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Abstract. The performance and reliability of wireless network proto-
cols heavily depend on the network and its environment. In wireless
networks node mobility can affect the overall performance up to a point
where, e.g. route discovery and route establishment fail. As a consequence
any formal technique for performance analysis of wireless network proto-
cols should take node mobility into account. In this paper we propose a
topology-based mobility model, that abstracts from physical behaviour,
and models mobility as probabilistic changes in the topology. We demon-
strate how this model can be instantiated to cover the main aspects of
the random walk and the random waypoint mobility model. The model
is not a stand-alone model, but intended to be used in combination with
protocol models. We illustrate this by two case studies: first we show
a brief analysis of the Ad-hoc On demand Distance Vector (AODV)
routing protocol, and second we combine the mobility model with the
Lightweight Medium Access Control (LMAC).

1 Introduction

The performance and reliability of network protocols heavily depend on the net-
work and its environment. In wireless networks node mobility can affect the
overall performance up to a point where, e.g. route discovery and route estab-
lishment fail. As a consequence any formal technique for analysis of wireless
network protocols should take node mobility into account.

Traditional network simulators and test-bed approaches usually use a detailed
description of the physical behaviour of a node: models include e.g. the location,
the velocity and the direction of the mobile nodes. In particular changes in
one of these variables are mimicked by the mobility model. It is common for
network simulators to use synthetic models for protocol analysis [15]. In this
class of models, a mobile node randomly chooses a direction and speed to travel
from its current location to a new location. As soon as the node reaches the
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new location, it randomly chooses the next direction. Although these models
abstract from certain characteristics such as acceleration, they still cover most
of the physical attributes of the mobile node. Two well-known synthetic mobility
models are the random walk (e.g., [1]) and the random waypoint model (e.g., [2]).

However, a physical mobility model is often incompatible with models of
protocols, in particular protocols in the data link and network layers, due to
limitations of the used modeling language and analysis tools. Even if it could be
included, it would add a high complexity and make automatic analysis infeasible.
From the point of view of the protocol it is often sufficient to model changes on
the topology (connectivity matrix) rather than all physical behaviour.

In this paper we propose a topology-based mobility model that abstracts
from physical behaviour, and models mobility as probabilistic changes in the
topology. The main idea is to identify the position of a node with its current set
of neighbours and determine changes in the connectivity matrix by adding or
deleting nodes probabilistically to this set. The probabilities are distilled from
the random walk or the random waypoint model. The resulting model is not
meant to be a stand-alone model, but to be used in combination with proto-
col models. For this, we provide a Uppaal template for our model, which can
easily be added to existing protocol models. The paper illustrates the flexibil-
ity of our model by two case studies: the first analyses quantitative aspects of
the Ad hoc On-Demand Distance Vector (AODV) protocol [14], a widely used
routing protocol, particularly tailored for wireless networks; the second example
presents an analysis of the Lightweight Media Access Control (LMAC) [12], a
protocol designed for sensor networks to schedule communication, and targeted
for distributed self-configuration, collision avoidance and energy efficiency.

The rest of the paper is organised as follows: after a short overview of related
work (Sect. 2), we develop the topology-based mobility model in Sect 3. In Sect. 4
we present a simulator that is used to compute the transition probabilities for
two common mobility models. In Sect. 5, we combine the distilled probabilities
with our topology-based model to create a Uppaal model. Before concluding in
Sect. 7, we illustrate how the model can be used in conjunction with protocol
models. More precisely we present a short analysis of AODV and LMAC.

2 Related Work

Mobility models are part of most network simulators such as ns-2. In contrast to
this, formal models used for verification or performance analysis usually assume
a static topology, or consider a few scenarios with changing topology only. For
the purpose of this section, we distinguish two research areas: mobility models
for network simulators and models for formal verification methods.

