oscillatory motions.

We begin in the next section by re-calling the Direct Method of Lyapunov and the
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definition of the gradient system.

2 The Lyapunov Function and Gradient Systems

Here, we briefly recall some of the important Lyapunov stability concepts, and properties of
gradient systems. The book by Hirsch et al (2004) is a good reference material.

Let R
n be the n-dimensional Euclidean space with the Euclidean norm ‖ · ‖. Let

X = (x1, x2, · · · , xn) denote an element of R
n. Consider an autonomous nonlinear system

Ẋ = F (X), X(t0) =: X0, t0 ≥ 0, (1)

where F : Ω ⊂ R
n → R

n is assumed to be smooth enough to guarantee the existence,
uniqueness and continuous dependence of solutions X(t) = X(t; t0, X0) of (1) in Ω, an open
set in R

n.
For the purpose of considering stability concept in the sense of Lyapunov, we assume

there is a point X∗ ∈ R
n such that F (X∗) ≡ 0. Then X(t) ≡ X∗ is trivially a solution of

(1) through X∗ ∈ Ω for all t ≥ t0. We call X∗ an equilibrium point of system (1)
The equilibrium point X∗ of (1) is stable if, for each ǫ > 0 and t0 ≥ 0, there is a

δ = δ(t0, ǫ) > 0 such that ‖X0 − X∗‖ < δ implies ‖X(t) − X∗‖ < ǫ for all t ≥ t0. The
equilibrium point X∗ of (1) is said to be asymptotically stable if it is stable and there exists
δ(t0) > 0 such that ‖X0 − X∗‖ < δ implies limt→∞ ‖X(t) − X∗‖ = 0.

Lyapunov’s Direct Method (also called the Second Method of Lyapunov) is summarized
in the following theorem, where R

+ := [0,∞):

Theorem 1 (Lyapunov Theorem) Let X∗ be an equilibrium point of (1) and let V :
Ω → R

+ be a C1 function defined on some neighborhood Ω of X∗ such that (i) V (X∗) = 0,
(ii) V (X) > 0 for X ∈ Ω \ {X∗} and (iii) V̇(1)(X) ≤ 0 for all X ∈ Ω. Then X∗ is stable.

If (iii) is replaced by (iii)’ V̇(1)(X) < 0 for all X ∈ Ω \ {X∗}, then X∗ is asymptotically
stable.

The well-known LaSalle’s Invariance Principle gives an alternative asymptotic stability
condition:

Theorem 2 (LaSalle’s Invariance Principle) Let V : Ω ⊂ R
n → R

+, Ωc = {X ∈ Ω :
V (X) ≤ c}, and suppose V̇(1)(X) ≤ 0 on Ωc. Let E = {X ∈ Ωc : V̇(1)(X) = 0}. Then every
solution of (1) tends to the largest invariant set in E as t → ∞. In particular, if E contains
no invariant set other than {X∗}, then X∗ is asymptotically stable.

We refer to V in Theorem 1 and Theorem 2 as a Lyapunov function for system (1). Its
gradient is the vector field

∇V =

(
∂V

∂x1
, · · · ,

∂V

∂xn

)
.

A gradient system on R
n is a system of differential equations of the form

Ẋ = −∇L(X), (2)

where L is a Lyapunov function for system (2), and L̇(2)(X
∗) = 0 if and only if X∗ is an

equilibrium point of system (2). That is, the critical points of L are the equilibrium points
of the system. Moreover, as discussed in Hirsch et al (2004), if a critical point is an isolated
minimum of L, then this point is an asymptotically stable equilibrium point of system (2).
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3 A Two-Dimensional Swarm Model

A general swarm model, formulated by Mogilner et al (2003), considers a swarm of n in-
dividuals being viewed in a coordinate system moving with the velocity of the swarm’s
centroid. We shall follow this formulation in this paper, but with a divergent approach to
the construction of the attraction-repulsion function.

