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Abstract Cooperative coevolution decomposes an optimi-
sation problem into subcomponents and collectively solves
them using evolutionary algorithms. Memetic algorithms
provides enhancement to evolutionary algorithms with local
search. Recently, the incorporation of local search into a
memetic cooperative coevolution method has shown to be
efficient for training feedforward networks on pattern clas-
sification problems. This paper applies the memetic cooper-
ative coevolution method for training recurrent neural net-
works on grammatical inference problems. The results show
that the proposed method achieves better performance in
terms of optimisation time and robustness.

Keywords Recurrent neural networks - Memetic
algorithms - Local search - Cooperative coevolution -
Grammatical inference

1 Introduction

Recurrent neural networks are dynamical systems that have
been successful in problems that include time series predic-
tion, classification, language learning and control (Robinson
1994; Seyab and Cao 2008). Finite-state machines have been
used to demonstrate knowledge representation and learning
in recurrent networks (Giles et al. 1995).

Cooperative coevolution (CC) divides a problem into sub-
components (Potter and Jong 1994) that are represented using
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sub-populations which are genetically isolated. Cooperative
coevolution has shown to be effective for neuro-evolution of
feedforward and recurrent networks (Gomez 2003; Gomez
et al. 2008; Chandra et al. 2011c). Cooperative coevolution
has the feature of decomposing a problem using several sub-
populations which provides greater diversity and increased
global search features (Chandra et al. 2012c).

Problem decomposition is a major issue in the use of
cooperative coevolution for neuro-evolution. It is essential
to break the network into subcomponents that have the least
interactions amongst themselves (Chandra et al. 2012c).
There are two major problem decomposition methods for
neuro-evolution that decomposes the network on the neuron
and synapse level. In synapse level problem decomposition,
the neural network is decomposed to its lowest level where
each weight connection (synapse) forms a subcomponent.
Examples include cooperatively co-evolved synapses neuro-
evolution (Gomez et al. 2008) and neural fuzzy network with
cultural cooperative particle swarm optimisation (Lin et al.
2009). In neural level problem decomposition, the neurons
in the network act as the reference point for the decomposi-
tion. Examples include enforced subpopulations (Gomez and
Mikkulainen 1997; Gomez 2003) and neuron-based subpop-
ulation (Chandra et al. 2010, 2011c). Adaption of problem
decomposition during neuro-evolution has shown promising
results for feedforward and recurrent neural networks (Chan-
draetal. 2011b, 2012a). Adaptation strategies can ensure dif-
ferent levels of diversification and intensification at different
stages of the evolutionary search (Chandra et al. 2012a,c).

Memetic algorithms (MAs) combine population-based
evolutionary algorithms with local search methods that
are also known as individual learning or local refinement
(Moscato 1989a). The search for efficient and robust local
refinement procedures has been the focus of memetic algo-
rithms (Smith 2007; Molina et al. 2010). Memetic algorithms
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have been used for solving optimization problems with com-
putationally expensive fitness functions (Zhou et al. 2007),
large scale combinatorial optimization problems (Tang et al.
2007), enhancing e-learning environments (Acampora et al.
2011b) and ontology alignment problem (Acampora et al.
2012). Other applications include combinatorial optimisation
problems, machine learning such as training neural networks,
molecular optimisation problems, electronics and engineer-
ing, and other optimisation problems as discussed in Moscato
(2003).

Crossover-based local search has shown good perfor-
mance in memetic algorithms (Molina et al. 2010). A study
on the balance of diversification using cooperative coevo-
lution and intensification using local search has been suc-
cessful for cooperative coevolution of feedforward net-
works on pattern classification problems (Chandra et al.
2012b). It is important to investigate how often to apply
local search (local search interval) and for how long to
apply them (local search intensity). Our recent work pre-
sented a memetic cooperative coevolution method for train-
ing feedforward networks has been called crossover-based
local search in cooperative coevolution (XLCC) Chandra
et al. (2012b). It would be interesting to study the perfor-
mance of XLCC for training recurrent neural networks since
it has a different search landscape as feedback connections
are present.