Mobility models for network simulators either replay traces obtained from
real world, or they use synthetic models, which abstract from some details and
generate mobility scenarios. There are roughly two dozen different synthetic
models (see [15, 4] for an overview), starting from well-known models such as
the random walk model (e.g., [1]) and the random way point model (e.g., [2]),



via (partially) deterministic models and Manhatten models to Gauss-Markov and
gravity mobility models. All these models are based on the physical behaviour
of mobile nodes, i.e. each node has a physical location (in 2D or 3D1), a cur-
rent speed and a direction it is heading to. As these models cover most of the
physical behaviour, they are most often very complex (e.g. [13, 10]) and include
for example mathematics for Brownian motion. Due to this complexity these
models cannot be incorporated directly into formal models for model-checking.
This paper describes how two of these models, the random waypoint, and the
random walk model, can be used to distill transition probabilities for a mobility
model, which can easily be combined with formal protocol models.

Including mobility into a model for formal verification is not as common as
it is for network simulators. If they are included, then typically in the protocol
specification and therefore can rarely be reused for the analysis of different pro-
tocols. Moreover, formal verification often abstracts entirely from the underlying
mobility model and allows arbitrary topology changes [9, 5, 8]. Other approaches
only allow random, but very limited changes in the topology, often in the form of
a scenario that involves deletion or creation of links [6, 18, 17]. Song and Godske-
sen propose in [16] a framework for modelling mobility that generalises the model
used in this paper in that connectivity is modelled by distributions, rather than
an adjacency matrix. They propose a probabilistic mobility function to model
mobility, without any specifics. This paper takes a similar approach, but works
out and analyses the transition probabilities obtained for two mobility models.

Our contribution is the following: We take the idea that the position of
a mobile node can be characterised by a set of neighbours, which determine
the topology, and we then define mobility as transitions between these sets.
We then analyse the geometry of mobile nodes in a grid and determine which
parameters actually influence the transition probabilities. In fact we found that
some parameters, such as he step size of the random walk model have no influence
on the transition probabilities. Based on this observation we built a topology-
based mobility model which can easily be combined with protocol models.

3 Topology-based Mobility Model

Our model takes up the position of the protocol: for a protocol it only matters
whether data packets can be sent to a node, i.e. whether the node is within
transmission range. The speed, the direction and other physical attributes are
unimportant and irrelevant for the protocol. Hence the topology-based mobility
model we introduce abstracts from all physical description of a node, and also
largely abstracts from time. It models the node as a set of one-hop neighbours,
i.e. nodes that are within transmission range of the node. Movement is modelled
as a transition from one set of neighbours to another.

We assume that the node to be modelled moves within a quadratic N ×N -
grid of stationary nodes. For simplicity we assume that nodes in the grid have a
distance of 1, and that both the stationary and the mobile node have the same

1 3D is required when nodes model aerospace vehicles, such as UAVs.
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transmission range R. Obviously, the model depends on the grid size and the
transmission range. We further assume that the transition range R is larger than
1 and strictly smaller than

√
2. If it were smaller than 1 nodes in the grid would

be outside of the range of their closest neighbours, if it were larger than
√

2
nodes could communicate diagonally in the grid.

The network topology of all nodes, including the mobile node, can be repre-
sented by an adjacency or connectivity matrix A with

Ai,j =

{
1 if D(i, j) ≤ R
0 otherwise ,

where D(i, j) is the distance between the nodes i and j using some kind of
metric, such as the Euclidean distance. While the connectivity matrix has the-
oretically 2N

2

possible configurations, with N the number of nodes, a network
with one mobile node will only reach a small fraction of those. First, the matrix
is symmetric. Second, all nodes, except for one, are assumed static, and the con-
nectivity Ai,j between two static nodes i and j will be constant. Third, due to
the geometry of the plane, even the mobile node can only have a limited num-
ber of configurations. For example, neither a completely connected node, nor a
completely disconnected node is possible given the transmission range.

The possible topologies depend on the transmission range: the larger the
range the larger the number of possible nodes that can be connected to the
mobile node. Within the right-open interval [1,

√
2), the set of possible topolo-

gies changes at values
√
5
2 , 2.5√

4.5
and 1.25. These values can be computed with

basic trigonometry. Fig. 1 illustrates which topologies become possible at those
transmission ranges.

