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Abstract

Cooperative coevolution decomposes a problem into subcomponents and employs evolutionary algorithms for
solving them. Cooperative coevolution has been effective for evolving neural networks. Different problem decompo-
sition methods in cooperative coevolution determine how a neural network is decomposed and encoded which affects
its performance. The problem decomposition method should provide enough diversity and also group interacting
variables which are the synapses in the neural network. Neural networks have shown promising results in chaotic
time series prediction. This work employs two different problem decomposition methods for training Elman recur-
rent neural networks on chaotic time series problems. The Mackey-Glass, Lorenz and Sunspot time series are used
to demonstrate the performance of the cooperative neuro-evolutionary methods. The results show improvement in

performance in terms of accuracy when compared to some of the methods from literature.

Keywords: Cooperative coevolution, neuro-evolution, recurrent neural networks, chaotic time series prediction, and

evolutionary algorithms.

1. Introduction

Time series prediction involves the study of the present and past behaviour of the system for the prediction of the
future. Chaos theory is used to study the behaviour of dynamical systems that are highly sensitive to initial conditions
such as noise and error [1, 2]. Sensitivity to the initial conditions is known as the butterfly effect which makes long-
term prediction difficult. The prediction of chaotic time series has a wide range of applications such as in finance
[3], signal processing [4], power load [5], weather forecast [6], hydrological prediction [7, 8] and sunspot prediction
[9, 10, 11].

Cooperative coevolution (CC) divides a problem into subcomponents that are represented using sub-populations
[12]. An important feature of cooperative coevolution is that it provides better diversity using several subcomponents
than conventional evolutionary algorithms [13]. Problem decomposition in cooperative coevolution determines how a
neural network is broken down and encoded as subcomponents. Cooperative coevolution has shown promising results

in training neural networks [13, 14, 15, 16, 17].

Problem decomposition is a major issue in cooperative coevolution of neural networks. The problem decomposi-

tion method should provide enough diversity and also group interacting variables which are the synapses in the neural
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network. There are two major problem decomposition methods for neuro-evolution which decomposes the network
on the neural level and the synapse level. In synapse level problem decomposition, the neural network is decomposed
to its lowest level where each weight connection (synapse) forms a subcomponent. Examples include cooperatively
co-evolved synapse neuro-evolution [18] and neural fuzzy networks with cultural cooperative particle swarm opti-
misation [19]. In neural level problem decomposition, the neurons in the network act as the reference point for the

decomposition. Examples include enforced sub-populations [20, 21] and neuron-based sub-population [16, 17].

Neuron-based sub-population [16, 17] further breaks down the encoding scheme of enforced sub-populations
[20, 21]. Neuron-based sub-population performed better than enforced sub-populations and synapse level encoding
for pattern recognition problems using feedforward networks [16]. In evolving recurrent neural networks, neuron-
based sub-population showed better performance than synapse level problem decomposition for grammatical infer-

ence problems [17].

This work employs synapse and neuron level problem decomposition for training recurrent neural network for
chaotic time series prediction. The synapse level employs the problem decomposition used in cooperatively co-
evolved synapses neuro-evolution [18] while the neuron level employs neuron-based sub-population [17]. The results
are further compared with a standard evolutionary algorithm (EA) where a single population is used. These methods
are used to train the Elman recurrent neural network [22] on three different problems which consists of two simulated
and one real-world chaotic time series. The Lorenz and Mackey-Glass are the simulated time series while the Sunspot
is the real-world time series. The performance in terms of accuracy of the respective methods are evaluated on different
neural network topologies which are given by different numbers of hidden neurons. The results are further compared

with computational intelligence methods from literature.

The contribution of the paper is in the application of an existing problem decomposition method called neuron-
based sub-population [17, 16] for training recurrent neural networks on chaotic time series problems. Moreover,
synapse level problem decomposition [18] is also used for the same task and the results are compared. This will help
us establish which problem decomposition method is more suitable for time series problems.

The rest of the paper is organized as follows. Background on recurrent neural networks and cooperative coevolu-
tion framework is presented in Section 2. Section 3 presents the different problem decomposition methods for training
recurrent neural networks. Section 4 presents the results and discussion, and Section 5 concludes the paper with a

discussion on future work.