This paper applies XLCC for training Elman recurrent
networks (Elman 1990) on a set of grammatical inference
learning problems to evaluate the training time and guaran-
tee for convergence in terms of scalability and robustness.
It extends the results published in Chandra et al. (2011a)
by using a heuristic to determine the local search intensity
during the evolutionary process and testing the method on
different number of hidden neurons reflecting on scalability
and robustness.

The rest of the paper is organised as follows. Section
2 gives a background on memetic algorithms, cooperative
coevolution and recurrent networks. Section 3 presents the
memetic cooperative coevolution framework that features
crossover-based local search. Section 4 presents experimen-
tal results and Sect. 5 concludes the paper with a discussion
on future work.

2 Background

2.1 Memetic algorithms

Global search traverses over several neighbourhood of solu-
tions while local search limits itself within a single solution
neighbourhood. The neighbourhood N (v) of a vertex v is

the sub-graph that consists of the vertices adjacent to v (not
including v itself) (Watts 1999).

@ Springer

Local search is also viewed as hill climbing that refines
the solution. Evolutionary search methods begin with global
search that contains large difference between candidate solu-
tions in the population. As the search progresses, with evolu-
tionary operators such as selection and recombination, the
search points to a single solution neighbourhood and the
candidate solutions are closer to each other. Local search
is encouraged towards the end of the search when the dis-
tance between the candidate solutions get smaller. The same
recombination operators used in the beginning of the search
may not be applicable during the end, and therefore, adapta-
tion is important. This is the main reason adaptation of the
recombination operators and local search methods play an
important role during the evolutionary process.

Meta-heuristics refer to the family of search algorithms
that have extended basic heuristic methods by extending
exploration capabilities (Glover and Kochenberger 2003).
Memetic algorithms use master meta-heuristics for diversi-
fication and a subordinate meta-heuristic for intensification.
Memetic algorithms address the shortcomings of evolution-
ary algorithms in balancing diversification and intensification
(Moscato 1989a). Memetic algorithms also include the com-
bination of evolutionary algorithms with problem dependent
heuristics and approximate methods and special recombina-
tion operators (Moscato 2003). Memetic algorithms are often
referred to as Baldwinian evolutionary algorithms, Lamarck-
ian evolutionary algorithms, cultural algorithms or genetic
local search.

Memetic algorithms have typically used evolutionary
algorithms for diversification combined and local search
methods such as hill-climbing for intensification. Initial work
was done by Moscato who used a genetic algorithm for
diversification with local search for intensification (Moscato
1989b). Lozano et al. (2004a) presented memetic algorithm
with crossover hill-climbing as a local search. The crossover
operator repeatedly produces a fixed number of offspring
from which the best is selected.

Ong and Keane (2004) presented a meta-Larmarckian
memetic framework where several different types of local
search algorithms are employed during evolution. Initially,
all local search algorithms are given a chance and hence their
fitness is measured which is kept in future so that roulette
wheel selection can be used to select the local search. The
method showed high quality and efficient performance on
classic benchmark functions for continuous optimisation and
a real world aerodynamic design problem. Smith (2007)
presented a review on co-evolving memetic algorithms in
which a rule-based representation of local search is coad-
apted alongside candidate solutions within a hybrid evolu-
tionary algorithm. Nguyen et al. (2009) presented a proba-
bilistic memetic framework that analyses the probability of
the process of individual learning in locating global opti-
mum. Agent-based machine learning methods has been used
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to address adaptation in memetic algorithms (Acampora et
al. 2011a).

It has been found that crossover based local search
(Lozano et al. 2004b; Molina et al. 2010), gave good perfor-
mance for real parameter optimisation problems. In crossover
based local search, efficient crossover operators that have
local search properties are used with a population of a few
individuals. They have shown promising results in compari-
son with other evolutionary methods for optimisation prob-
lems with high dimensions (Molina et al. 2010).

2.2 Cooperative coevolution

Cooperative coevolution (CC) is an evolutionary compu-
tation method inspired from nature which divides a large
problem into subcomponents and solves them collectively
in-order to solve the large problem (Potter and Jong 1994).

The original cooperative coevolution algorithm (Potter
and Jong 1994) can be summarised as follows.