By considering the transmission range of the stationary nodes, one can par-
tition the grid into regions in which mobile nodes will have the same set of
neighbours. The boundaries of these regions are defined by circles with radius R
around the stationary nodes. Fig. 2 depicts three possible regions for a 5×5 grid,
and a transmission range R = 1.25; stationary nodes that are connected to the
mobile node (located somewhere in the coloured area) are highlighted. As con-
vention we will number nodes from the top left corner, starting with node 0. This
partitioning abstracts from the exact location of the mobile node. Mobility can
now be expressed as a change from one region to the next. The topology-based
model will capture the changing topology as a Markovian transition function,
that assigns to a pair of topologies a transition probability.
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Fig. 2. Three different regions and their corresponding set of neighbors.

The number of possible transitions is also limited by the partition, as every
region is bounded by a small number of arcs. If a mobile node transits an arc, a
static node has to be added to or deleted from its set of neighbours. Consider,
for example, the region that corresponds to set {1, 2, 6, 7, 12} in Fig. 2(a). If the
mobile node crosses the arc to the bottom left, node 11 will be added (Fig. 2(b)).
The other two arcs of {1, 2, 6, 7, 12} define the only two other transitions that
are possible from this set.

We call a mobility model locally defined if congruent regions yield the same
transition probabilities. Regions are congruent if they can transformed into each
other by rotation, reflection and translation. By extension we call transitions that
correspond to congruent arcs in such regions also congruent. The movement of a
node in a locally defined mobility model is independent from its exact position in
the grid. The changes that can occur depend only on the topology of the current
neighbours. For example, the congruent sets {1, 2, 6, 7, 12} and {0, 1, 5, 6, 7} in
Fig. 2(a) and (c), would have the same transition probabilities.

In some cases this principle will uniquely determine the transition probability:
the set {1, 2, 6, 7, 11, 12} in Fig 2(b) is bounded by 4 identical arcs. This means
that all of them should correspond to a probability of 1

4 . For other regions the
partition implies a relation/equation between some probabilities, but does not
determine them completely. Considering only transition in a single cell of the
grid yields just a few and very symmetric transitions between possible topologies.
Fig. 3 depicts the transitions as transitions between topologies.

One way to assign probabilities is to require that they are proportional to the
length of the arc. Alternatively, probabilities may be estimated by simulations
of a moving node in the plane. Note, that the resulting probabilistic transition
system will be memoryless, i.e. the probability of the next transition depends
only on the current region (set of neighbours). In the next section, we will see
that the common random waypoint model is not locally defined, i.e. the local
topology is not sufficient to determine the transition probabilities.

4 Simulations of Two Mobility Models

In the previous section we proposed a topology-based mobility model, based
on transition probabilities; the exact values for the probabilities, however, were



Fig. 3. Possible transitions within a single grid cell for R= 1.25.

not specified. In this section we use a simulator to compute it for two common
mobility models, a random walk model, and a random waypoint model.

4.1 Simulator

The simulator considers a single mobile node in an N ×N grid of stationary
nodes. As before, we assume a distance of 1 between the nodes on the grid. The
initial position (x0, y0) of the mobile node is determined by a uniform distribution
over [0, N − 1]×[0, N − 1], i.e. x0∼U([0, N − 1]) and y0∼U([0, N − 1]). Depending
on the mobility model chosen, the simulator then selects a finite number of
waypoints (x1, y1), . . . , (xn, yn), and moves along a straight line from waypoint
(xi, yi) to the next (xi+1, yi+1).

The random waypoint model uses a uniform distribution over the grid to
select the next way point, i.e. for all xi, yi, xi∼U([0, N − 1]) and yi∼U([0, N − 1]).
The choice of the next waypoint is independent of the previous waypoint. This
model is the most common model of mobility for network simulators, even if it
merits and limitations have been debated [19]. A consequence of the waypoint
selection is that the direction of movement is not uniformly distributed; nodes
tend to move more towards the centre of the square interval.

As an alternative we are using a simple random walk model. Given way point
(xi, yi) the next way point is computed as (xi, yi)+(x∆, y∆) where both x∆ and
x∆ are drawn from a normal distribution N (0, σ). This also means that the
Euclidean distance between waypoints ||(x∆, y∆)|| has an expected value of σ; σ
defines the average step size in the random walk model. By this definition, the
model is unbounded, i.e. the next waypoint may lie outside of the grid. If this
happens the simulator computes the intersection of the line segment with the
grid’s boundary and reflects the waypoint at that boundary. In the model, the
mobile node moves from the first waypoint to the boundary, and from there to
the reflected waypoint. For the purposes of this paper the intersections with the
boundary do not count as waypoints.