We confine ourselves to constructing a 2-dimensional version of the model, as it will be
a simple matter to extend it to 3-dimensional.

At time t ≥ 0, let (xi(t), yi(t)), i = 1, 2, . . . , n, be the planar position of the ith individual,
which we shall define as a point mass residing in a disk of radius ri > 0,

bi = {(z1, z2) ∈ R
2 : (z1 − xi)

2 + (z2 − yi)
2 ≤ r2

i }. (3)

The disk, incidently, is described in Mogilner et al (2003) as a bin, and in Gazi and Passino
(2004b) as a private or safety area of each individual. Also, as discussed in Gazi and Passino
(2004a), there are some good reasons why individuals in a swarm could be considered as a
point mass; for instance, when considering some organisms such as bacteria.

Let us define the centroid of the swarm as

(xc, yc) =

(
1

n

n∑
k=1

xk,
1

n

n∑
k=1

yk

)
.

At time t ≥ 0, let (vi(t), wi(t) := (x′
i(t), y

′
i(t)) be its instantaneous velocity, which we

will need to show that is relative to the swarm centroid.
Using the above notations, we have thus a system of first-order ODEs for the ith indi-

vidual, assuming the initial condition at t = t0 ≥ 0:

x′
i(t) = vi(t)

y′
i(t) = wi(t)

xi0 := xi(t0), yi0 := yi(t0).


 (4)

Suppressing t, we let xi = (xi, yi, ) ∈ R
2 and x = (x1, . . . ,xn) ∈ R

2n be our state vectors.
Also, let

x0 = x(t0) = (x10, y10, . . . , xn0, yn0)︸ ︷︷ ︸
2n terms

.

If fi(x) := (vi, wi) ∈ R2 and V(x) := (f1(x), . . . , fn(x)) ∈ R
2n, then our swarm system of n

individuals is
ẋ = V(x), x0 = x(t0). (5)

An equilibrium point of system (5) for which (4) is the ith component will be denoted
x∗ = (x∗

1, . . . ,x
∗
n) ∈ R

2n.
We will use the following two terms from Mogilner et al (2003):

1. A cohesive group is a group in which the distances between individuals are bounded
from above (members of a cohesive group tend to stay together and avoid dispersing).

2. A well-spaced group is a group which does not collapse into a tight cluster, i.e., where
some minimal bin size exists such that each bin contains at most one individual.
Moreover, the size of such a bin is independent of the number of individuals in a
group.
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4 A Lyapunov Function with Attraction and Repulsion

Components

4.1 Attraction to the Centroid

We can ensure that individuals are attracted to each other and also form a cohesive group
by having a measurement of the distance from the ith individual to the swarm centroid.
This is the concept behind flock centering, which is one of the well-known three heuristic
flocking rules of Reynolds (1987). The rule stipulates that individuals stay close to nearest
flock mates. It is therefore a form of attraction between individuals. Centering necessitates
a measurement of the distance from the the ith individual to the swarm centroid. Thus, we
define the following function:

Ri(x) :=
1

2


(xi −

1

n

n∑
i=1

xi

)2

+

(
yi −

1

n

n∑
i=1

yi

)2

 .

It will be part of a Lyapunov function for system (4), and as we shall see later, its role is to
ensure that ith individual is attracted to the swarm centroid.

4.2 Inter-individual Collision Avoidance

The short-range repulsion between individuals necessitates a measurement of the distance
between the ith and the jth individuals, j 6= i ∈ N. With the definition (3) of the ith
individual in mind, we define the following function for this purpose:

Rij(x) :=
1

2

[
(xi − xj)

2
+ (yi − yj)

2
− (ri + rj)

2
]
.

It will also be part of the same Lyapunov function we mentioned above.

5 Swarming in the Absence of Obstacles

We first consider the scenario where there are no obstacles in the environment. We formally
construct the Lyapunov function and then discuss its form and its relationship to swarming.