1. Problem decomposition: Decompose a high dimensional
problem into subcomponents that can be solved by
conventional evolutionary algorithms. The subcompo-
nents can vary in sizes and are often expressed as sub-
populations.

2. Subcomponent optimisation: Evolve each subcomponent
separately by an evolutionary algorithm where evolution-
ary operators such as crossover and mutation are restricted
to a subcomponent and do not affect other subcompo-
nents.

3. Fitness evaluation: Fitness of individuals in each of the
subcomponents are evaluated cooperatively with repre-
sentative examples from the other subcomponents.

There are two major problem decomposition methods for
cooperative coevolution of recurrent neural networks. In
Synapse level problem decomposition, the network is decom-
posed to its lowest level where each weight link (synapse) in
the network forms a subcomponent. The number of subcom-
ponents depend on the number of weights and biases (Gomez
et al. 2008; Lin et al. 2009).

In Neural level problem decomposition, each neuron in the
hidden layer is used as a major reference point for each sub-
component. Therefore, the number of hidden neurons deter-
mines the number of subcomponents. Neural level decom-
position has been efficient for training recurrent neural net-
works for grammatical inference problems (Chandra et al.
2011c). Each subcomponent consists of weight links associ-
ated with a neuron in the hidden, state (recurrent), and output
layer as shown in Fig. 1. Therefore, each subcomponent is
implemented as a sub-population and defined as follows:

Context
Layer

aesh

Hidden

Sub- Sub- Sub- Sub-
Population(1) | [ Population(2) | | Population(3) | | Population(n)

Fig. 1 Each neuron in the hidden and output layer acts as a reference
point for each subcomponent (Chandra et al. 2011c)

1. Hidden layer sub-populations: weight-links from each
neuron in the hidden(t) layer connected to all input ()
neurons and the bias of hidden(t), where ¢ is time.

2. State (recurrent) neuron sub-populations: weight-links
from each neuron in the hidden(t) layer connected to
all hidden neurons in previous time step hidden(t — 1).

3. Output layer sub-populations: weight-links from each
neuron in the output(¢) layer connected to all hidden(t)
neurons and the bias of output(t).

2.3 Recurrent neural networks

Recurrent neural networks have been an important focus of
research as they can be applied to difficult problems involv-
ing time-varying patterns. They are suitable for modelling
temporal sequences. A detailed study on the theoretical foun-
dations, design and application of recurrent neural networks
is done in Haykin et al. (2006), Kolen and Kremer (2001),
Medsker and Jain (1999).

First-order recurrent neural networks use context units to
store the output of the state neurons from computation of
the previous time steps. The context layer is used for com-
putation of present states as they contain information about
the previous states. Manolios and Fanelli have shown that
first-order recurrent networks can learn and represent deter-
ministic finite-state automata (Manolios and Fanelli 1994).
The Elman recurrent network architecture have been trained
using evolutionary algorithms (Pham and Karaboga 1999).
The computational power of Elman recurrent networks has
been studied and it has been shown that their dynamical prop-
erties can represent any finite-state machine (Kremer 1995).

The Elman architecture (Elman 1990) employs a context
layer which makes a copy of the hidden layer outputs in the
previous time steps. The dynamics of the change of hidden
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state neurons activation in Elman style recurrent networks is
given by Eq. (1).

K J
yi) = f D vk et =D+ D wi x;e =) (1)

k=1 j=1

where yi (1) and x; (¢) represent the output of the context state
neuron and input neurons, respectively. v;x and w;; represent
their corresponding weights. f(.) is a sigmoid transfer func-
tion.