Since the topology-based mobility model introduced in Sect. 3 abstracts
from acceleration and speed, these aspects are not included in the simulation
either. The simulator solves algebraically for every line segment from (xi, yi) to
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Fig. 4. (a) Transition probabilities and occurrences of set {0, 1, 5, 6, 7}. (b) The relation
between number of transitions, the number of waypoints, and the transmission range.

(xi+1, yi+1) if it intersects with a node’s transmission range R (given by a circle
with radius R and the node in its centre). The simulator sorts all the events of
nodes entering and leaving the transmission range, and computes a sequence of
sets of neighbours. This sequence is then used to count occurrences of transitions
between these sets that are used to compute relative transition probabilities.

4.2 Simulation Results

The simulator is implemented in C++, and used to generate transition probabil-
ities for the topology-based mobility model of Section 3. The simulator allows
also a more detailed analysis of these two mobility models, in particular how the
choice of parameters (grid size, transmission range, and standard deviation of
the normal distribution σ) affects the transition probabilities. In this section we
discuss some results for scenarios with a single mobile node on a 5× 5 grid.

The simulation of the random walk model demonstrate a few important in-
variants. One observation is that the transition probabilities do not depend on
the size of σ. This fact is illustrated by Fig. 4(a). The top part of this figure
shows the probabilities that certain nodes are added or deleted from the set
{0, 1, 5, 6, 7}. While σ ranges from 1

8 to 8 the probabilities remain constant. The
bottom part of the figure depicts the frequency with which the set occurs. Here
there is a linear relation between σ and the total number of times that the set
is visited. This is explained by the fact that σ is also the average step size, and
doubling it means that twice as many transitions should be taken along the path.

Another linear relation exists between the total number of transitions along
a path and the transmission range (cf. Fig. 4(b)). This relation is explained by
the fact that the length of the boundary of each transmission area is linear to the
range. For σ= 1, and R= 1, approximately 5 transitions will occur between any
two waypoints. The ratio transition/range is constant for an increasing range.
Note, that this number is independent of the grid size, and grows linearly with σ.
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Fig. 5. Selected simulation results of the random walk and the random waypoint model.



These invariants do not hold for the random waypoint model. The ratio of
transition to range is not constant, as illustrated in Fig. 4(b). It is also dependent
on the size of the grid. In a larger grid the distance between waypoints will be
larger, and more transitions occur per waypoint.

For the random walk model we found that the step size σ has no effect on
the actual transition probabilities. The effect of the transmission range on the
transition probabilities is less trivial. Fig. 5 shows a few illustrative examples.
Similar result were obtained for all possible sets of neighbours.

Fig. 5(a) depicts the results for {1, 2, 6, 7, 11, 12}, a set of six nodes that form
a rectangle. This set cannot occur if transmission ranges are smaller than

√
5
2

(cf. Sect. 3). For transmission ranges R ∈ [
√
5
2 , 1.25] the only possible transitions

are to delete one of the four vertices located at the corners of the rectangle. In
the random walk model the probability for these four transitions is 1

4 . Fig. 5(a)
also illustrates that for transmission ranges R≥ 1.25, it is possible to add one
additional node (either 5 or 8), reaching a set with 7 one-hop neighbours. As the
range increases, the probability of this happening increases. At the same time
the probability of deleting a vertex decreases.

Fig. 5(b) consider the same set of neighbours as Fig.5(a), but under the
random waypoint model. It demonstrates that this model is not locally defined,
as congruent transitions, e.g. deleting vertices, do not have the same probability.
The probability also depends of the distance of a node to the centre of the grid.

Fig. 5(c–f) show the transition probabilities for sets of neighbours that occur
only if R∈[1, 1.25]: if R< 1, the transmission range is too small to cover the sets
{2, 6, 7, 12} and {1, 5, 6, 7}, resp.; if R> 1.25 the transmission range of the mobile
not would consists of more that four nodes only. The observation is that as the
transmission range increases, the probability of deleting a node decreases, while
the probability of adding nodes increases. The sets {2, 6, 7, 12} and {1, 5, 6, 7}
have the same basic “>” shape; one is congruent to the other. Hence, for the
random walk model both sets have essentially the same transition probability;
but also the frequency with which the sets occur is the same. This confirms that
the position or orientation in the grid does not matter.