5.1 Lyapunov Function

Let there be real numbers γi > 0, βij > 0, and define, for i, j = 1, . . . , n,

Li(x) = γiRi(x) +

n∑
j=1,
j 6=i

βijRi(x)

Rij(x)
.

Consider as a tentative Lyapunov function for system (5),

L(x) =
n∑

i=1

Li(xi).

It is clear that L is continuous and locally positive definite on the domain

D1(L) :=
{
x ∈ R

2n : Rij(x) > 0, i, j ∈ N
}

.

This means that if x∗ is an equilibrium point of system (5) for which L is a Lyapunov
function, then L(x) > 0 for all x ∈ D1(L) \ {x∗} and L(x∗) = 0, with x∗ ∈ D1(L).
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The time-derivative of L along a solution of system (5) is the dot product of the gradient
of L,

∇L =

(
∂L

∂x1
,

∂L

∂y1
, · · · ,

∂L

∂xn

,
∂L

∂yn

)
,

and the time-derivative of the state vector x = (x1, y1, . . . , xn, yn). That is,

L̇(4)(x) = ∇L(x) · ẋ =

n∑
i=1


Ṙi(x) +

n∑
j=1,
j 6=i

βij

Rij(x)
Ṙi(x) −

n∑
j=1,
j 6=i

βijRi(x)

R2
ij(x)

Ṙij(x)


 ,

where

n∑
i=1

Ṙi(x) =

n∑
i=1

[(
xi −

1

n

n∑
k=1

xk

)
−

1

n

n∑
m=1

(
xm −

1

n

n∑
k=1

xk

)]
x′

i

+

n∑
i=1

[(
yi −

1

n

n∑
k=1

yk

)
−

1

n

n∑
m=1

(
ym −

1

n

n∑
k=1

yk

)]
y′

i,

and
n∑

i=1

n∑
j=1,
j 6=i

Ṙij(x) = 2

n∑
i=1

n∑
j=1,
j 6=i

(xi − xj)x
′
i + 2

n∑
i=1

n∑
j=1,
j 6=i

(xi − xj)y
′
i.

Noting that

n∑
m=1

(
um −

1

n

n∑
k=1

uk

)
= 0 for any ui ∈ R, i = 1, 2, . . . , n, we simplify the

former expression to

n∑
i=1

Ṙi(x) =

n∑
i=1

[(
xi −

1

n

n∑
k=1

xk

)
x′

i +

(
yi −

1

n

n∑
k=1

yk

)
y′

i

]
.

Now, collecting terms with x′
i and y′

i, and substituting x′
i = vi and y′

i = wi from system (4),
we have

L̇(5)(x) =

n∑
i=1





γi +

n∑
j=1,
j 6=i

βij

Rij(x)



(

xi −
1

n

n∑
k=1

xk

)
− 2

n∑
j=1,
j 6=i

βijRi(x)

R2
ij(x)

(xi − xj)


 ẋi

+
n∑

i=1





γi +

n∑
j=1,
j 6=i

βij

Rij(x)



(

yi −
1

n

n∑
k=1

yk

)
− 2

n∑
j=1,
j 6=i

βijRi(x)

R2
ij(x)

(yi − yj)


 ẏi

=

n∑
i=1

[
∂L

∂xi

· ẋi +
∂L

∂yi

· ẏi

]
=

n∑
i=1

[
∂L

∂xi

· vi +
∂L

∂yi

· wi

]
.

Let there be real numbers α1
i > 0 and α2

i > 0 such that

vi = −α1
i

∂L

∂xi

, and wi = −α2
i

∂L

∂yi

.