3 Memetic cooperative coevolution framework
for recurrent networks

Memetic algorithms have been mainly developed using evo-
lutionary algorithms that have a single population of individ-
uals. In the case of building a memetic computation frame-
work for several sub-populations in cooperative coevolution,
we need to consider computational costs of having local
search for each sub-population. In order to apply local search,
the respective individual has to be concatenated with the
best individuals in the rest of the sub-populations. There-
fore, given n sub-populations, n local searches are required
which adds to the computational cost as shown in Fig. 2.
Our previous work presented a memetic framework that
takes advantage of the local search while considering the
computational cost of having a separate local search for
every sub-population (Chandra et al. 2012b). It employs
local search only when all the sub-populations in cooper-
ative coevolution have been evolved. The two main parame-
ters of the memetic framework are the local search intensity
(LSI) and local search interval (LS-Interval). The LSI deter-

Original Problem

Problem Decomposition

5P (2) y S

LS (1) Ls(2) LS(n)

Fig. 2 Problem faced by cooperative coevolution in employing n local
searches (LS) to each sub-population (SP)
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mines how long the local refinement is done and the interval
determines when to apply local refinement, i.e, after how
many consecutive cycles of undergoing standard coopera-
tive coevolution. For instance, the LS-Interval of 3 means
that local refinement will be employed once with given LSI
after every 3 cycles.

Alg. 1 Memetic Cooperative Coevolution Framework

— Encode the neural network using an appropriate encoding scheme
— Randomly initialise all sub-populations
— Cooperatively evaluate each sub-population

while NOT termination do
for LS-Interval do
for each sub-population do
for depth of n generations do
i) Create new individuals using genetic operators
ii) Place new individuals in respective sub-population
end for
end for
end for

— Concatenate the best individuals from each sub-population
into meme M
— Encode M into recurrent network
for LSI on local search population (I generations) do
— crossover-based local search
—restart if converged
end for

i) Decompose the refined individuals for respective sub-population
i) Replace the worst individuals of the respective sub-populations
with the decomposed individual

end while

The meme is the individual that goes through local search.
The details of the memetic cooperative neuro-evolution
method is given in Algorithm 1. The algorithm assumes that it
has been given the best parameters for the evolutionary algo-
rithm such as the sub-population size, crossover and mutation
rate.

The algorithm begins by encoding the recurrent neural
network into the sub-population according to the respec-
tive cooperative coevolution encoding scheme. The spe-
cific encoding scheme for this work is neuron-based sub-
population (Chandra et al. 201 1c) for training recurrent net-
works.

The algorithm proceeds as a standard evolutionary algo-
rithm which employs genetic operators such as selection,
crossover and mutation to create new offspring for all the
sub-populations. Each sub-population is evolved for a depth
of search of n generations in a round-robin fashion and the
cycle is completed.

This process is repeated according to the local search inter-
val. After the specified LS-Interval has been reached, the
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Original Problem

Problem Decomposition

SP (2 SP (n)

Depending on LS-Interval
1. Concatenate the Best Individuals
I ] | ]

2. LOCAL SEARCH (LsI)

3. Disintegrate and Copy back to SP

Fig. 3 The memetic cooperative coevolution method for training
recurrent networks (Chandra et al. 2012b)

—

best individuals from all the sub-populations are concate-
nated into a meme which is further refined as shown in Fig. 3.
The meme replaces the weakest individual in the local search
population. The meme is then refined using the local search
population for a given number of generations as defined by
the LSI (I generations).

The refined meme is then disintegrated and copied to the
respective sub-populations. The refined meme replaces the
weakest individual in each of the sub-populations. Note that
even if the refined meme is not improved, it replaces the
weakest individuals as it may have features that will be used
later in evolution. However, the best memes in the local
search population are always retained. Although crossover-
based local search is used as the designated method, the
framework can employ any other local search method. Some
of the components of the proposed method are discussed in
the following subsections.

3.1 Initialisation

The feature of the cooperative coevolution sub-populations
is to promote diversity (Potter and De Jong 2000). The local
search population provides intensification. All the individu-
als of the respective sub-population are initialised with ran-
dom real values. Each individual chromosome is then con-
catenated with the best individuals of the rest of the sub-

populations and then encoded into a neural network and eval-
uated as done in Potter and De Jong (2000), Chandra et al.
(2011c).

3.2 Diversity in competition

Cooperative coevolution naturally retains diversity through
the use of sub-populations, where mating is restricted to the
sub-populations and cooperation is mainly by collaborative
fitness evaluation (Potter and Jong 1994; Potter and De Jong
2000). Since selection and recombination is restricted to a
sub-population, the new solution will not have features from
the rest of the sub-populations; therefore cooperative coevo-
lution produces more diverse population when compared to
a standard evolutionary algorithm with a single population.