For the random waypoint model this no longer holds. The transition proba-
bilities of similarly shaped neighbourhoods are not similar, but also determined
by the position relative to the centre: the closer the set is to the centre the often
it occurs in paths. Note, Fig. 1(d) and (f) use different scales for the frequency.

To conclude this section, we summarise our findings:

Random walk model:

– The transition probabilities are independent of σ and the grid size;

– The number of transitions per waypoint path grows linear with the range;

– The transition probabilities of congruent transitions are the same;

– The probabilities depend only locally on the set of nodes within range.

Random waypoint model: None of the above observations hold.
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G
ri
d

si
z
e

2× 2 9 9 5 5 5 5
3× 3 32 41 49 49 37 41
4× 4 69 97 133 133 101 117
5× 5 120 177 257 257 197 233
6× 6 185 281 421 421 325 389
7× 7 264 409 625 625 485 585
8× 8 357 561 869 869 677 821
9× 9 464 737 1153 1153 901 1097

10× 10 585 937 1477 1477 1157 1413

Table 1. Number of possible topologies, in relation to the range and the grid size.2

5 Uppaal Model

This section describes an Uppaal model that implements the topology-based
mobility model described in Sect. 3, and uses the transition probabilities ob-
tained in Sect. 4. The model is not meant to be stand-alone, but meant to be
used within other protocol models. It assumes that an adjacency matrix bool

topoloy[N][N] is used. The constant N is the size of the grid plus the mobile
node. Depending on whether the random walk or random waypoint model is
used, the model makes use of the grid size and on the transmission range.

The template provides a list of all possible sets of neighbours. Table 1 shows
the numbers of possible sets depending on the size of the grid and the transmis-
sion range. The results show that even for relatively large grids the number of
possible sets of neighbors of the mobile node is limited. They will increase the
potential state space only by three order of magnitude. The reachable space may
increase by more when a template for mobility is added, because the protocol
might reach more states than it did for static topologies.

The Uppaal template of Fig. 6 implements a lookup table of transition proba-
bilities. After initialisation the template loops through a transition that changes
the topology probabilistically. It contains a clock t, a guard t>=minframe and an
invariant t<=maxframe to ensure that the change happens once in the interval
[minframe,maxframe]. The values of minframe and maxframe determine the
frequency of topology changes, and hence simulate the speed of a node.

The lookup is implemented by functions updatemapindex, changeprob and
changenode. After every topology change, the function updatemapindex main-
tains the index (mapindex); this index into the list of possible sets is used to look
up transition probabilities for a smaller set of representative sets of neighbours.
Every set of neighbours is congruent to one of these representative sets. This
information is used by changeprob to look up for a given node i the probability
that it will be added or deleted from the current set of neighbours. Function
changenode implements that change.

2 Results for the point intervals containing
√
5

2
and 2.5√

4.5
are omitted.



t<=maxframe t>=minframe
&& mapindex>=0 
&& numnodes<=MAXLENGTH

intitialiseN(),
updatemapindex()

changenode(i),
updatemapindex()

changeprob(i)
i: int[0,NODES-2]

t=0

Fig. 6. Uppaal template for the mobility model.

6 Case studies

In this section we illustrate how the topology-based model can be used in com-
bination with protocol models: first we briefly present an analysis of the Ad-hoc
On demand Distance Vector (AODV) routing protocol, and second we combine
the mobility model with the Lightweight Medium Control (LMAC). A detailed
study of these protocols is out of the scope of the paper; we only want to show
the applicability and power of the introduced mobility model.