2. Background

2.1. Recurrent Neural Networks

Recurrent neural networks are dynamical systems whose next state and output depend on the present network state
and input. The Elman recurrent network [22] employs the context layer which makes a copy of the hidden layer outputs
in the previous time steps. They are composed of an input layer, a context layer which provides state information, a
hidden layer and an output layer. Each layer contains one or more neurons which propagate information from one
layer to another by computing a non-linear function of their weighted sum of inputs. The equation of the dynamics of
the change of hidden state neuron activations in the context layer is given in Equation 1.
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where S (1) and I;(¢) represent the output of the context state and input neurons, respectively, and Vj and W;; represent

their corresponding weights. g(.) is a sigmoid squashing function.

2.2. Embedding theorem and time series prediction using recurrent neural networks

Embedding is the process of finding a space in which the dynamics are smooth and no overlaps or intersections
occur in the orbits of the attractor. Takens’ embedding theorem provides the conditions under which a chaotic time
series can be reconstructed into a D — dimensional vector with two conditions which are the time delay and the

embedding dimension [23].

Given an observed time series x(¢), an embedded phase space Y(¢) = [(x(¢),x(t = T), ..., x(¢(D — 1)T)] can be
generated, where T is the time delay, D is the embedding dimension, t = 0, 1,2, ..., N — DT — 1, and N is the length of

the original time series [23].

Takens’ theorem expresses that the vector series reproduces many important characteristics of the original time
series. The right values for D and T must be chosen in order to efficiently apply Takens’ theorem [24]. Takens’ proved
that if the original attractor is of dimension d, then D = 2d + 1 will be sufficient to reconstruct the attractor [23].

Several methods have been proposed in the past to determine the values for the embedding dimensions as discussed
in [25]. Evolutionary algorithms have also been used to determine the optimal values of the embedding dimensions
[26, 27].

The reconstructed vector is used to train the recurrent network for one-step-ahead prediction where one neuron
is used in the input and output layer. The recurrent network unfolds k steps in time which is equal to the embedding
dimension D [9, 28].

The root mean squared error (RMSE) and normalised mean squared error (NMSE) are used to measure the pre-
diction performance of the recurrent neural network. These are given in Equation 2 and Equation 3.

N
1
RMSE = | = i — Di)? 2
N;(y ) @)

3)

N 52
NMSE = (Zi=1(}’z i) ]

SN0 = i)
where y;, y; and ¥; are the observed data, predicted data and average of observed data, respectively. N is the length of
the observed data.



2.3. Problem Decomposition in Cooperative Coevolution

Cooperative coevolution is a nature inspired optimisation method where the problem is decomposed as subcom-
ponents [12]. The subcomponents are implemented as sub-populations that are evolved in isolation and cooperation
takes place for fitness evaluation. The number of sub-populations enforce cooperative coevolution to provide better
diversity than conventional evolutionary algorithms [13]. Problem decomposition determines how the problem is bro-
ken down into subcomponents. The original CC framework has been used for function optimisation and the problem
was decomposed into the lowest level where a separate subcomponent was used to represent each dimension of the
problem [12]. It was later found that this strategy is only effective for problems which are fully separable [29]. Much
work has been done in the use of cooperative coevolution in large scale function optimization, and the concentration

has been on non-separable problems [29, 30, 31, 32] .

A function of n variables is separable if it can be written as a sum of n functions with just one variable [33]. Non-
separable problems have interdependencies between variables as opposed to separable ones. Real-world problems
mostly problems fall between fully separable and fully non-separable. Cooperative coevolution has been effective
for separable problems [12] as it has the property to decompose the problem into sub-problems and solve them in
isolation. Conversely, evolutionary algorithms without any decomposition strategy appeal to fully non-separable
problems. Note that the goal is to solve non-separable problems without any prior knowledge about the interacting

variables in the problem. Therefore, the evolutionary algorithm has to identify the interdependencies itself.

The subpopulations in cooperative coevolution are evolved in a round-robin fashion for a given number of gen-
erations known as the depth of search. The depth of search has to be predetermined according to the nature of the
problem. The depth of search can reflect whether the encoding schemes have been able to group the interacting
variables into separate subcomponents [17]. If the interacting variables have been grouped efficiently, then a deep
greedy search for the subpopulation is possible, implying that the problem has been efficiently broken down into

subcomponents which have fewer interactions among themselves.