Then

L̇(5)(x) = −

n∑
i=1

[
α1

i

(
∂L

∂xi

)2

+ α2
i

(
∂L

∂yi

)2
]

= −

n∑
i=1

[
v2

i

α1
i

+
w2

i

α2
i

]
≤ 0,
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for all x ∈ D1.
For the ith individual, system (4) therefore becomes

x′
i(t) = vi(t) = −α1

i

∂L

∂xi

,

y′
i(t) = wi(t) = −α2

i

∂L

∂yi

,

xi0 = xi(t0), yi0 = yi(t0), t0 ≥ 0,




(6)

where

∂L

∂xi

=


γi +

n∑
j=1,
j 6=i

βij

Rij(x)



(

xi −
1

n

n∑
k=1

xk

)
− 2

n∑
j=1,
j 6=i

βijRi(x)

R2
ij(x)

(xi − xj),

and

∂L

∂yi

=


γi +

n∑
j=1,
j 6=i

βij

Rij(x)



(

yi −
1

n

n∑
k=1

yk

)
− 2

n∑
j=1,
j 6=i

βijRi(x)

R2
ij(x)

(yi − yj).

Define the n × n diagonal matrix

A = diag(α1
1, α

2
1, . . . , α

1
n, α2

n︸ ︷︷ ︸
2n elements

).

Then our system (5) becomes the gradient system

ẋ = −A (∇L(x)), x0 := x(t0), t0 ≥ 0, (7)

the ith term of which is given by (6).
We now establish that L(x) is indeed Lyapunov function for system (7), and that it

provides a stable equilibrium point for the system.

Theorem 3 The function L(x), x ∈ D1(L), is a Lyapunov function for system (7), a stable
equilibrium point of which is

x∗ = (x∗
1, . . . ,x

∗
n) :=

(
1

n

n∑
k=1

xk,
1

n

n∑
k=1

yk, · · · ,
1

n

n∑
k=1

xk,
1

n

n∑
k=1

yk

)
︸ ︷︷ ︸

2n terms

∈ D1(L).

Proof. By the Chain Rule

L̇(7)(x) = ∇L(x) · ẋ = ∇L(x) · [−A (∇L(x)].

Since A is an n × n diagonal matrix with real-valued entries, αs
i > 0, i = 1, . . . , n and

s = 1, 2, if λ := max{αs
i ; i = 1, . . . , n, s = 1, 2}, then

L̇(7)(x) ≤ −λ |∇L(x)|
2
≤ 0,

showing that L(x), with x ∈ D1(L), is a Lyapunov function for system (7). In particular
L̇(x) = 0 if and only ∇L(x) = 0. Since L̇(7)(x) = 0 at x = x∗, it follows easily that x∗ is a
stable equilibrium point of system (7) and is in D1(L).
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As discussed in Gazi and Passino (2004a), swarming in nature normally occurs in a
distributed fashion; there is no leader and each individual decides independently its direction
of motion. Our model captures this since system (6) gives the equations of motion of each
individual, and does not depend on an external variable (such as a command from a leader
or another agent), but only on the position of the individual itself and its observation of the
positions (or relative positions) of the other individuals. Moreover, the individuals do not
have to know the global Lyapunov function L(x). Instead, they only know the local or their
internal Lyapunov function Li(x).

5.2 Insight into the form of the Lyapunov Function and Cohesive-

ness

Let us now discuss the idea behind the construction of our Lyapunov function

L(x) =
n∑

i=1

Li(x) =
n∑

i=1


γiRi(x) +

n∑
j=1,
j 6=i

βijRi(x)

Rij(x)


 .

At large distances between the ith and the jth individuals, the ratio,

n∑
i=1

n∑
j=1,
j 6=i

βijRi(x)

Rij(x)
, (8)

is negligible, and the attraction term
n∑

i=1

γiRi(x) dominates. Thus, the long-range attraction

requirement in a swarm model is met, and

n∑
i=1

γiRi acts as the attraction function. Indeed,

since
n∑

i=1

γiRi(x) is allowed to be zero at x = x∗ where L is also zero, and dL/dt ≤ 0

for all t ≥ 0 along every solution of (7), each individual is attracted to the centroid, and
therefore the swarm system (7) maintains centering and hence cohesiveness at all times.
Indeed, Theorem 3 proves the cohesiveness of the swarm since stability means that for
each ǫ > 0 and t0 ≥ 0, there is a δ = δ(t0, ǫ) > 0 such that ‖x(t0) − x∗‖ < δ implies
‖x(t) − x∗‖ < ǫ for all t ≥ t0, with x,x∗ ∈ D1(x); this boundedness of solution for all
time t ≥ t0 implies that distances between individuals are bounded from above at all times.
Note that the parameter γi > 0 can be considered as a measurement of the strength of
attraction between an individual i and the swarm centroid, and hence between each other.
The smaller the parameter is, the weaker the attraction between the members is; hence, γi