The proposed memetic cooperative coevolution method
employs competition in the local search population. The
meme is refined in a population (different set of individu-
als) that is isolated from the sub-populations and then later
the best individual (meme) is added to the sub-populations of
cooperative coevolution which ensures higher level of diver-
sity.

3.3 Fitness evaluation of subcomponents

The fitness of a given individual in a sub-population is
obtained by combining it with the best individuals from the
rest of the sub-populations. The concatenated individuals are
encoded into the neural network where the fitness is evalu-
ated and assigned back to the given individual. This method
has been used to train cascade networks on the two-spirals
problem and has shown to learn the task with smaller net-
works when compared to the cascade correlation learning
architecture (Potter and De Jong 2000).

3.4 Local refinement using crossover-based local search

The crossover-based local search employs a population of
few individuals, which is also referred as the local search pop-
ulation. The use of evolutionary algorithms for local search
has been effective (Kazarlis et al. 2001; Lozano et al. 2004b;
Molina et al. 2010). In the XLCC, the generalised genera-
tion gap with parent-centric crossover (G3-PCX) evolution-
ary algorithm (Deb et al. 2002) with a small population size is
used as the evolutionary algorithm for crossover-based local
search. The G3-PCX is also used as the evolutionary algo-
rithm for the sub-populations of cooperative coevolution. The
parent-centric crossover operator of the G3-PCX has features
to provide good local search, therefore, it needs large pop-
ulation size (of more than 90) even for small 2 dimensional
problems as discussed in PoSik (2009). A small population
size for the G3-PCX will ensure that it becomes local search
intensive and therefore it is used as a local search method.
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The individuals in the population of the crossover-based
local search are randomly seeded in the beginning of
the evolutionary process. The cooperative coevolution sub-
populations are seeded at the same time. During the evolu-
tionary process, the cooperative coevolution sub-populations
transfer the meme, which is the best solution, to the
crossover-based local search population. This is done by con-
catenating the best solutions from all the sub-populations
as shown in Fig. 3. This transfer is also dependent on the
local search interval. Once the meme is transferred, the local
search population is evolved according to the local search
intensity. This population consists of the current meme and
other candidate solutions left from the previous time when
this population was used.

Once the local search population has been evolved accord-
ing to the local search intensity, the best solution is trans-
ferred to the sub-populations of the cooperative coevolution.
The remaining individuals in the local search population are
kept and used in future local search evolution. This is done
in order to maintain diversity, i.e. these individuals can be
used to produce more fit offspring with the next meme that
contains the best solution from cooperative coevolution.

A restart scheme is used when the local search population
contains solutions that are similar to each other indicating
local convergence. The population restart scheme is imple-
mented by keeping the strongest individual aside and then
initialisation the rest of the individuals with random num-
bers from a distribution. Afterwards, the strongest individual
is added back to the local search population.

3.5 Other local search methods

Meta-Lamarckian learning can also be used in this frame-
work. In meta-Lamarckian learning, several local searches
can be employed and the suitable memes are chosen from the
pool of local searchers as discussed in Ong and Keane (2004).
However, for the case of neural network training, where func-
tion evaluation is costly, employing multiple local searches
may not be practical for the given problem. Nevertheless, it
may be suitable for problems where function evaluation is
not very costly.

4 Simulation and analysis

This section presents an experimental study on the memetic
cooperative coevolution method applied for training recur-
rent neural networks. The training and testing dataset is used
from Chandra et al. (2011a,c, 2012a). We used grammati-
cal inference problems from the Tomita language (Tomita
1982). We used Tomita 1 (T1), Tomita 2 (T2), Tomita 3 (T3),
and Tomita 4 (T4). We also used a fuzzy finite automata
(FFA) which has also been used to train Elman recurrent net-
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works (Chandra et al. 2011a,c, 2012a). Neural level problem
decomposition (Chandra et al. 201 1¢) shown in Fig. 1 is used
in all the experiments.