3. Cooperative coevolution for evolving recurrent neural networks

Problem decomposition determines the size of a subcomponent and the way it is encoded. Problem decomposition
is also known as encoding scheme for training neural networks [16, 17]. This section gives details of the neuron and

synapse level encoding schemes for training recurrent neural networks.

In this paper, the neuron level encoding employs neuron-based sub-population (NSP) [17]. In NSP , each neuron
in the hidden layer and the output layer is a reference point for a sub-population. Each hidden neuron also acts as a
reference point for the recurrent (state or context) synapses connected to it. NSP can be easily extended to a neural
network with more than a single hidden layer. Figure 1 shows a detailed diagram of the NSP encoding scheme for

recurrent neural networks. Each subcomponent for a RNN with a single hidden layer is composed of the following:

1. For a given neuron i in the hidden(t) layer, the hidden layer subcomponents consists of all synapses connected

from input(t) layer to neuron i. The bias of i is also included.

2. For a given neuron j in the hidden(t) layer, the state (recurrent) layer subcomponents consists of all synapses
connected from the hidden(t — 1) layer to neuron ;.
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3. For a given neuron k in the output(¢) layer, the output layer subcomponents consists of all synapses connected
from the hidden(t) layer to neuron k. The bias of k is also included.

where ¢ is time and hidden(t — 1) is the layer representing the state or recurrent neurons.
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Figure 1: The NSP encoding scheme which can be easily extended to a neural network with more than one hidden layer [17].

The synapse level encoding scheme decomposes the network into its lowest level, where each synapse in the net-
work forms a separate subcomponent. Synapse level encoding has been employed in cooperative coevolved synapse

(CoSyNE) [18] and neural fuzzy systems trained by particle swarm optimisation [19].

The general NSP CC framework for training RNN is given in Algorithm 1.

Alg. 1 Cooperative Coevolution for training RNNs

Step 1: Decompose the problem into k& subcomponents according to the chosen encoding scheme (Neuron or
Synapse level)
Step 2: Initialize and cooperatively evaluate each sub-population
for each cycle until termination do
for each Subpopulation do
for n Generations do
i) Select and create new offspring
ii) Cooperatively evaluate the new offspring
iii) Update sub-population
end for
end for
end for

In Algorithm 1, the recurrent neural network is decomposed according to neuron or synapse level encoding into
k subcomponents. In neuron level encoding, & is equal to the number of hidden neurons, plus the number of context
neurons, plus the number of output neurons as shown in Figure 1. In synapse level encoding, k is equal to the total
number of synapses and biases. A cycle is completed when all the sub-populations are evolved for a fixed number of
generations in a round-robin fashion. The algorithm halts if the termination condition is satisfied. The termination

criteria is specified by a minimum RMSE or when the maximum number of function evaluations has been reached.

There are two main phases of evolution in the cooperative coevolution framework. The first is the initialization
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phase and the second is the evolution phase [17]. In the initialization phase, the individuals in the sub-populations do
not have a fitness. In order to evaluate the ith individual of the kth subcomponent, arbitrary individuals from the rest
of the sub-populations are selected and concatenated with the chosen individual and cooperatively evaluated. In the
evolution phase, cooperative evaluation is done by concatenating the chosen individual from a sub-population with
the best individuals from the rest of the sub-populations.

4. Experimentation, Results and Analysis

This section presents an experimental study of the two different problem decomposition methods in cooperative
coevolution of recurrent neural networks. The neuron level (NL) and synapse level (SL) problem decomposition
methods are used for training Elman recurrent networks [22] on chaotic time series problems from literature. The
results are also compared to an evolutionary algorithm (EA). Two simulated and one real-world chaotic time series
problems are used. The Mackey Glass times series [35] and Lorenz time series [1] are the two simulated time series
while the real-world problems is the Sunspot time series [36].The behaviours of the respective methods are evaluated
on different recurrent network topologies given by different numbers of hidden neurons which reflect the scalability
and the methods robustness. The results are further compared with computational intelligence methods from literature.

The details of the three different problems are given as follows.