can be considered a coupling parameter.
Consider the situation where any two individuals i and j approach each other. In this

case, Rij decreases and the ratio increases, with βij > 0 acting as a cohesion parameter that
is a measurement of the strength of interaction between the individuals. Now, because, with
respect to time t ≥ 0, we have that dL/dt ≤ 0 along a trajectory of system (7), and L is a
positive definite function, L cannot increase in t ≥ t0 ≥ 0. Hence, for every initial condition
x(t0) ∈ D1(x), the ratio cannot be unbounded in t. However, at the initial time t0 ≥ 0,
large values of L(x(t0)) – and hence large controls efforts – could be required for collision-
avoidance and cohesion. This is so because the ratio (8) is large for small arguments. Fuelled
with this large value of L which can only decrease in t, any change in the value of the ratio (8)
could only correspond to either an increase or decrease in |dL/dt|. Analogously, |dL/dt| is
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the rate of dissipation of energy from the system in absolute value. Thus, if two individuals
approach each other, the rate of energy dissipation from system (7), in absolute value, gets
larger. This increased dissipation of energy along a trajectory of system (7) could only be
directed towards a stable equilibrium point, such as x∗, where Rij 6= 0, away from any
potential collision between individuals i and j. In other words, we cannot have a situation
where Rij = 0 along any system trajectory that starts in D1(x). Hence, the ratio (8) acts as
an obstacle-avoidance function and system trajectories originating at x(t0) ∈ D1(x) remain
in D1(x) for all time t ≥ t0 ≥ 0. In turn, this means that the individuals in a swarm cannot
collapse onto themselves.

If the two parameters γi and βij are the same for all individuals, then we have an isotropic
and a reciprocal swarm model. If they differs between at least two individual, then the model
is anisotropic and non-reciprocal.

Finally, we note that we have used two other parameters, α1
i > 0 and α2

i > 0, i = 1, . . . , n
in system (7). Because the parameters are a measure of the instantaneous velocities, we
name them convergence parameters. The larger the convergence parameters, the quicker the
movements of the individuals towards and about the centroid.

5.3 Constant Arrangement About the Centroid

Theorem 3 shows that the swarm members can converge to a constant arrangement about
the swarm centroid. Indeed, if

S := {x ∈ R
2n :

∂L

∂xi

=
∂L

∂yi

= 0, i = 1, . . . , n},

which is the set of all equilibrium points of system (7), and

E := {x ∈ D1(x) : L̇(x) = 0}, L̇ = L̇(5) = L̇(7)

then it follows easily that S = E since

L̇(x) = −
n∑

i=1

[
α1

i

(
∂L

∂xi

)2

+ α2
i

(
∂L

∂yi

)2
]

= 0,

if and only if
∂L

∂xi

=
∂L

∂yi

= 0, i = 1, · · · , n.

Hence, by LaSalle’s Invariance Principle (Theorem 2), the equilibrium points in S, which
include x∗, are attractive.