Since we are interested in a quantitative properties of the protocols, we are
not using “classical” Uppaal, but SMC-Uppaal, the statistical extension of Up-
paal [3]. Statistical Model Checking (SMC) [20] combines ideas of model checking
and simulation with the aim of supporting quantitative analysis as well as ad-
dressing the size barrier that currently prevents useful analysis of large models.
SMC trades certainty for approximation, using Monte Carlo style sampling, and
hypothesis testing to interpret the results. Parameters setting thresholds on the
probability of false negatives and on probabilistic uncertainty can be used to
specify the statistical confidence on the result. For this paper, we choose a con-
fidence level of 95%.

6.1 The Ad-hoc On demand Distance Vector (AODV) Protocol

AODV is a reactive routing protocol, which means that routes are only estab-
lished on demand. If a node S needs to send a data packet to node D, but cur-
rently does not know a route, it buffers the packet and initiates a route discovery
process by broadcasting a route request message in the network. An intermediate
node A that receives this message stores a route to S, and re-broadcasts the re-
quest. This is repeated until the message reaches D, or alternatively a node with
a route to D. In both cases, the node replies to the route request by unicasting
a route reply back to the source S, via the previously established route.

An Uppaal model of AODV is proposed in [6]. The analysis performed on this
model was done for static topologies and for topologies with very few changes.
This limits the scope of the performance analysis. Here, the mobility automaton
is added to the model of AODV. Since the mobility automaton is an almost
independent component, it can be easily integrated into any Uppaal model.
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Fig. 7. AODV: probability of packet delivery within a certain time.

Our experiments consider scenarios with a single mobile node moving within
a 4× 4 grid. A data packet destined for a randomly chosen stationary node is
injected at a different stationary node. During route discovery the mobile node
will receive and forward route requests and replies, as any other node will do.

The experiment determines the probability that the originator of the route
request learns a route to the destination within 2000 time units. This time bound
is chosen as a conservative upper bound to ensure that the analyser explores
paths to a depth where the protocol is guaranteed to have terminated. In (SMC-)
Uppaal syntax this property can be expressed as

Pr[<=2000](<> node(OIP).rt[DIP].nhop!=0) . (1)

The variable node(OIP).rt denotes the routing table of the originator OIP,
and the field node(OIP).rt[DIP].nhop represents the next hop on the stored
route to the destination DIP. In case it is not 0, a route to DIP was successfully
established. The property was analysed for the random walk and the random
waypoint model with three different transmission ranges R: 1.1, 1.2, and 1.3.
SMC-Uppaal returns a probability interval for the property (1), as well as a his-
togram of the probabilities of the runtime needed until the property is satisfied.

The results are presented in Fig. 7. The legend contains, besides the name of
the model, the probability interval. For example, the random walk model with
R= 1.1 satisfies property (1) with a probability P ∈ [0.84, 0.94]. In contrast to
that the probability of route establishment in a scenario without a mobile node
is [0.95, 1], which indicates that the property is always satisfied. The probability
intervals show that all scenarios with a mobile node have a lower probability for
route discovery, some dramatically so. The random waypoint model with R= 1.2
has a probability interval of [0.38, 0.48], which means that more than half of all
route discovery processes fail. It is also notable that the random walk models
have better results than the corresponding random waypoint models. Finally, the
mobility models with R= 1.1 have a significantly higher probability to succeed
than the other four models with R= 1.2 and R= 1.3.



The histograms show another interesting finding. The time it takes for a
route reply to be delivered, if it is delivered, can be shorter for the models
with the mobile node. Apparently, the mobile node can function as a messenger
between originator and destination; not just by forwarding messages, but also
by physically creating shortcuts.

6.2 The Lightweight Medium Access Control (LMAC) Protocol

LMAC [11] is a lightweight time division medium access protocol designed for
sensor networks to schedule communication, and targeted for distributed self-
configuration, collision avoidance and energy efficiency. It assumes that time is
divided into frames with a fixed number of time slots. The purpose of LMAC is to
assign to every node a time slot different from its one- and two-hop neighbours.
If it fails to do so, collisions may occur, i.e., a node receives messages from
two neighbours at the same time. However, LMAC contains a mechanism to
detect collisions and report them to the nodes involved, such that they choose
(probabilistically) a new time slot.