4.1. Dataset and problem description

The Mackey Glass time series has been used in literature as a benchmark problem due to its chaotic nature [35].
The differential equation used to generate the Mackey-Glass time series is given in Equation 4.

ox  ax(t—1)
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In Equation 4, the delay parameter, 7, determines the characteristic of the time series. 7 > 16.8 produces chaos.
The selected parameters for generating the time series is taken from literature [37, 38, 11, 39] where the constants
are a = 0.2, b = 0.1 and ¢ = 10. The chaotic time series is generated by using time delay 7 = 17 and initial value
x(0) =1.2.

The experiments use the chaotic time series with length of 1000 generated by Equation 4. The first 500 samples
are used for training the Elman network while rest of the 500 samples are used for testing the respecting training
algorithms. The time series is scaled in the range [0,1]. The phase space of the original time series is reconstructed

with the embedding dimensions D =3 and T = 2.

The Lorenz time series has been introduced by Edward Lorenz who has extensively contributed to the establish-

ment of Chaos theory [1]. The Lorenz equation is given in Equation 5.
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where 7, r, and b are dimensionless parameters. The typical values of these parameters are used where n = 10, r = 28,
and b = 8/3. The x-coordinate of the Lorenz time series is chosen for prediction and 1000 samples are generated. The
time series is scaled in the range [-1,1]. The first 500 samples are used for training and the remaining 500 is used for

testing. The phase space of the original time series is reconstructed with the embedding dimensions D = 3 and 7 = 2.

Sunspot time series is a good indication of the solar activities for solar cycles which impact Earth’s climate,
weather patterns and satellite and spaces missions [10]. The prediction of solar cycles is difficult due to its complexity.
The monthly smoothed Sunspot time series has been obtained from the World Data Center for the Sunspot Index [36].
The Sunspot time series from November 1834 to June 2001 is selected which consists of 2000 points. This interval
has been selected in order to compare the performance the proposed methods with those from literature [11, 39]. The
time series is scaled in the range [-1,1]. The first 1000 samples are used for training while the remaining 1000 samples
are used for testing. The phase space of the original time series is reconstructed with the embedding dimensions D = 5
and T = 2.

4.2. Experimental set-up

The Elman recurrent network employs sigmoid units in the hidden layer of the three different problems. In the
output layer, sigmoid unit is used for the Mackey Glass time series while hyperbolic tangent unit is used for Lorenz
and Sunspot time series. The RMSE and NMSE given in Equation 2 and Equation 3 are used as the main performance

measures in order for comparison with the methods from the literature.

The generalised generation gap model with parent centric crossover operator (G3-PCX) evolutionary algorithm
[42] is employed in NL, SL and EA. The G3-PCX algorithm employs the mating pool size of 2 offspring and 2 parents
with the generation gap model for selection. This set-up has been used in [42] for optimization problems and in [17]
for training cooperative co-evolutionary recurrent neural networks. The sub-populations are seeded with random real

numbers in the range of [-5, 5] in all the experiments. 50 individuals make up the respective sub-populations.

In the respective CC framework for recurrent networks (SL and NL) shown in Algorithm 1, each sub-population
is evolved for a fixed number of generations in a round-robin fashion. This is considered as the depth of search. Our
previous work has shown that the depth of search of 1 generation gives optimal performance for both NL and SL
encodings [17]. Hence, 1 is used as the depth of search in all the experiments. Note that all sub-populations evolve
for the same depth of search.

The termination condition of the different problems is when a total number of 100 000 function evaluations has
been reached by the respective algorithms. The function evaluations in the initialisation stage are not included in the

maximum training time.



4.3. Results and discussion

This section reports the performance of the three evolutionary methods (NL, SL and EA) for training the Elman
recurrent network on the chaotic time series problems. Note that the best performance is given by the least RMSE and
NMSE.

Initially, the number of hidden neurons is empirically evaluated, and the mean and the best value of the RMSE is
given from 30 experimental runs. The results of the test set are shown in Tables 1 - 3. The best results are highlighted
in bold.

The best results from Tables 1 - 3 are chosen and further details are given in Table 4 where the mean and 95 %
confidence interval (CI) of RMSE and NMSE is given with the best performance out of 30 experimental runs. The
best mean prediction performance on the test dataset is highlighted in Table 4 and shown in Figures 2 - 4.