5.4 Size and Density of the Swarm

Given that a member i of the swarm resides in a disk defined in (3), with radius ri, we
can follow the argument by Gazi and Passino (2004a) to estimate the size and density of
the swarm in a stable arrangement, but without using their assumption that the swarm
members had to be squeezed cohesively as closely as possible in an area (a disk) of radius r,
since Theorem 3 already provides this cohesiveness. Indeed, since Theorem 3 establishes the
stability of system (7) in D1(x), there is no collision between members in D1(x). Accordingly,
between two members i and j,

‖xi(t) − xj(t)‖ > (ri + rj), xi = (xi, yi),

for all time t ≥ t0 ≥ 0. Now, the safety areas are disjoint, so the total area occupied by the

swarm is π

n∑
i=1

r2
i . By Theorem 3, for each ǫ > 0 and t0 ≥ 0, there is a δ = δ(t0, ǫ) > 0 such

128



11

that ‖x(t0) − x∗‖ < δ implies ‖x(t) − x∗‖ < ǫ for all t ≥ t0, with x,x∗ ∈ D1(x). In such
a stable arrangement, where all the solutions of (7) are bounded above by ǫ > 0, we can
therefore find a disk of radius, say, r = r(ǫ), around x∗ such that

πr2(ǫ) ≥ π

n∑
i=1

r2
i .

From this we get

rmin :=

√√√√ n∑
i=1

r2
i ,

a lower bound on the radius of the smallest circle which can enclose all the individuals. It
is clear that the swarm size will will scale with the size of the individual.

If we define the density of the swarm as the number of individuals per unit area, and let
it be ρ, then it is simple to see that ρ is upper bounded, with

ρ ≤
n

π
∑n

i=1 r2
i

.

Hence, the swarm cannot become arbitrarily dense.

6 Computer Simulations

Extensive computer simulations show that for a sufficiently large number of individuals
the proposed model (7) generates four types of swarming-like behaviors. They are (1) the
cruise formation (linear or nonlinear) reminiscent of a cruising and leaderless school of fish, a
moving herd of cattle or elephants with a leader (leader-following), (2) random walks similar
to the swarming behavior of fruit flies Drosophila melanogaster, (3) constant arrangements
requiring individuals to aggregate and stop, as in fruiting body formation by bacteria, and
(4) circular motions reminiscent of the behavior of a school of fish when threatened by a
predator.

Table 1 summarizes the emergent behaviors as we modify the three parameters.

6.1 Examples of Type A and Type B Arrangements

6.1.1 Straight Line Formation

Our first diagram shows an example of Type A arrangement. In Figure 1 (a), randomly-
positioned 30 individuals, each with bin 10, at the initial time of t = 0 are shown. As time
evolves, they cluster around the centroid and cruise along a straight line as a well-spaced
cohesive group as shown in Figure 1 (b). The path of the centroid is shown thick.
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Table 1: Parameters produce different types of emergent behaviors for sufficiently large
populations.

Type Convergence Coupling Cohesion Some emergent
parameter, parameter, parameter, arrangement about

αs
i > 0, γi > 0, βij > 0, centroid

s = 1, 2; i ∈ N i ∈ N i, j ∈ N, i 6= j

A same αs
i same γi same βij – coherent compact

for all s, i, for all i for all i, j cluster cruising
or random αs

i in a straight line;
– constant arrangement.

B same αs
i random γi same βij – coherent compact cluster

for all s, i for all i, j cruising in a nonlinear
fashion, with leader(s)
possibly emerging;
– circular motion.

C same αs
i same γi random βij – Lévy-like random walk;

for all s, i for all i
or, random αs

i

D random αs
i random γi same βij – same as in B

for all i, j
F same αs

i random γi random βij – same as in C
for all s, i

G random αs
i random γi random βij – any of the above
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Figure 1: Cruise. Example of Type A arrangement, where αs
i = 1, γi = 2 and βij = 50.

The path of the centroid is shown thick. The swarm is cruising non-stop as a well-spaced
cohesive group in a stable formation.

6.1.2 Constant Arrangement about Centroid

In 2006, Sozinova and colleagues developed a three-dimensional model of myxobacterial
fuiting-body formation, in which myxobacterial cells, when sensing starvation, change their
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movement pattern from outward spreading to inward concentration and form aggregates
nucleated by a stationary traffic jam or nonsymmetric initial aggregates [Sozinova et al
(2006)].