We report the training behaviour of the respective algo-
rithms in terms of the function evaluations and the success
rate. A run is successful when the desired solution is found
before reaching the maximum training time. This determines
the success rate. The goal of each algorithm is to obtain a
high success rate with the least number of average function
evaluations.

4.1 Local search intensity and interval

The FFA problem employs 5 neurons in the hidden layer. 2
neurons in the hidden layer for T2 problem and 3 neurons
for the hidden layer for T3 and T4 problems are used. The
maximum number of function evaluations in T2, T3 and T4
problems are 2000, 5000 and 5000, respectively. The FFA

Optimization Time
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Mean Function Evaluations

1000

1 3 5 7 9 11
Local Search Interval
(a) Optimisation Time in Function Evaluations for
evaluating the LS-Interval

Success Rate
100 T

80

60

40t

Success Rate

20t i 1

1 3 5 7 9 11
Local Search Intensity

(b) Success Rate for evaluating the LS-Interval

Fig. 4 Theevaluation of the LS-Interval for the T2 and T3 grammatical
inference problems. The LSI of 8 generations is fixed in all problems.
The frequency of 1 shows the best success rate and least number of
function evaluations for all problems
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Fig. 5 The evaluation of the LS-Interval for the FFA and T4 gram-
matical inference problems. The LSI of 8 generations is used as a fixed
parameter in all problems. The interval of 1 shows the best success rate
and least number of function evaluations for all problems

problem has 7000 has the maximum number of function
evaluations. This set up has also been used in previous work
Chandra et al. (2011a,c).

Figures 4 and 5 gives the results which shows the behav-
iour of XLCC on different LS-Interval for the 4 problems.
95 % confidence interval for 100 experiments is shown as
error bars in the histograms. A good performance is given
when the least optimisation time is used with the highest
success rate. The fixed LSI of 8 generations is used. The
LS-Interval of 1 gives the best performance in terms of the
optimisation time (least function evaluations) as shown in
Fig. 4a with better success rates as shown in Fig. 4b for the
T2 and T3 problems. The LS-Interval of 3 for the T2 problem
shows better optimisation time, however, it has poor success
rate and therefore, LS-Internal of 1 has better performance.
It is seen that the optimisation time and success rate deteri-
orates as the LS-Interval is increased for both the problems.

T1 Optimization Time
1800 T

CC mmmm
1600 XLoe &=

1400

1200

1000

800 =

600 .

Mean Function Evaluations

2 3 4 5 6
No. Hidden Neurons
(a) Optimisation Time given by Mean Function Evaluations

T1 Success Rate

T T T T

CC mmmmm

100

80

60

Success Rate

40

20

2 3 4 5 6
No. Hidden Neurons
(b) Success Rate

Fig. 6 The T1 problem

The LS-Interval higher than 1 requires more time in terms of
the number of function evaluations.

In Fig. 5, the LS-Interval is evaluated for the FFA and T4
problems. In both problems, the LS-Interval of 1 gives the
best performance in terms of the optimisation time and the
success rate. The performance deteriorates as the LS-Interval
is increased.

4.2 Adaptive local search intensity

In the previous subsection, it has been established that the
local search interval of 1 gives the best results. It is important
to use the right local search intensity that may vary according
to the problem. In the evolutionary process, global search is
useful in the initial stage and local search in the later stages.
The local search intensity should increase during the later
stages in order to provide more emphasis for intensification.
An adaptive method for determining the local search intensity
is shown in Eq. 2
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Fig. 7 The T2 problem

LSI:I-%—(i *k) 2)
m
where, ¢ is the total number of function evaluations, m is the
maximum number of function evaluations and & is a con-
stant which specifies the maximum intensity of local search
to be done in the final stages. This heuristic ensures that the
intensity of local search increases with the number of func-
tion evaluations. We use k = 30 for all the problems in this
study. The adaptive local search intensity gave good perfor-
mance for training feedforward neural networks for pattern
classification (Chandra et al. 2012b).

In these experiments, the maximum number of function
evaluation for T1 and T2 problems are 2000. T3, T4 and T5
problems use 5000. All problems use different number of
hidden neurons to test robustness.