A (non-probabilistic) Uppaal model for LMAC was developed in [7], where
it was also used to study static topologies. Based on this model a probabilistic
model was developed [11]. This model was then used to study the performance
of LMAC for heuristically generated topologies with 10 nodes [3]. The model we
use for this paper differs in one aspect from [3]: it uses a smaller frame, with
only six time slots, rather than 20. The purpose of LMAC is to assign time slots
such that collisions are avoided or resolved, even if the number of time slots is
restricted. For a 3× 3 grid, it is possible to find a suitable assignment with only
five time slots; six time slots should therefore be sufficient to cover a network
with 10 node (one mobile node), although it might be challenging.

We check the following two properties:
Pr[<=2000](<> forall (i: int[0,9]) slot no[i]>=0) (2)

Pr[collisions<=2000](<> time>=2000) . (3)

The first property holds if, at some time point (before time 2000), all nodes
are able to select a time slot. While this does not guarantee the absence of
collisions, it does guarantee that all nodes have been able to participate in the
protocol. The second property checks whether it is possible to reach 2000 time
units, with less than 2000 collisions. This property is true for all runs. It is used
merely to obtain a histogram of the number of collisions.

The results are illustrated in the histogram of Fig. 8: for all models with a
mobile node, the property (2) is satisfied (the probability interval is [0.95, 1],
by a confidence level of 95%). The detailed results show that all runs reach a
state in which all nodes have chosen a time slot. For the model without a mobile
node, the probability interval is [0.80, 0.90]. This means that in at least 10% of
all cases LMAC is not able to assign a time slot to all nodes; the histogram
shows runs with 80–90, 160–170, and 240–250 collisions. These are runs in which
one, or more nodes are engaged in a perpetual collision. Interestingly, this type
of perpetual collisions do not occur in models with a mobile node. The mobile
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Fig. 8. LMAC: number of collisions within 2000 time units.

node functions as an arbiter, which, as it moves around, detects and reports
collisions that static nodes could not resolve.

The histograms reveal a few other interesting findings. In the model without
mobility about 40% of the runs have no collisions. For both mobility models
with transmission range R= 1.1 this drops to about 30%. For larger transmission
ranges this drops even further to close to 0%, which means that almost all runs
have at least some collisions. The differences between range R= 1.1, R= 1.2 and
R= 1.3 is explained by the fact that the mobile node for R= 1.1 will have at most
5 neighbours, while for R= 1.3 it may be 7 neighbours. A larger neighbourhood
makes choosing a good time slot more difficult. This is confirmed by another
observation, namely that for R= 1.1 only a few runs have more than 20 collisions
(approx. 12% of the runs, both random walk and random waypoint), while for
a range of 1.2 and 1.3 it is in the range from 25% to 45%.

Both case studies show that introducing mobility can change the behaviour
of network protocols significantly. As mentioned above, the purpose of these
case studies was not to analyse these protocols in detail, but to show that the
topology-based mobility models can be used to improve the scope of performance
analyses of such protocols.



7 Conclusion

In this paper we have proposed an abstract, reusable, topology-based mobility
model for wireless networks. The model abstracts from all physical aspects of a
node as well as from time, and hence results in a simple probabilistic model. To
choose a right level of abstraction, we have studied possible transitions and con-
figurations of network topologies. To determine realistic transition probabilities
regarding existing mobility models, we have performed simulation-based exper-
iments. In particular, we have distilled probabilities for the random walk and
the random waypoint model (using different transition ranges). We have then
combined the topology-based model with the distilled probabilities and have
created a (SMC-)Uppaal model. The generated model is small and can easily be
combined with other Uppaal models specifying arbitrary protocols. To illustrate
this claim we have combined our model with a model of AODV and LMAC,
resp. By this we were able to demonstrate that topology-based mobility models
can be used to improve the scope of performance analysis of such protocols.

There are several possible directions for future work. First, we hope that our
model is combined with a variety of protocols. Anybody who has some experience
with the model checker Uppaal should be able to integrate our model easily.
Second, we want to extend our mobility model to more than one mobile node.
Having many mobile nodes will most likely increase the state space significantly,
but statistical model checking should overcome this deficiency. Last, but not
least, we plan to use the mobility model to perform a thorough and detailed
analysis of AODV and LMAC. In this paper we have only scratched the surface
of the analysis; we expect to find many more shortcomings in both protocols.
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