Table 1: The prediction performance (RMSE) of NL, SL, and EA on the test dataset of the Lorenz time series

SL NL EA
Hidden Mean Best Mean Best Mean Best
3 3.0E-2 1.2E2 3.6E-2 1.8E-2 5.1E-2 21E-2

5 19E-2 64E-3 27E-2 9.1E-3 25E-2 8.6E-3
7 22E-2 7.0E-3 23E-2 9.7E-3 21E-2 94E-3
9 38E-1 9.8E-3 24E-2 5.0E-3 21E-2 8.7E-3
11 82E-1 1.2E-2 1.8E-2 82E-3 29E-2 1.1E-2
13 1.1 22E-2 1.8E-2 6.6E-3 3.2E-1 22E-1

Table 2: The performance (RMSE) of NL, SL, and EA on the test dataset of the Mackey-Glass time series

SL NL EA
Hidden Mean Best Mean Best Mean Best
3 2.1E-2 12E-2 23E-2 97E-3 3.0E-2 13E-2
5 1.5E-2 79E-3 20E-2 1.0E-2 15E-2 9.5E-3
7 1.4E-2 9.0E-3 1.6E-2 10E-2 14E-2 8.9E-3
9 1.2E-2 76E-3 14E-2 83E-3 1.2E-2 7.2E-2

1.0E-2 57E-3 13E-2 8.0E-3 2.1E-2 8.8E-3

11
13 94E-3 63E-3 1.2E-2 8.3E-3 9.6E-2 6.9E-2

Table 3: The performance (RMSE) of NL, SL, and EA on the test dataset of the Sunspot time series

SL NL EA
Hidden Mean Best Mean Best Mean Best
3 69E-2 1.7E-2 5.6E-2 2.6E-2 92E-2 4.6E-2
5 1.0E-1 2.4E-2 75E-2 22E-2 7.2E-2 2.1E-2
7 1.0E-1 1.9E-2 59E-2 22E-2 5.7E-2 1.8E-2
9 1.3E-1 2.17E-2 89E-2 1.7E-2 7.7E-2 1.7E-2
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Figure 2: Typical prediction given by NL for Lorenz time series
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Table 4: The performance (RMSE and NMSE) of NL, SL, and EA on the the test dataset of the three problems. The mean and 95 % confidence
interval (CI) is given with the best performance out of 30 independent experimental runs.

RMSE NMSE
Problem Method Hidden Mean and CI Best Mean and CI Best
Lorenz SL 5 1.95E-2 + 2.59E-3 6.36E-3 8.28E-3 + 1.98E-3 7.72E-4
NL 11 1.82E-2 + 2.82E-3 8.20E-3 7.48E-3 +2.60E-3 1.28E-3
EA 7 2.06E-2 + 2.79E-3 9.43E-3 9.24E-3 + 2.83E-3 1.69E-3
Mackey SL 13 9.39E-3 + 5.57E-4 6.33E-3 6.31E-4 + 7.60E-5 2.79E-4
NL 13 1.23E-2 + 9.16E-4 8.28E-3 1.11-3+1.77E-4 4.77E-4
EA 9 1.19E-2 + 947E-4 7.24E-3 1.04E-3 + 1.69E-4 3.65E-4
Sunspot SL 3 6.88E-2 + 2.66E-2 1.66E-2 548E-2 +5.19E-2 147E-3
NL 3 5.58E-2 + 8.01E-3 2.60E-2 1.92E-2 +5.3eE-3 3.62E-3
EA 7 574E-2 + 1.14E-2  1.82E-2 2.28E-2 + 1.07E-2 1.76E-3

We compare the mean values of the RMSE in the results given in Table 4. In the Lorenz time series, NL gives
the best performance when compared to SL and EA. The performance of SL is close to NL, however, the EA does
not perform well. Note that each method has its strength in terms of the number of hidden neurons. SL gives good
performance with the least number of hidden neurons (5) while NL requires the most number of hidden neurons (11

and 13). This is due to the difference in their encoding schemes.