The results are shown in Figs. 6,7, 8,9, 10. In T1 problem
shown in Fig. 6, XLCC performs better than CC in most
cases. In T2 problem shown in Fig. 7, XLCC performs better
for most cases. In the case of 2 neurons in the hidden layer, the
optimisation time of XLCC is better, however the success rate
is abit weaker when compared to CC. In T3 problem shown in
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Fig. 8 The T3 problem

Fig. 8, XLCC performs better than CC in most cases, except
for 4 hidden neurons where CC is slightly better. In the T4
and FFA problems in Figs. 9 and 10, respectively, XLCC
shows better performance in all the cases.

The comparison of XLCC with standalone cooperative
coevolution (CC) shows that XLCC has given better overall
performance in terms of the optimisation time given by the
number of function evaluations and the success rate.

4.3 Discussion

The results in general show that the LS-Interval of 1 gives
the best performance in all four problems which indicates
that the local search has to be applied most frequently. The
memetic framework has to take maximum advantage of local
refinement after every cycle in cooperative coevolution in
order to balance the global and local search.

In general, comparison of XLCC with CC shows improved
performance in all most cases. This indicates that it is impor-
tant to employ local search in cooperative coevolution for
training recurrent neural networks. The results have clearly
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Fig. 9 The T4 problem

shown that the adaptive depth of search has been beneficial
as it gives better performance when compared to cooperative
coevolution alone in terms of optimisation time and success
rate. The proposed memetic cooperative coevolution method
performs well in terms of robustness as its performance is
not deteriorated different number of hidden neurons.

Co-adaptation is necessary in cooperative coevolution,
especially in the case where the problem has difficulty in
decomposition. It is difficult to decompose neural networks
into subcomponents as the interaction between the synapses
depends on the network architecture and the nature of the
problem, i.e training data (Chandra et al. 2012c). The local
search population has also provided features of co-adaptation
between the several sub-populations of cooperative coevolu-
tion. This population provides the means for selected individ-
uals to be exchanged with different sub-populations using the
crossover operation in the local search population. Moreover,
the restart scheme in the local search population also pro-
vides features of adaptation when local minimum has been
reached.

Although feedback connections are present for recurrent
networks, the performance of XLCC for training them is

FFA Optimization Time
4500 T T

CC mmmm

4000 I XLCC mmmm

3500
3000 | ! T 35—

Mean Function Evaluations

4 5 6 7 8
No. Hidden Neurons

(a) Optimisation Time given by Mean Function Evaluations

FFA Success Rate

CC mmmmm
100 XLCC ===

80

Success Rate

4 5 6 7 8
No. Hidden Neurons
(b) Success Rate

Fig. 10 The FFA problem

similar when compared to feedforward networks (Chandra
etal. 2012b). The similarity in performance is in terms of the
reduced optimisation time when compared to CC and better
guarantee for convergence by XLCC when compared to CC.
Moreover, XLCC is also better in terms of scalability, i.e,
the adaptability of the algorithm given different number of
hidden neurons.

The LS-Interval of 1 has given the best performance for
recurrent networks in this study and feedforward network in
our previous work (Chandra et al. 2012b). XLCC is purely
an evolutionary computation method that does not rely on
gradient information. It is appropriate for applying neural
networks for control problems where gradient information is
not easily available.

5 Conclusions and future work

This paper applied an established memetic cooperative
coevolution method for training recurrent neural networks
for a set of learning problems given by deterministic and
fuzzy finite state automata. The relationship between the
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local search interval and local search intensity was first estab-
lished and then the method was used for training recurrent
networks given different numbers of hidden neurons that
reflected in terms of robustness.

The results have shown improved performance in terms of
optimisation time and guarantee of convergence which opens
the road for further research in using other local refinement
procedures with cooperative coevolution.

In future work, other local search methods can replace
or be added with the crossover-based local search for local
refinement. Backpropagation-through-time can be used as
an additional local search method to incorporate gradient
information and enhance the evolutionary search process.
The memetic cooperative coevolution method can also be
used to train other recurrent network architectures and also
extended for global optimisation problems.
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