In our second example (Figure 2), the members (n = 70, bin 20) converge to a constant
arrangement about the centroid, reminiscent of the shape of the base level of such bacterial
swarm formation.
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3000

(b)

Figure 2: Balanced forces. Example of constant arrangement about centroid (Type A),
where αs

i = 0.1, γi = 0.2 and βij = 50. Part (a) and (b) show the initial and final positions
of the individuals, respectively. The centroid remains stationary.

6.1.3 Leader-following Behavior

The example shown in Figure 3, with n = 30 individuals and bin 10, shows a nonlinear path
taken by the swarm, with an emergent leader.

6.2 Examples of Type C Arrangement

6.2.1 Random Walks

In 2006, Majkut modelled the flight paths of fruit flies Drosophila melanogaster, which utilize
scent to locate food sources in their vicinity [Majkut (2006)]. Fruit fly flight is characterized
by a series of straight segments interrupted by rapid changes in horizontal heading known as
saccades. Majkut used Lévy flights to model the foraging behavior of fruit flies. Levy flights
are a class of continuous time random walks, which are often found in biological behavior
and are prevalent in foraging.

Our diagram in Figure 4 shows a Lévy-like random walk, with n = 30 and bin 10.

6.2.2 Circular Motion from Random Walks

Our second example of Type C arrangement shows the formation of a circular motion out
from a random walk (Figure 5).
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Figure 3: Leader of the pack. Example of Type B arrangement, where αs
i = 1, γi is

randomized between between 0.01 and 1, and βij = 100. The path of the centroid is shown
thick. The swarm is cohesive throughout. Part (b), without paths drawn, clearly shows a
leader and those that trail behind.
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Figure 4: Random walks. Example of Type C arrangement, where αs
i = 5, γi = 1 and βij

is randomize between and including 200 and 500. The path of the centroid is shown thick
in (a). The swarm is cohesive throughout. In (b), the path of an individual is magnified,
showing a saccade-like flight path.

7 Conclusion

Recent work on swarm modelling, especially by Edelstein-Keshet (2001), Mogilner and
Edelstein-Keshet (1999), Mogilner et al (2003), and Gazi and Passino (2003, 2004b,a) shows
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Figure 5: From randomness to order. Example of Type C arrangement, where αs
i = 5,

γi = 2 and βij is randomize between 200 and 500. The path of the centroid is shown thick.
The swarm is cohesive throughout. Initially, in (a), there is randomness. At some certain
time, order in the form of a circular motion began (b). The motion is clockwise.

that an element of the swarming phenomenon is a long-range attraction and a short-range
repulsion between individuals in the swarm. The Lagrangian approach is a means to do
this. This study also supports this heuristic argument with a novel technique to construct
a Lagragian model. Utilizing the Lyapunov method, we create a gradient system that is
stable, implying the congregation of individuals about their centroid to form cohesive and
well-spaced swarms.

Our model shares the disadvantage of other Lagrangian models which require every indi-
vidual to know (or sense) the (relative) position of all the other individuals. Obviously such
models are not scalable. Nonetheless, it has several characteristics that make it stand out
from other swarm models: (1) It is a distributed system that not only captures the basic
feature of aggregation, cohesion and stability of a swarm, but also exhibits more complex dy-
namics such as random walks and self-organized oscillatory motions via the use of only three
parameters; the convergence, coupling and cohesion parameters; (2) It is general enough to
be either an isotropic and a reciprocal swarm model, or anisotropic and non-reciprocal swarm
model by manipulating the coupling and cohesion parameters appropriately; (3) Finally, the
results may be applicable to distributed robotic systems, or considered for the control of
heterogenous robotic swarms by creating, for instance, a kinematic model of an individual
robot in a swarm and constructing its instantaneous velocity along the method expounded
in this article. The recent work by the authors and colleagues in Sharma et al (2009, 2010),
which include fixed obstacles, is in this direction, and will be further developed in light of
the new results in this paper.
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