In the results for the Mackey time series, SL gives the best performance. NL and SL use the same number of hidden
neurons (13), however, the performance of SL is better. In the Sunspot time series, NL gives the best performance
with 3 hidden neurons. Note that is a real-world problem which contains noise. NL has been able to better decompose

the recurrent network training problem with the presence of noise.
SL gives the best performance if we consider the best values of the RMSE in the results given in Table 4.

Synapse level encoding has more diversity as more subcomponents are used; however, it does not group interacting
variables. Neural level encoding views the RNN as a partially separable problem. Synapse level encoding views the
RNN as a fully separable problem. The results show that the problem decomposition method and the nature of the
time series problem affects the performance of cooperative coevolution.

Figures 2 - 4 show that the RNN has been able to give good prediction performance. The RNN has been able to

cope with the noise in the Sunspot time series given in Figure 4. The prediction error has also been shown.

The performances of SL, NL and EA on the different problems are further compared to some of the results
published in literature as shown in Tables 5 - 7. The best values from the results in Table 4 are used to compare with
the results from literature. In Table 5, the results of the methods given in this paper are better than some of the existing
methods. However, the best results are of the evolutionary recurrent neural network (ERNN)[26] and the Hybrid
NARX-Elman network [39]. These are also seen for the Mackey Glass time series given in Table 6. This is because
the ERNN has also optimised the values for the embedding dimensions for the phase space reconstruction. Hybrid
NARX-Elman have the advantage of architectural properties of the two neural networks with residual analysis which
further improves the results. These methods can be combined with the proposed methods in future work to improve

the results.
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In Table 6, the proposed methods have given better performance than similar evolutionary approaches which train-
ing neural fuzzy networks with hybrid of cultural algorithms and cooperative particle swarm optimisation (CCPSO),
cooperative particle swarm optimisation (CPSO), genetic algorithms and differential evolution (DE) [19]. In Table 7,
the proposed methods have given better performance than most of the methods from literature with the only exception
being the Hybrid NARX-Elman networks [39].

Table 5: A comparison with the results from literature on the Lorenz time series

Prediction Method RMSE NMSE
Pseudo Gaussian - radial basis neural network (2002) 9.40E-02

Radial basis network with orthogonal least squares (RBF-OLS)(2006) [11] 1.41E-09
Locally linear neuro-fuzzy model - Locally linear model tree (LLNF-LoLiMot) (2006) [11] 9.80E-10
Boosted recurrent neural networks (2006) [40] 3.77E-03
Evolutionary RNN (2007) [26] 8.79E-06  9.90E-10
Auto regressive moving average with neural network (ARMA-ANN)(2008) [41] 8.76E-02
Backpropagation-through-time (BPTT-RNN) (2010) [28] 1.85E-03
Real time recurrent learning (RTRL-RNN) (2010) [28] 1.72E-03
Recursive Bayesian LevenbergMarquardt (RBLM-RNN) (2010) [28] 9.0E-04
Hybrid NARX-Elman RNN with Residual Analysis (2010) [39] 1.08E-04 1.98E-10
Backpropagation neural network and genetic algorithms with residual analysis (2011) [43]  2.96E-02

Proposed SL-CCRNN 6.36E-03 7.72E-04
Proposed NL-CCRNN 8.20E-03  1.28E-03

5. Conclusions and Future Work

The paper has presented an application of two different problem decomposition methods for cooperative coevolu-
tion of recurrent neural networks on chaotic time series problems. The two different problem decomposition methods
in cooperative coevolution have performed better than a standard evolutionary algorithm. The results show that the
given methods have been able to predict chaotic time series with good level of accuracy in comparison to some of the
method from literature. The co-evolutionary methods have performed very well on on the real world Sunspot time

series which contain noise.

The limitation of using evolutionary algorithms for training neural networks in comparison with gradient based
methods is the time they take in convergence. However, evolutionary algorithms are known as global optimisation

methods and neuro-evolution is promising according to the accuracy of the results.

Comparison of the results from literature motivates further research in using evolutionary computation methods
for time series prediction. Residual analysis can further improve the results. Gradient-based local search can further
complement the evolutionary training algorithms. Convergence analysis of the cooperative coevolution methods can

also be done in future work.
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Table 6: A comparison with the results from literature on the Mackey time series
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